News and Events

Thumbnail of Florida Northern Lights
Northern lights have come to Florida skies. In fact, the brilliant streak of a Northern Taurid meteor flashes through the starry night sky above the beach in this sea and skyscape, captured from Shired Island, Florida on November 11. Meteors from the annual Northern Taurid meteor shower are expected this time of year. But the digital camera exposure also records the shimmering glow of aurora, a phenomenon more often seen from our fair planet's higher geographical latitudes. Also known as aurora borealis, these northern lights are part of recent, wide spread auroral activity caused by strong geomagnetic storms. In the last few days, stormy spaceweather has been triggered by multiple Earth impacting coronal mass ejections and intense solar activity.
Mount Timpanogos with sky above
Temp:  64 °FN2 Boiling:75.9 K
Humidity: 33%H2O Boiling:   368.5 K
Pressure:86 kPaSunrise:7:12 AM
Wind:2 m/s   Sunset:5:11 PM
Precip:0 mm   Sunlight:0 W/m²  
Image for New Applied Physics Major with an Emphasis in Data Science
Starting Fall 2025, BYU will offer a new Applied Physics: Data Science major that combines rigorous physics training with data science skills to prepare students for the growing demand in data-driven careers.
Image for The Physics of Life
BYU's new Biological Physics course introduces students to the physics behind biological processes, fostering interdisciplinary skills to tackle complex biological questions.
Image for Dr. Kent Gee Receives Top faculty Award
Dr. Kent Gee has been named the recipient of the Karl G. Maeser Distinguished Faculty Lecturer Award
Image for New Acoustics Major
The BYU Physics & Astronomy department recently introduced the Applied Physics: Acoustics degree.

Selected Publications

Thumbnail of figure from publication
C. Braxton Owens, Tyce W. Olaveson, Gus L. W. Hart, and Eric R. Homer (et al.)

Obtaining microscopic structure-property relationships for grain boundaries is challenging due to their complex atomic structures. Recent efforts use machine learning to derive these relationships, but the way the atomic grain boundary structure is represented can have a significant impact on the predictions. Key steps for property prediction common to grain boundaries and other variable-sized atom clustered structures include: (1) describing the atomic structure as a feature matrix, (2) transforming the variable-sized feature matrix to a fixed length common to all structures, and (3) applying a machine learning algorithm to predict properties from the transformed matrices. We examine how these steps and different combinations of engineered features impact the accuracy of grain boundary energy predictions using a database of over 7000 grain boundaries. Additionally, we assess how different engineered features support interpretability, offering insights into the physics of the structure-property relationships.

Thumbnail of figure from publication
M. D. Joner and G. Apolonio (et al.)

Context. The BL Lac object 3C 371 is one of the targets regularly monitored by the Whole-Earth Blazar Telescope (WEBT), a collaboration of observers studying blazar variability on both short and long timescales.

Aims. We aim to evaluate the long-term multi-wavelength (MWL) behaviour of 3C 371, comparing it with results derived from its optical emission in our previous study. For this, we make use of the multi-band campaigns organised by the WEBT collaboration in optical and radio between January 2018 and December 2020, and of public data from Swift and Fermi satellites and the MOJAVE Very Large Interferometry programme.

Methods. We evaluated the variability shown by the source in each band by quantifying the amplitude variability parameter, and also looked for a possible inter-band correlation using the z-discrete correlation function. We also present a deep analysis of the optical-UV, X-ray, and γ-ray spectral variability. With the MOJAVE data, we performed a kinematics analysis, looking for components propagating along the jet and calculating its kinematics parameters. We then used this set of parameters to interpret the source MWL behaviour, modelling its broadband spectral energy distribution (SED) with theoretical blazar emission scenarios.

Results. The MWL variability of the source in the UV, X-ray, and γ-ray bands is comparable to that in optical, especially considering the lower coverage of the first two wavebands. On the other hand, the radio bands show variability of much lower magnitude. Moreover, this MWL emission shows a high degree of correlation, which is compatible with zero lag, again with the exception of the radio emission. The radio VLBI images reveal super-luminal motion of one of the identified components, which we used to set constraints on the jet kinematics and parameters, and to estimate a viewing angle of θ = (9.6 ± 1.6)°, a Doppler factor of δ = 6.0 ± 1.1, and a Lorentz factor of Γ = 6.0 ± 1.8. The polarised radio emission was found to be anti-correlated with the total flux, and to follow the same behaviour as the polarised optical radiation. The optical-UV spectral behaviour shows a mild harder-when-brighter trend on long timescales, and other trends such as redder-when-brighter on shorter timescales. We successfully modelled the broadband emission with a leptonic scenario, where we compared the low and high emission states during the period of complete MWL coverage. The difference between these two states can be ascribed mainly to a hardening of the distribution of particles. The derived features of the source confirm that 3C 371 is a BL Lac whose jet is not well aligned with the line of sight.

Thumbnail of figure from publication
Nathan R. Zuniga, Noah E. Earls, Jared M. Elison, Benjamin S. Jones, Ethan G. Smith, Noah G. Moran, Gerome M. Romero, Chad D. Hyer, Kimberly B. Wagstaff, Haifa M. Almughamsi, Mark K. Transtrum, and John C. Price (et al.)

Apolipoprotein E (ApoE) polymorphisms modify the risk of Alzheimer’s disease with ApoE4 strongly increasing and ApoE2 modestly decreasing risk relative to the control ApoE3. To investigate how ApoE isoforms alter risk, we measured changes in proteome homeostasis in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). The regulation of each protein’s homeostasis is observed by measuring turnover rate and abundance for that protein. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type control ApoE3. In ApoE4 mice, lack of cohesion between mitochondrial membrane and matrix proteins suggests that dysregulation of proteasome and autophagy is reducing protein quality. In ApoE2, proteins of the mitochondrial matrix and the membrane, including oxidative phosphorylation complexes, had a similar increase in degradation which suggests coordinated replacement of the entire organelle. In the liver we did not observe these changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to other tissues. Our findings underscore the utility of combining protein abundance and turnover rates to decipher proteome regulatory mechanisms and their potential role in biology.

Thumbnail of figure from publication
Sabrina Hatt and Benjamin M. Frandsen (et al.)

Altermagnets represent a new class of magnetic phases without net magnetization, invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their nonrelativistic spin-split band structure. Indeed, they serve as the magnetic analogue of unconventional superconductors and can yield spin-polarized electrical currents in the absence of external magnetic fields, making them promising candidates for next-generation spintronics. Here, we report altermagnetism in the correlated insulator, magnetically ordered tetragonal oxychalcogenide, La2O3Mn2Se2. Symmetry analysis reveals a 𝑑𝑥2−𝑦2-wave-like spin-momentum locking arising from the Mn2O Lieb lattice, supported by density functional theory (DFT) calculations. Magnetic measurements confirm the AFM transition below ∼166K while neutron pair distribution function analysis reveals a 2D short-range magnetic order that persists above the Néel temperature. Single crystals are grown and characterized using x-ray diffraction, optical and electron microscopy, and micro-Raman spectroscopy to confirm the crystal structure, stoichiometry, and uniformity. Our findings establish La2O3Mn2Se2as a model altermagnetic system realized on a Lieb lattice.

Thumbnail of figure from publication
Mark C. Anderson and Kent L. Gee

When the SpaceX Falcon-9 rocket booster descends through the atmosphere after a launch, it produces a sonic boom with three shocks in the far field, rather than the usual two-shock N-wave. In this Letter, the additional shock's origin is explained using sonic boom theory, nonlinear propagation modeling, computational fluid dynamics, and photographic evidence. The extra central shock results from a forward-migrating compression wave caused by the grid fins merging with a rearward-migrating rarefaction wave caused by the lower portions of the booster, including the folded landing legs.

Thumbnail of figure from publication

Group-theoretical and linear-algebraic methods and tools have recently been developed that aim to exhaustively identify the small-angle rotational rigid-unit modes (RUMs) of a given framework material. But in their current form, they fail to detect RUMs that require a compensating lattice strain which grows linearly with the amplitude of the rigid-unit rotations. Here, we present a systematic approach to including linear strain compensation within the linear-algebraic RUM-search method, so that any geometrically possible small-angle RUM can be detected.