Agilent Technologies 35670A
Dynamic Signal Analyzer

Product Overview

Versatile two- or four-channel high-performance FFT-based spectrum/network analyzer
122 µHz to 102.4 kHz 16-bit ADC

The Agilent 35670A is a portable two- or four-channel dynamic signal analyzer with the versatility to be several instruments at once. Rugged and portable, it’s ideal for field work. Yet it has the performance and functionality required for demanding R&D applications. Optional features optimize the instrument for troubleshooting mechanical vibration and noise problems, characterizing control systems, or general spectrum and network analysis.

Take the Agilent 35670A where it’s needed!

Whether you’re moving an instrument around the world or around the lab, portability is a real benefit. Small enough to fit under an airplane seat, the 35670A goes where it’s needed. But there’s more to portability than size. Like a nominal 12- to 28-Volt DC power input and self-contained features that do not require external hardware, such as built-in piezoelectric integrated circuit power supply, analog trigger and tachometer inputs, and optional computed order tracking.

Versatile enough to be your only instrument for low frequency analysis

With the 35670A, you carry several instruments into the field in one package. Frequency, time, and amplitude domain analysis are all available in the standard instrument. Build on that capability with options that either add new measurement capability or enhance all measurement modes.

Key Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range:</td>
<td>102.4 kHz 1 channel</td>
</tr>
<tr>
<td></td>
<td>51.2 kHz 2 channel</td>
</tr>
<tr>
<td></td>
<td>25.6 kHz 4 channel</td>
</tr>
<tr>
<td>Dynamic Range:</td>
<td>90 dB typical</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>±0.15 dB</td>
</tr>
<tr>
<td>Channel Match:</td>
<td>±0.04 dB and ±0.5 degrees</td>
</tr>
<tr>
<td>Real-time Bandwidth:</td>
<td>25.6 kHz/1 channel</td>
</tr>
<tr>
<td>Resolution:</td>
<td>100, 200, 400 & 800 lines</td>
</tr>
<tr>
<td>Time Capture:</td>
<td>0.8 to >6 Msamples (option UFC)</td>
</tr>
<tr>
<td>Source Types:</td>
<td>Random, Burst random, Periodic chirp, Burst chirp, Pink noise, Sine, Swept-Sine (option1D2), Arbitrary (option 1D4)</td>
</tr>
</tbody>
</table>

AY6 Add Two Channels (Four Total)
1D0 Computed Order Tracking
1D1 Real-Time Octave Measurements
UK4 Microphone Adapter and Power Supply
1D2 Swept-Sine Measurements
1D3 Curve Fit and Synthesis
1D4 Arbitrary Waveform Source
1C2 Agilent Instrument BASIC
100 1D0 - 1D4 bundle
Agilent 35670A
Dynamic Signal Analyzer

Agilent Instrument BASIC (Option 1C2)
Develop a custom user-interface, integrate several instruments and peripherals into a system using the 35670A as the system controller, or simply automate measurements.

RPM Display
Read RPM in any measurement mode

Online Help
Applications oriented help is just a few keystrokes away.

Large 6.3 inch (17 cm) display
Display area is not compromised by portability

Input Channels
- Analog A-weighted filters (switchable)
- Transducer sensitivity input
- Engineering units: g, m/s², m/s, m, in/s², in/s, in, mil, kg, dyn, lb, N, and pascals
- Built-in 4 mA constant current power supply

Precision Measurements
- 16-bit ADC
- ±0.15 dB spectrum amplitude accuracy
- ±0.04 dB, ±0.5 degrees channel match (full scale)
- 90 dB dynamic range (typical)
- 130 dB dynamic range with swept-sine (option 1D2)
- Up/Down autorange
- Up only autorange

Math Functions
Powerful math and data editing functions to quickly modify measurement results. (Curve fit and frequency response synthesis available with option 1D3.)

Built-In 3.5 inch Flexible Disk Drive
Store instrument states, programs, time captured data, waterfall data, trace data, limits, math functions, data tables, and curve fit/synthesis tables.
Supported disk formats are HP-LIF and MS-DOS. Internal RAM may also be formatted as storage disk.

Powerful Markers
Extract information from measurement data with trace and special markers:
- Individual Trace
- Coupled Trace
- Absolute or Relative
- Peak Search
- Harmonic
- Band
- Sideband Power
- Waterfall
- Time Parameter
- Frequency and Damping

Versatile Measurement Modes
Standard and optional measurement modes include:
- FFT Analysis
- Real-Time Octave Analysis (option 1D1)
- Order Analysis (option 1D8)
- Swept-Sine (option 1D2)
- Correlation Analysis
- Histogram Analysis
- Time Capture
All measurement options may be retrofitted.

Showed with option AY6 - Add Two Channels
Source Types
- Random Noise
- Burst Random Noise
- Periodic Chirp
- Burst Chirp
- Pink Noise
- Fixed Sine
- Arbitrary Waveform Source (Option 1D4)
- Swept-Sine Source (Option 1D2)

Note: The source is located on the front panel of a standard two-channel 35670A.

GPIB Connector
Integrate the 35670A with other instruments and peripherals for system operation or printing/plotting. System controller for GPIB (IEEE-488.1 and 488.2) compatible instrumentation via Agilent Instrument BASIC (option 1C2). Provides direct control of GPIB printers, plotters, and HP S88 disk drives.

DC Power
Accepts 12 to 28 volts dc (nominal). Use the 35250A power cable for DC power source connection, or the 35251A power cable with cigarette-lighter adapter.

Serial Port
Plot to HP-GL plotters or print to HP-GL and raster printers.

Parallel Port
Plot to HP-GL plotters or print to HP-GL and raster printers.

Low Noise Fan
Fan may be turned off for acoustic applications. Running speed depends on ambient temperature.

AC Power
Universal power supply will operate with any combination of voltage between 100 and 240 VAC and line frequency between 47 and 440 Hz. The maximum power requirement is 350 VA.

Serial Port
Use a standard PC keyboard to title data, edit Agilent Instrument BASIC programs, or to operate the instrument.

External Trigger (42 Volt Peak Max)
No external signal conditioning hardware required. Triggers on selected level between ±10 Volts.

Tachometer (42 Volt Peak Max)
No external signal conditioning hardware required. Reads frequency (RPM) on selected levels between ±20 Volts.

External Monitor
Drive a VGA monitor for remote viewing by large groups.

Keyboard
Use a standard PC keyboard to title data, edit Agilent Instrument BASIC programs, or to operate the instrument.
Laboratory-quality measurements in the field

Obtain all of the performance of your bench-top analyzer in a portable instrument.

Ease-of-use

Portability, versatility, and performance are valued attributes, but to be really valuable an instrument must also be easy to use. The 35670A has a friendly front panel, plus online help that’s always available to answer your questions. An interactive measurement state lets you configure the instrument setup from a single display.

FFT-based spectrum analyzers, such as the 35670A, are ideal for measuring the spectra of low-frequency signals like speech or mechanical vibration. Transient components, usually missed with swept-frequency analyzers, are easily measured and displayed at speeds fast enough to follow trends. The 35670A has both the performance and features required to take full advantage of this technology.

16-Bits for High Performance

With a 16-bit ADC (90 dB typical dynamic range) and a real-time bandwidth of 25.6 kHz, you can be sure nothing will be missed. Resolve signals using 100 to 1600 lines resolution, or for really close-in analysis, use frequency zoom to resolve signals with up to 61 µHz resolution. Use time or RPM arming to develop waterfalls of sequential vibration spectra for trend analysis or for an overview of device vibration.

Power and Linear Spectrums

Match your spectrum measurement mode to the signal being tested. Use linear spectrum analysis to measure both the amplitude and phase of periodic signals such as the spectra of rotating machinery. Power spectrum analysis is provided for averaging nonrepetitive signals.

Averaging

Various averaging modes let you further refine spectrum analysis measurements. Time averaging extracts repetitive signals out of the noise while rms averaging reduces the noise to its mean value. Exponential averaging, available for both time and rms averaging, is useful for reducing the noise while following changing signals—tracking the resonance shifts in a fatiguing structure for example.

Two spectrums of road induced vibration measured at different speeds are compared using the front/back mode of the Agilent 35670A.
Time Domain

Use your spectrum analyzer as a low-frequency oscilloscope or view signals in the time and frequency domains simultaneously. (Note: anti-alias filters can be switched off.) Special markers for time-domain data facilitate extraction of key control system performance parameters: overshoot, rise time, setting time, and delay time.

Data Table

Use a tabular format to keep track of key frequencies in the spectra of rotating machinery. The amplitude and frequency of the signal and a 16-character entry label field are listed for each selected point.

Automatic Units Conversion

Display vibration data in the units of your choice. Select g, m/sec², in/sec², m/s, in/s, m, mil, inch, Kg, lb, N, dyn, or pascals as appropriate for your application. The instrument automatically converts frequency-domain data from specified input transducer units to the units you select for display. For example, accelerometer data is automatically converted and displayed as mils when mils are selected. Of course, dB, dBV, dBm and volts are available for electrical applications.

Markers

Markers streamline analysis by helping you select and display specific data. Marker functions include marker to peak, next right peak, and coupled markers for selecting points in multiple data displays. Markers readouts are absolute or relative to your selected reference.

Special Markers

Three special marker functions facilitate analysis of your spectral data. Sideband markers aid analysis of modulation signals. Use this function to quickly locate sidebands in the complicated spectra of rotating machines. A band-power marker reads the total power in a selected band of frequencies and a total harmonic distortion marker lets you calculate total harmonic distortion without including the effects of noise.
Frequency Response Measurements

The 35670A has the flexibility to make measurements of both electrical networks and mechanical devices. FFT-based network analysis is fast enough to allow real-time adjustments of circuit parameters while the swept-sine option provides exacting measurements over more than six frequency decades, and a 130 dB dynamic range.

Source
Select the optimum stimulus for each application—random noise, periodic chirp, pink noise, fixed sine, burst random, and burst chirp. For zoomed network analysis measurements, the source is band-translated to match the zoom span at frequencies up to 51.2 kHz. An optional arbitrary source lets you test your product using real-world signals. A ±10 Volt DC source offset facilitates tests of control systems.

Impact Testing
Force and exponential windows allow impact testing for modal and structural analysis. Quality measurements are ensured using preview and accept/reject during averaging. A 4 mA constant current transducer power supply is built-in for true portability.

Limits
Test network measurements against preset limits. Up to 800 separate line segments are available for setting upper and lower limits. Limits are also used for testing spectrum measurements.

Four Channels (option AY6)
Test up to three devices simultaneously with a four-channel 35670A. Channel one is the common reference channel and two, three, and four are the response channels. Alternatively, select channels one and three as reference channels for two totally independent network measurements. See option AY6 description for more information.

Characteristics of a selected resonance are automatically calculated from an impact measurement using the frequency and damping marker.
Markers

A frequency and damping marker provides the resonant frequency and the damping ratio of single-degree-of-freedom frequency response measurements.

Gain and phase margin markers extract key frequency-domain stability data from frequency response measurements of control systems.

Signal Injection for Control Loops

Use one of three Agilent signal injection devices for testing control loops. The 35280A summing junction provides convenient DC to 1 MHz signal injection for most control loops. Use the 35281A clip-on transformer when it is not possible to temporarily open the loop, or use the 35282A signal injection transformer when secondary voltages are up to 600 Vpk.

Capture transient events or time histories for complete analysis in any measurement mode (except swept-sine). Use either the entire time-capture record or a selected region of interest for repetitive analysis in the FFT, octave, order track, correlation or histogram instrument modes.

Standard 16 Mbytes of memory for deep time-capture capability.

Time Capture

Capture transient events or time histories for complete analysis in any measurement mode (except swept-sine). Use either the entire time-capture record or a selected region of interest for repetitive analysis in the FFT, octave, order track, correlation or histogram instrument modes.

Standard 16 Mbytes of memory for deep time-capture capability.

An interval of time-capture data has been selected for analysis in the octave mode.
Taking the measurement is only half the job. Raw measurement data must be stored, recalled, printed, plotted, integrated with other data for analysis, and reported. The 35670A has a variety of tools to help you finish the job.

Enhanced Data Transfer Utilities for PCs

Standard Data Format (SDF) Utilities, provided with the 35670A, allow you to easily move data from the instrument to wherever it’s needed:

- For general digital signal processing and filtering, translate data files to formats compatible with MATLAB and MATRIXX, Data Set 58, or ASCII for use in popular spreadsheets.
- For specific applications, use application software that reads SDF files directly, such as STARModal and STARAcoustics from SMS and CADA-PC from LMS.
- Transfer data to and from the 35665A, 3566A, 3567A, 3562A, 3563A.
- Use the viewdata feature to display data on your PC or to convert to the HP-GL format for transfer to Microsoft’s Word for Windows or Lotus’ AMI PRO word processing software.
- Convert between HP-LIF and MS-DOS formats.
- Read data files into a program.

Documented Results

The 35670A supports a variety of GPIB, serial and parallel printers and plotters for direct hardcopy output. The internal 3.5 inch flexible disk drive stores data, instrument states, HP-GL plots and Agilent Instrument BASIC programs in HP-LIF or MS-DOS formats for future recall or use on HP workstations or a personal computer.

Entire display screens can be imported directly into your word processing program by plotting HP-GL files to your named DOS file. HP-GL files are interpreted and displayed directly by Microsoft’s Word for Windows and AMI PRO from Lotus Development Corp.

Computed Order Tracking (Option 1D0)

Self-contained—no ratio synthesizer or tracking filter required

Order Maps
Order Tracking
RPM or Time Trigger
Display RPM Profile
Track Up to Five Orders/Channel
Up to 200 Orders
Composite Power
RPM Measurements

Order tracking facilitates evaluation of spectra from rotating machines by displaying vibration data as a function of orders (or harmonics) rather than frequency. All measurement spectra is normalized to the shaft RPM.

Now you can have order tracking without compromising portability. Traditional analog order tracking techniques require external tracking filters and ratio synthesizers. With Agilent’s computed order tracking algorithm, external hardware is gone.

Because order tracking is implemented in the software, data is more precise and your job is easier. Compared to traditional analog order tracking techniques, computed order tracking offers:

- Improved dynamic range at high orders
- More accurate tracking of rapidly changing shaft speeds
- Accurate RPM labeled spectra with exact RPM trigger arm
- Wide 64:1 ratio of start to stop RPMs

Order Map

Use order maps for an overview of vibration data versus RPM or time. Display the amplitude profile of individual orders and suborders using the slice marker function. Alternatively, use trace markers to select individual traces for display.

The slice marker feature is used to select and display an order or suborder from an order map.
Order Tracking

Measure only the data you need. Order tracking lets you measure the amplitude profile of up to five orders plus composite power simultaneously on each channel. Up to four orders or three orders and composite power can be displayed simultaneously.

RPM Profile

Use RPM profile to monitor the variation of RPM with time during order tracking measurements.

Composite Power

Composite power provides the total signal power in a selected channel as a function of RPM.

Run-Up and Run-Down Measurements

Run-up and run-down measurements of any order are made using external trigger as the phase reference. Display the results as bode or polar plots; both are available. Markers allow convenient notation of important shaft speeds.

Orbits

Obtain oscilloscope-quality orbit measurements with your 35670A. Unlike traditional FFT analyzers, the 35670A equipped with computed order tracking displays a selected number of loops (usually one) as the shaft RPM is varied.

Oscilloscope-quality orbit diagrams mean you carry only one instrument onto the shop floor.
Real-Time Octave Measurements (Option 1D1)
Microphone Adapter and Power Supply (Option UK4)

Real-Time Third Octave to 40 kHz
ANSI S1.11-1986 Filter Shapes
Microphone Inputs and Power
A-Weighted Overall SPL
RPM or Time-Triggered Waterfalls

Eliminate the expense and inconvenience of multiple instruments in the field. With optional real-time octave analysis, and the optional microphone adapter and power supply, you have a complete real-time octave analyzer added to your 35670A at a fraction of the cost of a second instrument. Now you can carry both your FFT and real-time octave analyzers to the job site in the same hand.

Real-Time 1/3-Octave to 40 kHz on One Channel

With two input channels of 1/3-octave real-time measurements at frequencies up to 20 kHz, you get all of the information you’ll ever need to understand the noise performance of your product. No misinterpreted measurements because transient components were missed. When the frequency range requirement is 10 kHz or less, use four channels to characterize spatial variations. For those exceptional circumstances, use 1/3-octave resolution at frequencies up to 40 kHz on a single channel. Resolutions of 1/1- and 1/12-octave are also available.

Overall sound pressure level and A-weighted sound pressure level can be displayed with the octave bands individually, together, or not at all.

A fan-off mode lets you use the instrument in the sound field being measured.

ANSI S1.11-1986

All octave filters comply with filter shape standards ANSI S1.11-1986 (Order 3, type 1-D), DIN 45651, and IEC 225-1966. An 80 dB dynamic range for the audio spectrum provides the performance required by acousticians. Switchable analog A-weighting filters in the input channels comply fully with both ANSI S1.4-1983 and IEC 651-1979 Type 0.

Advanced Analysis

Use waterfall displays of octave data for an overview of device noise versus time or RPM. Display individual frequency bands as a function of RPM or time using the slice marker function. Alternatively, use trace markers to select individual traces for display.

A pink noise source is available for testing electro-acoustic devices.

Sound Level

Peak hold, impulse, fast, slow, and L_{eq} are all provided with optional Real-time Octave Measurements. All measurements conform to IEC 651-1979 Type 0 - Impulse.

Real-time 1/3-octave measurements at frequencies up to 40 kHz.

Agilent 35670A with option UK4 microphone adapter and power supply.
Swept-Sine Measurements
(Option 1D2)

130 dB Dynamic Range
Logarithmic or Linear Sweeps
“Auto” Frequency Resolution

While FFT-based network analysis is fast and accurate, swept-sine measurements are a better choice when the device under test has a wide dynamic range or covers several decades of frequency range. Use swept-sine measurements to extend the network measurement capabilities of the 35670A.

Network Analysis Over a 130 dB Range

With traditional swept-sine, the 35670A is optimally configured to measure each individual point in the frequency response. The result is a 130 dB dynamic range. With FFT-based network analysis, all frequency points are stimulated simultaneously and the instrument configures itself to measure the highest amplitude response—thereby limiting the dynamic range.

Characterize Nonlinear Networks

Use the auto-level feature to hold the input or output amplitude constant during a sweep. This provides the device response for a specific signal amplitude. With FFT-based network analysis using random noise, the random amplitudes of the stimulus tend to “average out” the non-linearities and therefore does not capture the dependency of the response on the stimulus amplitude.

Logarithmic Sweep

Test devices over more than six decades of frequency range using logarithmic sweep. In this mode, the frequency is automatically adjusted to provide the same resolution over each decade of frequency range. With FFT-network analysis, resolution is constant—not a problem when measuring over narrow frequency ranges.

Flexible

Make the measurement your way. Independently select logarithmic or linear sweep, sweep up or down, automatic or manual sweep, and autoresolution.

Automatic Frequency Resolution

Use autoresolution to obtain the fastest sweep possible without sacrificing accuracy. With autoresolution, the 35670A automatically adjusts the frequency step according to the device response. High rates of amplitude and phase change are matched with small frequency steps. Low rate-of-change regions are quickly measured with larger frequency steps.

Test Multiple Devices Simultaneously

Increase throughput in production. Swept-sine measurements up to 25.6 kHz can be made on three devices simultaneously using swept-sine on a four-channel 35670A. Channel one is the common reference channel for these measurements.

Alternatively, channels one and three can be designated as independent reference channels for two totally independent swept-sine measurements.

The stability of a control loop is quickly characterized using the gain and phase margin marker function.
Agilent Instrument BASIC
(Option 1C2)

Realize the advantages of using your instrument with a computer without sacrificing portability. Agilent Instrument BASIC provides the power of a computer inside your 35670A.

- Create custom interfaces for simplified operation.
- Use the 35670A as a system controller to integrate it with other instruments and peripherals.
- Enhance functionality by creating custom measurements.
- Increase productivity with automated operation.

Agilent Instrument BASIC is a compatible subset of the Agilent BASIC used in HP 9000 series 200, 300, 400 and 700 computers.

Easy Programming
The Agilent Instrument BASIC program editor supports:

- Line-by-line syntax checking
- Pre-run program verification
- Single step and debug
- Automatic line numbering

An optional PC-style 101-key keyboard facilitates program development and editing. Simple programs can be entered or edited using the front-panel keys. Large programs can be developed or edited in HP 9000 Series 200, 300, and 400 computers, or on an HP Vectra with Instrument BASIC for Windows, E2200A, and then transferred to the 35670A.

Over 200 Agilent Instrument BASIC Commands

Program entry and editing
Program debugging
Memory allocation
Relation operators
General math
Graphics control
Graphics plotting
Graphics axes and labeling
Program control

Binary functions
Trigonometric operations
String operations
Logical operators
GPIB control
Mass storage
Event initiated branching
Clock and calendar
General device I/O
Array operations

Keystroke Recording
Most program development begins with keystroke recording. Each keystroke is automatically saved as a program instruction as you set up your measurement using the front panel. The recorded sequence can be used as the core of a sophisticated program or run as an automatic sequence.

Keystroke recording quickly creates the core of your Agilent Instrument BASIC program.

Agilent Instrument BASIC can be used to display measurement results in a new format or to create a new operator interface.
Add Two Channels
(Option AY6)

51.2 kHz Frequency Range On
One and Two Channels
25.6 kHz Frequency Range On
Four Channels
One or Two Reference Channels

Enhance your productivity by adding two additional input channels to your portable analyzer. Having four channels often means the difference between solving a problem in the field and having to schedule time in a test bay.

Monitor four signals simultaneously or use channel one as the reference channel for up to three simultaneous cross-channel measurements. Two totally independent cross-channel measurements are made by selecting channels one and three as independent reference channels. All channels are sampled simultaneously.

Use triaxial measurements to simultaneously characterize the motion of mechanical devices in three axes.

For control systems, simultaneously measure several points in a single loop.

Curve Fit and Synthesis
(Option 1D3)

20 Poles/20 Zeros Curve Fitter
Frequency Response Synthesis
Pole/Zero, Pole/Residue and Polynomial Format

Use curve fit and synthesis in the 35670A to take the guesswork out of your design process. The 20-pole and 20-zero multiple-degree-of-freedom curve fitter calculates a mathematical model of your system or circuit from measured frequency response data. The model can be expressed in pole/zero, pole/residue, or polynomial format.

Transfer the circuit model to the synthesis function to experiment with design modifications. Add and delete poles and zeros, change gain factors, time delays, or frequency scaling, then synthesize the frequency response from the modified model. Design modifications are tested without ever touching a soldering iron.
Arbitrary Waveform Source (Option 1D4)

Expand the data storage and time-capture capacity of your 35670A.

Frequency or Time Domain Entry

Data Edit

Store Up to Eight Arbitrary Waveforms

Test your products using real-world signals. Measure a signal in either the time or frequency domain, then output it via the arbitrary waveform source. Use math functions and data edit to obtain precisely the output waveform you need. An arbitrary waveform may be output once or repeatedly.

Standard source types can be optimized for specific applications. For example, random noise can be shaped to improve the effective dynamic range of your measurement. Alternatively, you can use data edit and math functions to create an arbitrary waveform.

Use time capture as a digital tape recorder, then playback captured signals through the arbitrary waveform source.

Standard 16 Mbytes RAM

Expand the data storage and time-capture capacity of your 35670A.

Number of Spectra Stored Per Channel

<table>
<thead>
<tr>
<th>Standard 16 Mbyte</th>
<th>FFT - 1 Channel</th>
<th>FFT - 2 Channels</th>
<th>FFT - 4 Channels</th>
<th>1/3-Octave Spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1400</td>
<td>600</td>
<td>300</td>
<td>48000</td>
</tr>
<tr>
<td>Time Capture</td>
<td>>6 MSamples</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Conditions: Preset with instrument mode switched to 1 channel.
2 Conditions: Preset
3 Conditions: Preset with instrument mode switched to 4 channels.
4 Conditions: Preset with instrument mode switched to octave.

Standard 2 Mbyte Nonvolatile RAM

Use the 2 Mbyte nonvolatile RAM in environments too harsh for the 3.5 inch flexible disk drive. The memory functions as a high-speed disk for storage of the following information.

- Instrument Setup States
- Trace Data
- User Math Definitions
- Limit Data
- Time Capture Buffers
- Agilent Instrument BASIC Programs
- Waterfall Display Data
- Curve Fit/Synthesis Tables
- Data Tables

Information stored in nonvolatile RAM is retained when the power is off.
Agilent 35670A
Ordering Information

Agilent 35670A
Dynamic Signal Analyzer
Standard Configuration:
• 1.4 Mbyte, 3.5-in. flexible disk drive
• 12+ Mbytes user RAM
• 2 Mbytes nonvolatile RAM
• Impact Cover
• Standard Data Format Utilities
• AC Power Cord
• Operating manual set including:
 Operator's Guide
 Quick Start Guide
 Installation and Verification Guide
 GPIB Programming with the 35670A
 GPIB Commands: Quick Reference
 GPIB Programmer’s Guide
• Standard one-year warranty

Options for the 35670A
Opt. Description
AY6 Add Two Channels (four total)
1D0 Computed Order Tracking
1D1 Real-Time Octave Measurements
UK4 Microphone Adapter and Power Supply
1D2 Swept-Sine Measurements
1D3 Curve Fit and Synthesis
1D4 Arbitrary Waveform Source
1C2 Agilent Instrument BASIC
1F0 PC-style Keyboard
AX4 Rack Mount Without Handles
100 Software Bundle 1D0-1D4
UK5 Carrying Case (for shipping)
0B1 Additional Manual Set
0BU Additional Agilent Instrument BASIC Manual Set
0B3 Add Service Manual
UK6 Commercial Calibration with test data
W30 Two Year Extended Service Contract
W50 Four Year Extended Service Contract
1BP Military Calibration (meets MIL 45662A)
W30 Two Year Extended Service Contract

To Upgrade Your 35670A
To add an option to your 35670A, order 35670U followed by the option number. Options AY6 and ANZ must be installed by Agilent Technologies. Option UE2 is available to upgrade instrument firmware to latest version, as appropriate.

Accessories
DC Power Cables
The 35250A is a three meter cable terminated with lugs for connecting to most DC power sources. The 35251A is a three meter cable terminated with an adapter that plugs into a cigarette lighter.

For Testing Control Systems
The 35280A summing junction provides convenient DC to 1 MHz signal injection for most control loops. Use the 35281A clip-on transformer when it is not possible to temporarily open the loop, or use the 35282A signal injection transformer when secondary voltages are up to 600 Vpk.

Summary of Features on Standard Instrument

Instrument Modes
FFT Analysis
Correlation Analysis
Histogram/Time
Measurement
Frequency Domain
Frequency Response
Power Spectrum
Linear Spectrum
Coherence
Cross Spectrum
Power Spectral Density

Time Domain (oscilloscope mode)
Time Waveform
Autocorrelation
Cross-Correlation
Orbit Diagram
Amplitude Domain
Histogram, PDF, CDF

Trace Coordinates
Linear Magnitude
Unwrapped Phase
Log Magnitude
Real Part
dB Magnitude
Imaginary Part
Group Delay
Nyquist Diagram
Phase
Polar Plot

Trace Units
Y-axis Amplitude: combinations of units, unit value, calculated value, and unit format describe y-axis amplitude
Units: volts, g, meters/sec², inches/sec², meters/sec, inches/sec, meters, mils, inches, pascals, Kg, N, dyn, lb, user-defined EUs
Unit Value: rms, peak, peak-to-peak
Calculated Value: V, V², V²/Hz, V/√Hz, V²s/Hz, (ESD)
Unit Format: linear, dB’s with user selectable dB reference, dBm with user selectable impedance.

Y-Axis Phase: degrees, radians
X-Axis: Hz, cpm, order, seconds, user-defined

Display Formats
Single
Quad
Dual Upper/Lower Traces
Small Upper and Large Lower
Front/Back Overlay Traces
Measurement State
Bode Diagram
Waterfall Display with Skew, -45 to 45 Degrees
Trace Grids On/Off
Display Blanking
Screen Saver

Display Scaling
Autoscale
Selectable Reference
Manual Scale
Linear or Log X-Axis
Input Range Tracking
Y-Axis Log
X & Y Scale Markers with Expand and Scroll

Marker Functions
Individual Trace Markers
Coupled Multi-Trace Markers
Absolute or Relative Marker
Peak Search
Harmonic Markers
Band Marker
Sideband Power Markers
Waterfall Markers
Time Parameter Markers
Frequency Response Markers
Signal Averaging (FFT Mode)
Average Types (1 to 9,999,999 averages)
RMS Time Exponential
RMS Exponential Peak Hold
Time
Averaging Controls
Overload Reject
Fast Averaging On/Off
Update Rate Select
Select Overlap Process Percentage
Preview Time Record
Measurement Control
Start Measurement
Pause/Continue Measurement
Triggering
Continuous (Freerun)
External (Analog or TTL Level)
Internal Trigger from any Channel
Source Synchronized Trigger
GPIO Trigger
Armed Triggers
Automatic/Manual
RPM Step
Time Step
Pre- and Post-Trigger Measurement Delay
Tachometer Input:
±±V or ±±V range
40 mV or 200 mV resolution
Up to 2048 pulses/rev
Tach hold-off control
Source Outputs
Random Burst Random
Periodic Chirp Burst Chirp
Pink Noise Fixed Sine
Note: Some source types are not available for use in optional modes. See option description for details.
Input Channels
Manual Range Anti-alias Filters On/Off
Up-Only Auto Range AG or DC Coupling
Up/Down Auto Range LED Half Range and Overload Indicators
Floating or Grounded A/Weight Filters On/Off
Transducer Power Supplies (4 ma constant current)
Frequency
20 Spans from 195 mHz to 102.4 kHz (1 channel mode)
20 Spans from 98 mHz to 51.2 kHz (2 channel mode)
Digital zoom with 244 MHz resolution throughout the 102.4 kHz frequency range.
Resolution
100, 200, 400, 800 and 1600 lines
Windows
Hanning Uniform
Flat Top Force/Exponential
Math
+,-,* / Conjugate
Magnitude Real and Imaginary
Square Root FFT, FFT 1
LN EXP
1/jx or /jy PSD
Differentiation A, B, and C weighting
Integration Constants K1 thru K5
Functions F1 thru F5
Analysis
Limit Test with Tabular Readout
Data Table with Tabular Readout
Data Editing
Time Capture Functions
Capture transient events for repeated analysis in FFT, octave, order, histogram, or correlation modes (except swept-sine). Time-captured data may be saved to internal or external disk, or transferred over GPIB. Zoom on captured data for detailed narrowband analysis. Up to 750K samples of data can be saved in the standard unit.
Data Storage Functions
Built-in 3.5 in., 1.44 Mbyte flexible disk also supports 720 Kbyte disks, and 2 Mbyte of NVRAM disk. Both MS-DOS and HP-GL formats are available. Data can be formatted as either ASCII or Binary (SDF). The 35670A provides storage and recall from the internal disk, internal RAM disk, internal NVRAM disk, or external GPIB disk for any of the following information:
Instrument Setup States
User-Math
Time Capture Buffers
Trace Data
Limit Data
Agilent Instrument BASIC Programs
Waterfall Display Data Curve Fit/Synthesis Tables
Data Tables
Interfaces
GPIB (IEEE-488.1 and 488.2) Parallel
Hard-Copy Output
RS-232C Serial
To Serial or Parallel HP-GL Plotters
To Raster Printers
To Serial or Parallel HP-GL Printers
To Disk File (Supports Raster Printer, HP-GL Plotter, and HP-GL Printer)
Time Stamp
GPIB Capabilities
Listener/Talker (Direct control of plotters, printers, disk drives)
Conforms to IEEE 488.1/488.2
Conforms to SCPI 1992
Controller with Agilent Instrument Basic option
Standard Data Format (SDF) Utilities
Exchange data between virtually all Agilent Dynamic Signal Analyzers
Easy data transfer to spreadsheets
Data transfer to MATRIXx, and Matlab
SDF utilities run in an external PC
Calibration & Memory
Single or Automatic Calibration
Built-In Diagnostics & Service Tests
Nonvolatile Clock with Time/Date
Time/Date Stamp on Plots and Saved Data Files
Online Help
Access to Topics via Keyboard or Index
Fan
On/Off
Agilent Technologies’ Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”
Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.
Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.
www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.
Agilent T&M Software and Connectivity
Agilent Email Updates
Agilent’s Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit www.agilent.com/find/connectivity for more information.
For more assistance with your test & measurement needs or to find your local Agilent office go to www.agilent.com/find/assist
Product specifications and descriptions in this document subject to change without notice.
©Agilent Technologies, Inc. 2003
Printed in USA February 26, 2003
5966-3063E