
Qualifying Exam for Graduate Students

Brigham Young University Department of Physics and Astronomy

August 2021

Worked Problem Section

Instructions: In this section of the qualifying exam, you will work out your solutions to
the problems you choose. Of the 14 problems, you must choose eight to answer. The eight
problems you choose will be weighted equally. If you work on more than eight of the problems,
please indicate clearly which eight you would like to be graded.

This section is worth 2/3 of the total exam.

The 14 problems are organized according to the following topics:

1. Mathematical Physics 1

2. Mathematical Physics 2

3. Mechanics

4. Thermodynamics

5. Electrodynamics 1

6. Electrodynamics 2

7. Quantum Mechanics 1

8. Quantum Mechanics 2

9. Optics

10. Acoustics 1

11. Acoustics 2

12. Astronomy 1

13. Astronomy 2

14. Solid State

Work each problem on the paper that has been provided. Start each problem on a new
piece of paper. When you finish the exam, make sure that all of your work is placed in the
appropriate divider sections. You will have four hours for this section. Student calculators
are permitted.

Some possibly helpful electricity and magnetism equations:

∇ · E = ρ
ε0

∇ ·D = ρf

∇ ·P = ρb

P = ε0χeE

∇ ·B = 0

∇×H = Jf +
∂D

∂t

∇×M = Jb

∇× E = −∂B
∂t

D = εE

M = χmH

H = 1
µ
B Linear

∇×B = µ0J + µ0ε0
∂E

∂t

P · n̂ = σb

M× n̂ = Kb

Divergence Theorem∫
∇ · Fdτ =

∮
F · da

Stokes’ Theorem∫
(∇× F) · da =

∮
F · dl

Name:



MATHEMATICAL PHYSICS 1 
 

(a) We have a bar of length 𝜋 that has been sitting in a boiling bath of water at 100° for a 

long time. At 𝑡 = 0 we attach the bar to two fixed temperature reservoirs, so each end is 

stuck at a particular temperature. The reservoirs are such that 𝑢(0, 𝑡)  =  100 and 

𝑢(𝜋 , 𝑡)  =  10. Find the temperature as a function of 𝑥 and 𝑡, 𝑢(𝑥, 𝑡), for 𝑡 >  0. The 

heat equation is 
𝜕𝑢

𝜕𝑡
= 𝑐2 𝜕2𝑢

𝜕𝑥2
. 

 

(b) Sketch what the solution looks like at a moderately long time, i.e. long enough that it no 

longer looks like the initial temperature, but short enough that it has not gone to its steady 

state completely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MATHEMATICAL PHYSICS 2 
 

a. Consider the function 𝑓(𝑥) = (𝜋 − 𝑥) sin 𝑥, defined on the domain −𝜋 ≤ 𝑥 ≤ 𝜋. Sketch this 

function over its domain. 

b. Comment on whether this function is even or odd. 

c. Construct the Fourier series of this function over its domain. 

d. What infinite series could be evaluated by applying Parseval’s identity to this function? Just 

write the formal sum. No need to evaluate the expression and find to what value the sum 

converges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MECHANICS 
 

A particle of mass m exists on the x axis and is subject to a force 𝐹 = 𝑘𝑥, where 𝑘 > 0 (note that 

this is NOT Hooke’s Law because we do not have a minus sign). From Newton’s 2nd Law, then, 

the equation of motion is 𝑚�̈� = 𝑘𝑥. 

 

A) Determine the potential energy of the particle as a function of position x. 

B) Write down the Lagrangian and use it to determine the equation of motion (which should 

be consistent with Newton’s 2nd Law, of course). 

C) Solve the differential equation by assuming a solution of the form 𝑒𝑟𝑡 and solving for 𝑟. 

Since this is a second-order differential equation, your general solution should be the sum 

of two terms.  

D) Briefly comment on the general motion of this particle compared to that of a particle 

subject to Hooke’s Law. In particular, is the motion of this particle bounded or 

unbounded? 

E) Find the Hamiltonian for this particle (remember to express it as a function of some 

generalized momentum and coordinate). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



THERMODYNAMICS 
 

A system of 𝑁 particles is in thermal contact with a reservoir of temperature 𝑇.  Each particle 

must be in one of two discrete energy levels, a singly-degenerate ground state with energy 𝜖0 or a 

doubly-degenerate excited state with energy 𝜖1. 

 

a) Using a spectroscopic technique, you discover that 2/3 of the particles are in the ground state.  

Express the energy-level difference Δ = 𝜖1 − 𝜖0 in terms of 𝑘𝑇, where 𝑘 is the Boltzmann 

constant and 𝑇 is the system temperature.  Hint: Relate the single-particle partition function 

to the probability of occupying the ground state. 

 

b) Calculate the average energy per particle purely in terms of 𝜖0 and 𝜖1, which should not 

include any factors of Δ or 𝑘𝑇. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ELECTRODYNAMICS 1 
 

A) Use Gauss’s Law to calculate the electric field �⃗�  at a point a distance z above an infinite 

sheet of charge of uniform charge density 𝜎. 

B) Now consider an electric charge Q distributed uniformly over a thin, circular disc of radius R, 

as shown below. Calculate the electric potential 𝑉 at a point a distance z directly above the 

center of the disc. 

 
 

C) Now let’s say you want to calculate the electric field �⃗�  at that same point a distance z above 

the center of the disc. Briefly explain why a simple application of Gauss’s Law will not be 

very helpful for doing this. What would be a better method? 

D) Using whatever method you like, calculate the electric field �⃗�  at that point. 

E) Your answer to part (D) should agree with your answer to part (A) in the limit that z 

approaches zero. Show that this is the case and briefly explain in words why this is. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ELECTRODYNAMICS 2 
 

The Lienard-Wiechert potentials describe the scalar and vector potentials at a point 𝐫 created by 

a moving point charge at location 𝐫′, and the equations are as follows:  

 

𝑉(𝐫, 𝑡) =
1

4𝜋𝜖0

𝑞𝑐

𝑐 − ⋅ 𝐯
 

 

𝐀(𝐫, 𝑡) =
𝑣

𝑐2
𝑉(𝐫, 𝑡) 

 

where = 𝐫 − 𝐫′(𝑡𝑟), the vector from the location of the point charge at the retarded time 𝑡𝑟 to 

the point where you want to know the field, 𝐫. 

 

(a) In general, how can you determine the 𝐄 and 𝐁 fields from the potentials 𝑉 and 𝐀? 

(b) A point charge q moves in a counter-clockwise circle of radius a at constant angular velocity 

ω. The circle lies in the x-y plane, centered at the origin, and at time t = 0 the charge is at 

position (a, 0). Find the Lienard-Wiechert potentials V and A, for points on the z-axis. Hint: 

first determine the position of the point charge as a function of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



QUANTUM MECHANICS 1 
 

 

1. Consider the schematic for neutral lithium energy 

levels shown to the right.  Lithium has three 

electrons. 

a. Why is configuration (a) forbidden?  

 

b. Whose name is associated with this law? 

 

2. You will find in the two tables on the following page the energy levels of neutral 

hydrogen (left) and neutral lithium (right) as given in standard spectroscopy tables. 

Hydrogen has one proton in the nucleus while lithium has three. Here, configuration 

means the energy level for the outermost electron. J refers to the coupling of the 

electron’s various angular momenta. You do not need to worry about the “Term” column. 

Treat it as a label. “Level” refers to energy levels. It is in units that you may not have 

seen. (1/λ) is measured in reciprocal centimeters. Reciprocal centimeter means the 

number of wavelengths in 1 cm. You can compute energy differences by subtracting one 

level from the other using the formula: 𝐸 = (1.24 × 10−4 eV ⋅ cm) × (1/𝜆).  

 

a. Calculate the energy difference between the 3d (J=3/2) and “Limit” for lithium. That 

is, calculate the ionization energy of lithium from the 3d level.   

Energy (3d to ionization) in reciprocal centimeters: ____________cm-1    
Conversion to eV:_______ eV. Note: This should be a number between 1 and 3

  eV. Five decimal accuracy is satisfactory. 

b. Now repeat this same calculation for hydrogen, i.e. calculate the ionization energy 

from the 3d (J=3/2) level. 

Energy (3d to ionization) in reciprocal centimeters: ____________cm-1    
Conversion to eV:_______ eV.  

 

c. Why is the energy difference so similar for the two cases? (answer in about 20-35 

words) 

 

 

d. Why is the magnitude of the energy slightly larger in the case of lithium? (answer in 

about 20-35 words) 

 

 

  

e. Extra credit: why are the three levels, 3s, 3p, 3d identical in the case of hydrogen, but 

are different in the case of lithium? Think about which wave function allows the 

electron in the third shell to get close to the nucleus and which function keeps the 

electron far from the nucleus. 

 

 

 



 

 

 

 

 

 

 

 

Energy levels of neutral Hydrogen Energy levels of neutral Lithium 



QUANTUM MECHANICS 2 
 

Consider a particle with spin s = 1/2 precessing in 3D space in the presence of a magnetic field:  

�⃗� =  𝐵0�⃗�   

The magnetic interaction induces a perturbation in the Hamiltonian:  

𝐻′ = − �⃗⃗� . 𝐵 ⃗⃗  ⃗ =  − 𝛾𝑆 . �⃗�  

where  𝑆 =  𝑆𝑥𝑖 + 𝑆𝑦𝑗 + 𝑆𝑧�⃗�   is the 3D spin vector operator and  the gyromagnetic constant 

 

a) Use the Pauli matrices below to express the perturbation 𝐻′(𝑡) as a matrix in the spinor space  

𝑆𝑥 = 
ħ

2
(
0 1
1 0

) ;  𝑆𝑦 = 
ħ

2
(
0 −𝑖
𝑖 0

) ;   𝑆𝑧 = 
ħ

2
(
1 0
0 −1

)  

 

b) Assume the particle’s spinor state is (t) = (𝑎(𝑡), 𝑏(𝑡)) in the basis of the eigenstates of 𝑆𝑧. 

     Use the Schrödinger equation (see below) to derive two equations: one for a(𝑡) and one for 

𝑏(𝑡). 

c) Assuming the initial spinor state is (0) = (cos 𝛼 , sin 𝛼), express (t) at later times. 

d) Calculate the expectation value of 〈𝑆𝑥〉 as a function of time. 

      What is the physical meaning of 〈𝑆𝑥〉? 

 

Hint: Schrödinger equation in spinor space (also known as equation of motion)    𝑖ħ 
𝑑

𝑑𝑡
= 𝐻′ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



OPTICS 
 

(a) Derive the ABCD matrix for propagating a paraxial ray a distance d along the optic axis of 

system. The bulk of the points will be awarded for showing the process of deriving the matrix, so 

simply writing the answer will not get you very far. Include a clear diagram and some sentences 

to describe what you are doing in the derivation. 

 

(b) A researcher desires to make a laser cavity using a concave mirror of radius R and a flat 

mirror (infinite radius) separated by a distance d with a gain medium in between the mirrors. 

Ignoring the gain medium, write down an ABCD matrix for the roundtrip through this cavity. 

You may be interested to know that reflection from a mirror of radius R is accomplished using 

this matrix: 

[
1 0

−
2

𝑅
1
] 

(c) James Sylvester proved the following theorem about 2x2 matrices with determinant 1, such 

as the one you made in (b): 

[
𝐴 𝐵
𝐶 𝐷

]
𝑁

=
1

sin 𝜃
[
𝐴 sin𝑁𝜃 − sin(𝑁 − 1)𝜃 𝐵 sin𝑁𝜃

𝐶 sin𝑁𝜃 𝐷 sin𝑁𝜃 − sin(𝑁 − 1)𝜃
] 

where 

cos 𝜃 =
1

2
(𝐴 + 𝐷) 

Use this theorem to derive a condition for the stability of the laser cavity in terms of the 

parameters given above. Again, the clarity of your derivation will count more heavily than 

getting the right answer. Convince me that you thoroughly understand how to get from 

Sylvester’s theorem to the cavity stability condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ACOUSTICS 1 
 

Consider a rectangular membrane, of width 𝐿𝑥 by  𝐿𝑦, fixed on the edges 

(a) Find the lowest modal frequency (fundamental frequency). 

(b) If 𝐿𝑥 = 2𝐿𝑦, compute the ratio of each of the first four overtones to relative to the 

fundamental frequency. 

(c) Are any of the frequencies for any first four overtones likely to produce audible beating 

or roughness?  If so, identify which ones and explain why.  

(d) For what ratio of 𝐿𝑥/Ly are the (3,1) and (1,2) modes degenerate? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ACOUSTICS 2 
 

Two loudspeakers are broadcasting sound simultaneously, and the sound pressure level (SPL) 

measured at a nearby microphone (3 m in front of loudspeaker A) is 89 dB re 20 µPa.  If 

loudspeaker A alone produces an SPL at the microphone of 85 dB re 20 µPa,  

(a) what is the SPL produced at the microphone by loudspeaker B, assuming the two sources are 

incoherent?   

 

(b) If the microphone has a sensitivity of 60 mV/Pa, what is the rms voltage produced with both 

loudspeakers broadcasting together?   

 

(c) Assuming the loudspeakers are radiating as monopoles, what is the intensity produced by 

loudspeaker A at a distance of 14 m?   

 

(d) What is the sound power output from loudspeaker A?  

 

(e) If instead the two loudspeakers are coherent, and exactly in-phase at the microphone, what is 

the SPL produced at the microphone by loudspeaker B, if loudspeaker A alone still produces 85 

dB re 20 µPa at the loudspeaker? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ASTRONOMY 1 
 

We often look at faint objects like stars and nebulae through a telescope.  Describe the difference 

in the measurements we obtain with Earth-based telescope between a star and a nebulae.  Now, 

let’s say we had a high speed space craft and could get much closer to the star or nebulae.  How 

would our experience of the brightness each object change as a function of distance?  Show this 

mathematically.  Does the resolution of the telescope make a difference in either case? How?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ASTRONOMY 2 
 

Assuming a flat universe (𝑘 = 0), the Friedmann equations can be used to derive: 

�̇� = −3𝐻 (𝜌 +
𝑃

𝑐2
) 

where 𝜌 is the total matter-energy density, 𝐻 ≡ �̇�/𝑅 is the Hubble parameter and 𝑅 

 is the scale factor, and 𝑃 is the pressure. For a perfect fluid, the equation of state can be given by 

𝑃 = 𝜔𝜌𝑐2 with dimensionless parameter 𝜔. 

(a) Derive the fluid equation 𝑅3(1+𝜔)𝜌 = constant, which is valid for each component 

(𝜌m, 𝜌rad, 𝜌Λ) of the perfect fluid. Show all work. 

(b) From the previous equation for �̇�, determine the equation-of-state 𝜔Λ of dark energy. 

(c) For the sake of this exercise, assume that radiation behaves like matter, such that its 

pressure is negligible (i.e., that 𝜔rad ≈ 𝜔m in the equation of state 𝑃 = 𝜔𝜌𝑐2). However, 

assume the radiation energy density remains 𝑢rad = 𝑎𝑇4, with a being a constant. Recall 

that the fluid equation 𝑅3(1+𝜔)𝜌 = constant can also be expressed in terms of the energy 

density u: 𝑅3(1+𝜔rad)𝑢rad = constant. If radiation in our universe provides negligible 

pressure, estimate what the current cosmic microwave background temperature would be, 

along with the peak wavelength of this black body emission. 

 

(It may be helpful to recall that at the time of the Big Bang nucleosynthesis, when 𝑅BB ≪ 𝑅0 for 

the present scale factor 𝑅0, the production of helium occurred at a temperature of about 109 K 

and at a baryon density 𝜌b,BB that is about 2.5 × 1025 times greater than the present 𝜌b,0. Also, 

recall that the Wien’s displacement constant is b = 2898 μm K.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SOLID STATE 
 

(A) Derive the electronic density of states 𝑔(𝐸), where E is energy, for the free-electron model 

in a three-dimensional solid. 

 

(B) Consider the three figures of band structures shown on the next page, labeled #1, #2, and #3. 

One corresponds to a metal, one to an insulator, and one to a semiconductor. Classify each band 

structure diagram as metal, insulator, or semiconductor, and briefly justify your reasoning. Note 

that the Fermi level defines zero energy in each case. 

 

(C) Sketch the electrical resistivity as a function of temperature for a metal and then for an 

insulator. Briefly explain the reason for the shape of the resistivity curve in each case. 

 

(D) Explain why, even at absolute zero temperature, some electrons can have speeds on the order 

of 106 m/s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Band structure #1: 

 
 

Band structure #2: 

 
 

Band structure #3: 

 
 


