Question 1

How does Bohr’s principal quantum number n arise from the quantum mechanical solution of the Coulomb potential? How does it arise in the Bohr model? What explains that these two (conceptually) very different n numbers coincide?

For a given l, n is the highest degree in the corresponding series solution if $l = 0$ or it is related to it by a shift of l when $l \neq 0$. The spectroscopic Bohr principal number n just labels the levels counting from the bottom independent of l. The accidental symmetry of the Coulomb problem under $O(4)$, the rotation group in 4D, is responsible for this coincidence (The first level for $l = 1$ coincides with the second level for $l = 0$, etc.)

Question 2

How many different angular momentum operators appear in section 12.5? What is the complete set of commuting observables (CSCO) that helps solve the Coulomb problem?

Three: L, J_1 and J_2 (K and A are not angular momenta). The CSCO is $\{H, J_1, J_2\}$.

Question 3

What rules do you plan to memorize to determine the shape of the hydrogen wave functions on pages 272-273?

All functions vanish at $r = 0$ except $l = 0$ states which are finite at $r = 0$. All functions vanish exponentially at $r = \infty$. The number of axis crossings (nodes) equals $n - l - 1$. The height of successive extrema decrease with r.

Question X

Is the Runge-Lenz vector K a quantum mechanical vector operator and does it commute with the angular momentum L?

Yes, K is a vector operator. No, it does not commute with L.

Question Y

Plot the radial bound-state energy eigenfunction R_{52}.