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A Unified View of Balanced Truncation and Singular Perturbation
Approximations

Philip E. Paré, Alma T. Wilson, Mark K. Transtrum and Sean C. Warnick

Abstract—This paper demonstrates that both Balanced
Truncation and Balanced Singular Perturbation Approxima-
tions can be viewed as limiting approximations of the same
parameterization of Linear Time Invariant (LTI) systems. First,
we introduce a specific parameterization of LTI systems that
distinguishes dynamic and structural parameters. Next, we
apply the Model Boundary Approximation Method (MBAM) [1]
to particular parameters to achieve different approximations.
This unified view of these popular model reduction techniques,
which themselves can result in quite different approximations,
illustrates that each approximation corresponds to a particular
boundary element on a manifold, the “model manifold,” which
is associated with the specific choice of model parameterization
and is embedded in a sample space of measured outputs.

I. INTRODUCTION: MOTIVATION

Our modern world has focused its attention on systems
of unprecedented size and complexity [2]. Typical examples
include the Internet [3], biological systems [4], and economic
networks [5]. Analyzing and designing such systems has
made the need for simplified models all the more urgent,
since detailed descriptions of such systems are unwieldy and
defy comprehension. We focus on two common motivations
for building simplified approximations of complex systems.

First, simplified models are necessary when attempting to
learn a system from limited data. First principles models
typically have many parameters that must be tuned correctly
for the model to reflect the behavior of a real system. Using
data to learn the correct values of parameters is the purview
of system identification, and a rich theory has developed
quantifying when data is informative enough to accurately
estimate parameter values [6]. Typically we have much less
data than needed to learn all the parameters in a first-
principles model, so simplifying the model to yield one with
fewer parameters can help identify the system from data.

Another reason for simplified models arises when design-
ing feedback controllers for complex systems. Often the com-
plexity of an optimal controller may mirror that of the system
to be controlled, so controlling complex systems may often
suggest the need for complicated controllers. Nevertheless,
when engineering such complicated systems is unreasonable,
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designing controllers for simplified approximations can lead
to acceptable trade-offs between complexity savings and
performance degradation.

In this paper we explore the underlying structure of system
approximation and show that two common model reduction
methods for LTI systems actually arise from a similar lim-
iting approximation applied to a common parametrization.
In Section II we review two prominent model reduction
techniques; Balanced Truncation (BT) and Balanced Singular
Perturbation Approximation (BSPA). We present MBAM in
Section III. In Section IV, we present a parameterization
of LTI systems and then use it to derive BT and BSPA
using MBAM. In Section V we present a simple example
that illustrates the result and how MBAM can give insight
into model reduction of linear systems.

II. BACKGROUND

For this work we use LTI systems,
i(t) = Ai+ Bu
y(t) = Ci+ Du,
where Z(t) € R", y(t) € RP, and u(t) € R™. These
systems may not capture all dynamic behavior but it may
be applicable to any system near equilibria by virtue of

Lyapunovs Indirect Method [7]. We will assume the system
in Equation (1) is minimal and stable.

(D

A. Model Reduction

Model reduction is an important, well-studied problem in
controls. It can be argued that there are two main types of
model reduction for LTI systems: BT and BSPA. We will
review these two methods and their accompanying literature.

1) Balanced Truncation: Balanced Truncation was first
proposed in [8] and has been well developed since then, with
a clear presentation in [9]. Consider a minimal and stable
system as in Equation (1). There exists a state transformation
from these matrices to an input—output equivalent balanced
realization

at) =

y(t) =
where A satisfies the Lyapunov equations:
ATX+XA=-CTC and AX+XAT =—-BB7T, (3)

where X = diag(fy,...,0,); the 6;’s are the Hankel
singular values (HSVs) [9]. This makes each state equally
observable and controllable; they are ordered from strongest

Az + Bu
Cx + Du, 2
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to weakest. Once balanced, we partition the states giving

A Ay By
A= , B= , C=1|C1 Cg|, &

{Am Ak By, G Gl @
where Ay € R(m=k)x(n=k) = A, e RF¥E and the rest of
the blocks are the appropriate dimensions. Then BT of &
states gives the system

B(t) =
y(t) =
This approximation has well defined error bounds [9]-
[11]. This method has been extended to several different
classes of systems including time-varying, multidimensional,
and uncertain systems [12]-[14]. Many structure preserving
model reduction techniques, with varying definitions, have
been considered as extensions of BT [15]-[18]. Extensions
have also been developed for nonlinear systems [19]-[21].
2) Singular Perturbation Approximation: Perturbation
theory is a well studied area and has a rich background in
linear operator theory and the controls field [22], [23]. It
is commonly applied in the context of well-separated time
scales. In this case the ratio of time-scales identifies an
explicit “small” parameter in which a series expansion can
be computed. The theory has also been applied to balanced
realizations, which we will refer to as Balanced Singular
Perturbation Approximation [24]-[26]. Given a partitioned
balanced realization as in Equation (4), the reduced system
becomes

Az + Biu

Cix + Du. )

z‘:l = An — Ay A A, ~B = DBy — A, AR, By,
cC = _C}cA];klAkla D = D—CkA];lek
~ (6)
The matrix A is the Schur complement, which we will denote

In many respects, BT and BSPA are complementary types
of approximations. They are both derived from the same
block partition of a balanced realization. They share the
same error bounds in terms of the HSVs. It is well known
that BT typically provides better approximations at high
frequencies while BSPA works well at low frequencies [26].
In what follows, we will see how these similarities allow us
to unify both approximations as limiting approximations of
a balanced system.

III. MANIFOLD BOUNDARY APPROXIMATION METHOD

The Manifold Boundary Approximation Method (MBAM)
was originally described in [1]. Here we present a formaliza-
tion of MBAM. The basis for this approach is the observation
that a parameterized model is a mapping between a parameter
space and a prediction space, data space, or a sample space of
measured outputs. As such, it is natural to interpret a model
as a manifold embedded in the space of possible predictions.
We refer to this manifold as the model manifold, denoted by
M(D).

Definition 1: The model mapping is defined as M : D C
RY — RM_ where RY is the parameter space, RM is the
data space or prediction space, and N < M.

Note that in Definition 1, we have assumed that N < M,
with no bound on M. It is possible for the prediction space
to be infinite dimensional (e.g. a function space).

For a given model manifold M (D), we denote the closure
of the manifold as M (D).

Definition 2: Given a model mapping M : D ¢ RN —
RM | a point z € M(D) is interior if there exists an open
neighborhood of M(D) centered at z. If a point is not
interior then it is a boundary point.

The set of boundary points of the manifold closure defines
the boundary of the manifold, denoted by OM (D).

Definition 3: Given a model mapping M : D ¢ RV —
RM | a model mapping M is a k' order manifold boundary
approximation of M if:

1) M:DCRV=F 5 RM and

2) M(D) C OM(D).

That is to say that a k' order MBAM approximation is
defined as being on the boundary of the manifold and having
k less parameters than the original system.

Note that up to this point, we have not employed any
notion of distance on the model manifold. In practice, it is
necessary to define a metric on the data space in order to
quantify the error of the approximation, and MBAM can
accommodate any choice of metric on the data space [27].
The chosen metric will determine which approximation is
optimal and the associated error bound.

In the original presentation of MBAM [1], an information
distance was imposed on the data space defined by the Fisher
Information Matrix (FIM). Assuming the prediction space
corresponds to a probability distribution, the FIM defines a
Riemannian metric on the data space (a Riemannian metric
is the metric defined by the inner product on the tangent
space to a curved manifold [28]). From this Riemannian
metric, computational differential geometry can be used to
identify candidate boundary approximations [1]. Nonethe-
less, MBAM is a topological operation and is agnostic to
the actual choice of metric [27].

A. Simple MBAM Example

The MBAM concept is best illustrated by example.
Consider the dynamics of the Michaelis Menten Reaction
(MMR),

791.%
T 0o + x’
where 6; indicates a parameter in the dynamic equations
characterizing the family of models under consideration [29],
[30]. The parameters 6; are only physically relevant for
positive values. We therefore restrict our attention to the
domain D as the positive quadrant of the parameter space,
that is where 6; > 0 Vi. Note Equation (7) is stable for all
parameter values in D. Assuming a fixed initial condition,
xo = 1, and varying 6; and f; among all possible elements
of the domain, D, we observe time series for this model as
shown in Figure 1a.
Consider now three observations of this system at time
points, (t1,ts,t3), indicated by the red vertical lines in Fig-
ure la. The space of all possible experimental data at these

(7
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(a) Potential time series for the MMR model. Different curves are
calculated by varying the parameters 6, and 0-.

R

(b) First view of the Model Manifold for the MMR model. Each
point in the data space corresponds to a curve in Fig. la.
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(c) Second view of the Model Manifold for the MMR model.

Fig. 1: MBAM works by sampling outputs at particular times
for a variety of parameter values (Fig. 1a) and analyzing the
resulting manifold in “Data space” (Fig. 1b-1c).

three time points forms a three-dimensional “data space.” All
possible model predictions, for different values of 6; and
02, correspond to a two-dimensional subset of this space.
This two-dimensional surface is the model manifold from
Definition 1. The manifold for the MMR model illustrated
in Figures 1b-1c is bounded, a feature shown to be common
among model manifolds with many parameters [31], [32].
The existence of these boundaries is the crucial element
that enables the manifold boundary approximation, where
each boundary corresponds to a different model reduction
of the original model in Equation (7). The smoother looking
boundary corresponds to the limit where 61,05 — oo and the
ratio 61 /65 becomes the new parameter. The other boundary
corresponds to the limit where #; — 0, leaving 61 as the
sole parameter. These two limiting approximations lead to

reduced models of the form:

. 01
xr = —0*33,
P - ®

respectively. A well-known interpretation of the MMR in
biochemistry is that it describes a saturable reaction. That
is, at low concentrations (small values of x), the reaction
rate is nearly first order (i.e., linear in x), while at high
concentrations the rate saturates into a zeroth order (i.e.,
constant with respect to x). Notice how these two limits are
naturally identified as the boundaries of the model manifold
in Figures 1b-1c.

IV. MAIN RESULT

We start with the presentation of a unified parameteri-
zation for LTI systems. Consider a minimal, stable system
as in Equation (1). It is well known that there exists a
state transformation from these matrices to an input—output
equivalent balanced realization (4, B, C, D) as in Equation
(2), where X is the diagonal matrix of HSVs satisfying
Equation (3). The HSVs give a measure of the energy of
the dynamics of the states; therefore they offer themselves
as natural parameters for the system. The state transformation
also becomes part of the parameterization because it maps to
the balanced realization from the physical system or network
structure [33]. Notice the following simple statement is true
for balanced realizations.

Lemma 1: Given a balanced realization (A, B,C, D),
diag(BBT) = diag(CTC).

Proof: Since (A, B, C, D) is balanced, the observability
and controllability grammians are equal with the HSVs,
01,...,0,, on the diagonal. By inspecting the diagonals of
the Lyapunov equations we see

aiibi + Gias = —(CTO);

;i + ;a5 = —(BBT ), ®

where the subscript i¢ indicates the ith diagonal entry of the
matrix and a;; is the ith diagonal entry of the A matrix.
Therefore diag(BBT) = diag(CTC). ]
We introduce n parameters to denote the common diagonal
entries and denote them by 72, ...72. We can then write the
B matrix as

1 5?

B= (10)

o B
where the 3;’s are a collection of normalized column vectors
in R™ satisfying 87 3; = 1 for all i = 1,...,n. Denoting
the n x m matrix whose rows correspond to 37 as A7 and
introducing R = diag(r;, . ..,7,), it follows that B = RAT.
Clearly by construction diag(BBT) = (v?,...,r2).
Similarly, we can write C' as

Y

where the «;’s are a collection of normalized column vectors
in R? satisfying 7] v; = 1 foralli = 1,...,n. We write C' =
vYR; note that diag(CTC) = (r2,...,r%) = diag(BB7T),
which is consistent with Lemma 1.

C=[rm T'nYn)
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Note that plugging 77 into Equation (9) gives a;; = — 54,
for the diagonal elements of the A matrix. From the off-
diagonals of the Lyapunov equations we find,

A5 = TiTj045, (12)
for i # j, where
0,(87 )i
Qi = J(ﬁ 6)9; 92(7 7) (13)

The $3;’s and ~;’s offer themselves as natural parameters of
the system. Note that because of the normalization, each f;
can be uniquely identified by m — 1 independent parameters
(for example, using the generalized spherical coordinates), so
that the matrix [ can be specified by n(m — 1) independent
parameters. Similarly, the matrix + can be uniquely speci-
fied by n(p — 1) independent parameters. Combining these
numbers with the 2n parameters 6,...,60, and 7r1,...,7,
implies that an (A, B,C) system in a balanced realization
can be uniquely identified with n(p + m) parameters. The
D matrix (which is independent of the other three) adds
an additional pm parameters. Combining these with the
parameters corresponding to the n x n state transformation
T gives that any system (A, B, C, D) can be parameterized
by the n(p + m) + pm + n? parameters corresponding to
the HSVs, the r;’s, the 3;’s, the ;’s, and the elements of 7T'.
Note that this is the same number of parameters as there are
elements of the matrices (A, B, C, D).

We call the elements of the state transformation the struc-
tural parameters because they reveal the physical system or
network structure from the balanced realization and because
they do not change the input—output, or dynamic, behavior
of the system. We call the rest of the parameters dynamic
parameters, because if changed (unless a systemic change of
sign in the columns of 8 and <), the input—output behavior
of the system changes. Because the model manifold is
defined only in terms of physically observable quantities,
i.e. the outputs, different points on the model manifold are
uniquely labeled by the dynamic parameters. In contrast, the
structural parameters are non-identifiable from any physical
observation of the system and some a priori knowledge of
structure is required [27], [33]. In all cases the dimensionality
of the model manifold will be given by the number of
dynamic parameters that are allowed to vary in the system.

A. Balanced Truncation from MBAM

For the first theorem of this section we will restrict
ourselves to considering the HSVs as the parameters, holding
R, 5, vy and D fixed.

Theorem 1: Balanced Truncation of k states on an n
order realization is equivalent to & MBAM approximations
for the parameterization in which the Hankel singular values
are parameters and the matrices R, 3, v and D are fixed.

Proof: Consider the equation for @, (t),

+ Zﬂnzuz

th_

T"En

=Y rirnana(t) T
B (14)

Multiplying through by 6,, gives

’I" an
nxn

n—1
n n § ﬂnzuz

=bn Z TiTn Oni T (t
(15)

Performing an MBAM approximation by taking the limit
0, — 0 gives that x,, = 0. Plugging this back into the
rest of the system gives BT of one state. Iterating this limit
k times, always choosing the smallest HSV, completes the
proof. [ ]

Theorem 2: Balanced Truncation of k states on an n*’-
order realization is equivalent to & MBAM approximations
for the parameterization in which the elements of R (the
square root of the diagonal elements of BB” and C7'C) are
parameters and the Hankel singular values, (3, v, and D are
fixed.

Proof: Consider the equation for &, (). Taking the limit
rn, — 0 gives that ©,, = 0, which effectively truncates the
nth state. This gives BT of one state. Iterating this limit
k times, always choosing the r; with the largest subscript,
completes the proof. [ ]

B. Singular Perturbation Approximation from MBAM

Theorem 3: Balanced Singular Perturbation Approxima-
tion of k states on an n'"-order realization is equivalent to
k MBAM approximations for the parameterization in which
the elements of R (the square root of the diagonal elements
of BBT and CT'C) are parameters and the Hankel singular
values, (3, v, and D are fixed.

Proof: We will prove this by induction, starting with
the one state case. Consider the i,(t) equation of the
parameterization of the balanced realization. Dividing the
equation by r, gives

1 n—1

— (#n(t) = D riomizi(t) —

T
n i=1

7”nin

Jr Z/B'I'L'Lul

(16)
Taking the limit as r,, — oo with r,x,, remaining finite (by
letting x,, — 0) gives

n—1
i=1

Furthermore, in the remaining equations for #;(t) (i =
1,...,n —1) and y;(¢t) ¢ = 1,...,p), we find that r,
and x,, always appear in the combination r,x,. Therefore,
this limit is a well-defined boundary approximation for this
parameterization. Plugging (17) into the rest of the system,
ie. &;(t), i <mn, gives

TnZn(t 17

+20, Y Briwi(t).

i=1

n—1

ii(t) = Zy 1, 7¢z(rlr]a11 + 20,737 0tin O )5 (1)
2
+ (20mr QinOni — 24-)%4(t)
+ D 11(725” + 20,73 0in By u; (1)
Z; (g — =222l )a(t)
> e (bij — = g byj)u; (1),
(18)

which is the system in Equation (6) for k£ = 1, that is, BSPA
of one state.

_|_
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Now assume BSPA of k states is equivalent to kK MBAM
approximations, giving the system in Equation (6), denoted
by (4, B,C, D). Let the k + 1 state BSPA be denoted by
(AF+1 Bk+1 Ck+1 DE+1) By the Quotient Formula for
Schur complements (Theorem 1.4 in [34]),

AFFL = A/Ak+1,k+1 = (A/Akk)/(ak+1,k+1)a

where

19)

akt1ht1 | Artie
Ak k41 Apk

This means that A**! from BSPA of k + 1 states (the left
hand side of Equation (19)) is equivalent to the AR from
one MBAM on the k" MBAM/BSPA approximation (the
right hand side).

Now we will show this for B¥1, which is slightly more
laborious because we cannot appeal to Schur complement
properties. By Equation (6) for £ = k£ + 1, Equation (20),
and partitioning A; 41 and By

} 1 [be]
By,

2D
where Ay, indicates truncating off the last row of Aj; and
ag+1 and b{ 41 are vectors. By the block matrix inversion
formula, matrix multiplication, and some rearranging of
terms, the second term becomes

1
c

A1 k1 = (20)

Oet1hr1 | Arie
Apkrr | Ark

Brt1 = Bi—[ars1 Akl

A A Bl + =(aps1 — ApAp Apga)d  (22)
where ¢ = apy1 k41 — Ak-‘,—l,kA;;klAk}k-&-l and d = bg+1 —
Ak+17kA,:,lek. Note that ¢ is just Gyn—g n—k, the last entry
of the A matrix from the k" MBAM/BSPA approximation.
Similarly note (a1 — A1 At Ak ks1) = Ay g, the last
column of A excluding Gy n—k, and d = B, _, the last
row of B (with a slight abuse of notation n — k indicates the
row/column number and not the size for the tilde system).
Also note that By — AlkA,;lek = By, the first n — k — 1
rows of B. Therefore Equation (21) becomes

;Al,nkanfkn
ak—1,k—1

which is one MBAM on the k" MBAM/BSPA approxima-
tion. It can be shown similarly that the same relationship
holds for C**1 and D**1. Therefore, given that BSPA of k
states is equivalent to Kk MBAM approximations, then BSPA
of k+1 states is equivalent to k+1 MBAM approximations.
Therefore, by induction, it holds for all &.

Bl =B, — (23)

|
The resulting BSPA system is Hurwitz and is still a balanced
realization with the n—1 HSVs, the same as the largest n—1
HSVs of the original system [24].

Note: In Equation (18) if 6,,, which is clearly no longer a
HSYV, is equal to its original value, then the reduced system
is BSPA. However if 6, is set to zero, then the resulting
reduction is BT. Therefore, Theorem 3 offers a whole new
class of reduced systems ranging between BSPA and BT and
given a metric or goal, the optimal reduction can be found.

V. IN-DEPTH EXAMPLE

Consider the parameterization, presented in Section IV, of
a two-state system

rire(62—0
_ [rsee ey .
i) p3i,) | ] @
y = [ r]z+du,
where 81 = r; = 1 and 6, and ry are the free parameters.

We plot the frequency responses of the different system in
Figure 2a and use (s1, s2,s3) to create the manifold. The
model manifold, in Figures 2b-2c, has two boundaries. The
top blue boundary indicates where ro — oo (we use ten since
it is an order of magnitude bigger than one), the bottom red
boundary shows where ; = 65, and where they meet at
the bottom, the magenta dot, is BT, where 3 — 0 and/or
ro — 0.

Consider the system where #; = .7, ro = 8, depicted
on the manifold by the red triangle. It is clear that BT is
not going to be a good approximation of the system by the
distance between the two systems on the manifold. However,
the BSPA denoted by the cyan “plus” symbol is a very close
approximation. Consider also another system where 0y =
.01, 79 = .8, depicted on the manifold by the green circle.
The BSPA, shown as a black “x”, is still fairly close to the
true system but BT is much closer.

Although BT and BSPA have the same a priori H, error
bound, BT typically gives better results at high frequencies
while SPA excels at low frequencies [26]. The optimal
approximation requires one to identify a metric customized
to a context of interest. As a concrete example, returning
to the model in which 65 = .01, ro = .8, the blue curve
connecting the black “x” to the magenta dot represents a
family of candidate reduced models that interpolates between
BT and BSPA. The optimal reduced model relative to the
three frequencies sampled is the point on this blue curve that
is closest to the green dot, in the 2-norm sense. It is identified
numerically as 6 = 5.3958x 10~* (purple diamond). Clearly
this point is much closer to the original system than either
BSPA and BT and therefore a better approximation for this
metric.

VI. CONCLUSION

We have presented a complete parameterization of LTI
systems that naturally partitions parameters into two groups:
dynamic and structural. We have seen that the dynamic
parameters are identifiable from physical observations and
act as coordinates on a model manifold while structural
parameters require a priori knowledge. By applying the
Manifold Boundary Approximation Method to subsets of the
dynamical parameters, Balanced Truncation and Balanced
Singular Perturbation Approximation were shown to be limit-
ing approximations of this parameterization. It is well known
that these popular model reduction techniques can result in
quite different approximations. This unified view of model
reduction of LTI system illustrates that each approximation
corresponds to a particular boundary element on the model
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Magnitude (dB)

Fréquency (r”ad/s)

(a) Magnitude plot for the two—state space model. Different curves
are calculated by varying the parameters 6> and 7.

A

(b) The Model Manifold for the two—state space model: Each point
in the data space corresponds to a curve in Figure 2a. The top blue
boundary indicates where r2 — 0o, the bottom red boundary shows
where 61 = 6, and the magenta dot at the bottom is BT.

I |
[ap RN a :
]
N
s,
2 = )
N — ~ S N
. s,

(c) Alternate view of the Model Manifold for the two—state model.

Fig. 2: Magnitude plot and the resulting manifold for the
two—state model.

manifold, M (D), embedded in the data space. Depending on
the choice of metric, the manifold can give insight into which
approximation is the best and give alternative approximations
interpolating between BT and BSPA.
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