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Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors
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We investigate the effects of material anisotropy on the superheating field of layered superconductors. We
provide an intuitive argument both for the existence of a superheating field, and its dependence on anisotropy, for
κ = λ/ξ (the ratio of magnetic to superconducting healing lengths) both large and small. On the one hand, the
combination of our estimates with published results using a two-gap model for MgB2 suggests high anisotropy of
the superheating field near zero temperature. On the other hand, within Ginzburg-Landau theory for a single gap,
we see that the superheating field shows significant anisotropy only when the crystal anisotropy is large and the
Ginzburg-Landau parameter κ is small. We then conclude that only small anisotropies in the superheating field
are expected for typical unconventional superconductors near the critical temperature. Using a generalized form
of Ginzburg Landau theory, we do a quantitative calculation for the anisotropic superheating field by mapping
the problem to the isotropic case, and present a phase diagram in terms of anisotropy and κ , showing type I, type
II, or mixed behavior (within Ginzburg-Landau theory), and regions where each asymptotic solution is expected.
We estimate anisotropies for a number of different materials, and discuss the importance of these results for
radio-frequency cavities for particle accelerators.
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I. INTRODUCTION

A superconductor in a magnetic field parallel to its surface
can be metastable to flux penetration up to a (misnamed)
superheating field Hsh, which is above the field at which
magnetism would penetrate in equilibrium (Hsh > Hc and
Hsh > Hc1 for type-I and type-II superconductors, respec-
tively). Radio-frequency cavities used in current particle
accelerators routinely operate in this metastable regime, which
has prompted recent attention on theoretical calculations of this
superheating field [1,2]. The first experimental observation of
the superheating field dates back to 1952 [3], and a quantitative
description has been given early by Ginzburg in the context
of Ginzburg-Landau (GL) theory [4]. Since then, there have
been many calculations of the superheating field within the
realm of GL [5–12]. In particular, Transtrum et al. [2] studied
the dependence of the superheating field on the GL parameter
κ . Here we use their results and simple rescaling arguments
to study the effects of material anisotropy in the superheating
field of layered superconductors.

The layered structure of many unconventional super-
conductors is not only linked with the usual high critical
temperatures of these materials; it also turned small corrections
from anisotropy effects into dominant properties [13]. For
instance, the critical current of polycrystalline magnesium
diboride is known to vanish far below the upper critical
field, presumably due to anisotropy of the grains (the boron
layers inside each grain start superconducting at different
temperatures, depending on the angle between the grain layers
and the external field) [14,15]. Cuprates, such as BSCCO,
exhibit even more striking anisotropy, with the upper critical
field varying by two orders of magnitude depending on the
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orientation of the crystal with respect to the direction of the
applied magnetic field [13].

One would expect that such anisotropic crystals also
display strong anisotropy on the superheating field. Here
we show that this is typically not true near the critical
temperature. Type II superconductors, which often display
strong anisotropic properties, also have a large ratio between
penetration depth and coherence length (the GL parameter
κ), which, as we shall see, considerably limits the effects
of the Fermi surface anisotropy on the superheating field.
At low temperatures, heuristic arguments suggest that crystal
anisotropy might be important for the superheating field of
multiband superconductors, such as MgB2 (Sec. IV).

It is usually convenient to characterize crystalline
anisotropy by the ratio of the important length scales of
superconductors, within Ginzburg-Landau theory,

γ = λc

λa

= ξa

ξc

=
√

mc

ma

, (1)

where λ is the penetration depth, ξ is the coherence length, m

is the effective mass, and the indices c and a are associated
with the layer-normal axis c, and an in-plane axis, respectively.
Note that λi is associated with the screening by supercurrents
flowing along the ith axis [13]. Hence for a magnetic field
parallel to a flat surface of superconductor, λ = λc only
when c is perpendicular to both the magnetic field and the
surface normal; counterintuitively, λ = λa for c parallel to the
magnetic field or the surface normal. In this paper, we show
that the anisotropy of Hsh is larger for larger γ and smaller κ‖,
and behaves asymptotically as H

‖
sh/H

⊥
sh ≈ 1 for κ‖ � 1/γ ,

and H
‖
sh/H

⊥
sh ≈ γ 1/2 for κ‖ � 1. We begin with two simple

qualitative calculations that motivate the two limiting regimes
intuitively. We shall then turn to the full GL calculation, which
we map, using a suitable change of variables and rescaling of
the vector potential, onto an isotropic free energy, and discuss
the implications of these results for several materials. We then
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FIG. 1. Illustrating vortex nucleation in a type-II superconductor
occupying the half space x > 0, and subject to a magnetic field
parallel to the vacuum-superconductor interface.

discuss a generalization of our simple estimates for MgB2 at
lower temperatures, using results from a two-gap model, and
make some concluding remarks.

II. SIMPLE ESTIMATIONS OF Hsh IN THE LARGE- AND
SMALL-κ REGIMES

In this section, we discuss two simple arguments to
motivate and estimate the superheating field for both isotropic
and anisotropic superconductors. These complement the sys-
tematic calculation within Ginzburg-Landau theory presented
in Sec. III. Our first estimate applies both to small and large κ

superconductors; for large κ , it discusses the initial entry of the
core of a vortex into the superconductor. The second estimate
(for large κ , generalizing Bean and Livingston [16]) discusses
the field needed to push the core from near the surface into
the bulk of the superconductor, fighting the attraction of the
vortex to the surface. Both methods yield estimates for the
superheating field that are compatible, up to an overall factor,
with the estimates of anisotropic Ginzburg-Landau theory
of Sec. III. However, we shall discuss qualitative differences
between the sinusoidal modulations at Hsh predicted by linear
stability theory and the unsmeared vortices used in these two
simple pictures. Indeed, we shall see in Sec. IV that these
two pictures, and a plausible but uncontrolled linear stability
analysis, give different predictions for the anisotropy in the
most important immediate application, magnesium diboride.

Let the superconductor occupy the half space x > 0, and
the magnetic field H be parallel to the z axis. Figure 1
illustrates vortex nucleation in a type-II superconductor for
this configuration. With this choice for the system geometry,
we neglect effects of field bending over sample corners, which
can play a very important role in the flux penetration of
real samples. However, we note that these effects are not
appreciable for RF cavities for particle accelerators, which

TABLE I. Area of the vortex (Sv), area of the vortex core (Svc), and
approximated penetrating field area (S�; area of the dashed rectangles
in Fig. 2) for c parallel to each Cartesian axis.

c ‖ x c ‖ y c ‖ z

Sv πλaλc πλaλc πλ2
a

Svc πξaξc πξaξc πξ 2
a

S� 4λcξc 4λaξa 4λaξa

have an approximate cylindrical shape in the regions of high
magnetic fields.

Let us start with a heuristic estimate of the superheating
field for type I superconductors. At an interface between su-
perconductor and insulator (or vacuum), the order parameter ψ

is not suppressed; however, if we force a slab of magnetic field
into the superconductor thick enough to force the surface to go
normal and ψ → 0, the superconductivity will be destroyed
over a depth ξ , the coherence length of the SC, with energy
cost per unit area [Hc

2/(8π )]ξi , with i = a and i = c, for c ‖ z

and c ⊥ z, respectively. The necessary width of the magnetic
slab should be set by the Meissner magnetic penetration depth
λ, with approximate energy gain per unit area, given by
the magnetic pressure times the depth, or [Hsh/(4π )](Hshλi).
Thus Hsh/(

√
2Hc) ≈ (1/2)(λi/ξi)−1/2 = (1/2)κi

−1/2, which
is close to the exact result: Hsh/(

√
2Hc)(κ � 1) = 2−3/4κ−1/2

for isotropic Fermi surfaces [2]. The anisotropy of the
superheating field is then proportional to γ 1/2, assuming κ � 1
for c parallel and perpendicular to the magnetic field.

For type II superconductors, consider the penetration of a
vortex core into the superconductor, as illustrated in Fig. 2(a).
The vortex and vortex core correspond to the blue and red
regions, respectively. The magnetic field H is again parallel to
z (perpendicular to the plane of the figure), and the anisotropy
axis c is either parallel [Fig. 2(a)] or perpendicular [Fig. 2(b)]
to z; the gray region in Fig. 2(a) illustrates a superconductor
occupying the semi-infinite space x > 0. Vortex and vortex
core acquire an ellipsoidal shape when c lies in the xy plane
[Fig. 2(b)]; here the superconductor surface lies horizontally
and vertically when c ‖ x and c ‖ y, respectively. We can
estimate the superheating field by comparing the work (per
unit length) that is necessary to push a vortex core into the
superconductor (thus destroying the Meissner state) with the
condensation energy:

Hsh

4π
�H ≈ H 2

c

8π
Svc, (2)

where Svc is the area of the vortex core (red region in Fig. 2),
and �H is given by

�H = 	0

Sv
S�, (3)

where 	0 is the fluxoid quantum [13]. Sv is the total sectional
area of the vortex; e.g., Sv = π λ2 for isotropic supercon-
ductors. S� is the amount of vortex area that penetrates
when the vortex core is pushed into the superconductor;
it is approximately equal to the areas of the green, black,
and orange dashed rectangles in Fig. 2, for c ‖ x, y, and z,
respectively. Table I shows equations for Sv, Svc, and S� in
terms of the penetration and coherence lengths, with c parallel
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FIG. 2. (a) Illustration of the penetration of a vortex core into
a type-II anisotropic superconductor with anisotropy axis c ‖ z

(perpendicular to the plane of the figure). (b) Vortex and vortex core
acquire an ellipsoidal shape when c lies in the xy plane. Here the
superconductor surface lies horizontally and vertically, for c parallel
to x and y, respectively. The magnetic field is parallel to z for
both (a) and (b). We can estimate the superheating field from the
calculation of the work necessary to push a vortex core into the
superconductor, thus destroying the Meissner state. For anisotropic
vortices, the superheating field turns out to be proportional to the
area of the green (black) boxes for the superconductor boundary
surface parallel (perpendicular) to the c axis. These estimates simplify
the calculations of Bean and Levingston [16], which consider the
vanishing of the surface energy barrier felt by a single penetrating
vortex in a type-II superconductor. More generally, the Ginzburg-
Landau approach takes into account the cooperative effects due to the
penetration of multiple vortices [2].

to each Cartesian axis. Equations (2) and (3) then read

Hsh = H 2
c π2

8 	0

{
λc ξc, if c ‖ y,

λa ξa, if c ‖ x or z.
(4)

Interestingly, for c ‖ y, the penetrating vortex area is the area of
the black dashed box [see Fig. 2(b)], whereas the superheating
field is proportional to the area of the dashed green box.
Conversely, for c ‖ x, the penetrating vortex area is the area
of the green dashed box, whereas the superheating field is
proportional to the area of the dashed black box. Within GL
theory, λa ξa = λc ξc, suggesting that the superheating field
is isotropic. Plugging 	0 = 2

√
2 πHc λi ξi into Eq. (4), we

find Hsh/(
√

2Hc) ≈ 0.1, which is independent of κ , as in the
exact calculations for isotropic Fermi surfaces [2], but off
by an overall factor of five from the linear stability results:

Hsh/(
√

2Hc)(κ � 1) ≈ 0.5. In Sec. II, we show that Hsh is
isotropic on GL for κ � 1. In Sec. IV, we discuss recent work
at lower temperatures using the two-band model for MgB2,
which then suggests a substantial anisotropy.

After the vortex core penetrates the superconductor, the
vortex is subject to an attractive force toward the interface
due to the boundary condition (there is no normal current
at the surface). Bean and Livingston [16] used this to give
a second simple, intuitive estimate of the superheating field.
They model this force as an interaction with an “image vortex”
of opposite sign outside the superconductor, starting the vortex
center (somewhat arbitrarily) at a distance x = ξ from the
interface—precisely where our estimate left the vortex. The
superheating field is set by the competition between magnetic
pressure and the attractive long-range force. This leads to the
equation

Hsh = 	0

4π

1

λ ξ
. (5)

Using the GL relation 	0 = 2
√

2 π Hc λ ξ , one finds Hsh ≈
0.71Hc. How can we incorporate crystal anisotropy into this
simple calculation? If vortex and vortex core have the same
shape, we can use Eq. (9) to map the anisotropic system into an
isotropic one with ξy and λx replacing ξ and λ. This mapping
preserves magnetic fields, but not loop areas in the xy plane, so
that the fluxoid quantum 	0 rescales to 	̃0 = (ξy/ξx)	0 under
this change of coordinates. Thus, Hsh = 	̃0/(4πλx ξy) =
	0/(4πλx ξx) ≈ 0.71Hc, which is isotropic and compatible
with the first simple argument, and the results in the next
section for the large κ limit of the anisotropic GL theory.

It is interesting and convenient that these two fields
(condensation energy associated with vortex core nucleation
and attractive force due to the boundary conditions) are of
the same scale. Bean and Livingston’s estimate results in
Hsh/Hc = 0.71, of the same form as our estimate but larger and
closer to the true GL calculation Hsh/Hc = 0.75. However, we
should mention that while the field needed to push the core into
the superconductor is close to that needed to push the vortex
past the attractive force towards the “image-vortex”, the two
contributions contribute very differently to the energy barrier.
Bean and Livingston’s force can act on a scale longer by a
factor κ = λ/ξ than our core nucleation, and will dominate
the barrier height for H near Hc1.

How is GL different from these two simple pictures?
First, the GL calculation incorporates both the initial core
penetration and the long-range attractive force. Second, it
accounts for the cooperative effects of multiple vortices
entering at the same time. Third, and perhaps most important,
the physical picture near Hsh is quite different. As discussed
in [2], the wavelength of the sinusoidal instability within GL
theory is 2πkc ∝ κ1/4ξ . The single vortex within our model
and Bean and Livingston have sharp cores of size ξ ; the correct
linear-stability result has the superconducting order parameter
varying smoothly over a longer length larger by κ1/4. We shall
see in Sec. IV that taking these three basic methods outside
the realm where GL theory is valid yields three quite different
predictions for the anisotropy in the superheating field.
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III. GINZBURG-LANDAU THEORY OF THE
SUPERHEATING FIELD ANISOTROPY

Let us flesh out these intuitive limits into a full cal-
culation. A phenomenological generalization of GL theory
that incorporates the anisotropy of the Fermi surface was
initially proposed by Ginzburg [17], and revisited later, using
the microscopic theory, by several authors [18–20]. In this
approach, the gauge-invariant derivative terms are multiplied
by an anisotropic effective mass tensor that depends on
integrals over the Fermi surface (see, e.g., Eq. (2) of Ref. [20]).
The mass tensor is a multiple of the identity matrix for cubic
crystals, such as Nb, Nb3Sn, and NbN, which belong to the
next generation of superconducting accelerator cavities. In this
case, the dominant effects of the Fermi surface anisotropy
are higher-order multipoles, which may be added using, e.g.,
nonlocal terms of higher gradients [21]. On the other hand,
as it should be anticipated, mass anisotropy can lead to
important effects on layered superconductors, such as MgB2
and some iron-based superconductors (also considered for RF
cavities), at least insofar as the GL formalism is accurate.
Simple arguments within GL theory can be used to show
that the anisotropy of the upper-critical and lower-critical
fields is proportional to γ ; i.e., H⊥

c2/H
‖
c2 = γ = H

‖
c1/H

⊥
c1,

where the perpendicular (parallel) symbol indicates that the
applied magnetic field is perpendicular (parallel) to the c
axis. The effects of Fermi surface anisotropy on the properties
of superconductors have been theoretically studied by many
authors [17,19–23].

One possible generalization of the Ginzburg-Landau free
energy to incorporate anisotropy effects has been written down
by Tilley [20]:

fs − fn =
∑

i,j∈{x,y,z}

1

2 mij

(
−�

i

∂ψ∗

∂xi

− e∗

c
Aiψ

∗
)

×
(

�

i

∂ψ

∂xj

− e∗

c
Ajψ

)
+ α|ψ |2 + β

2
|ψ |4

+ (Ha − ∇ × A)2

8π
, (6)

where fs and fn are the free energy densities of the
superconducting and normal phases, respectively; ψ is the
superconductor order parameter, A is the vector potential, and
Ha is an applied magnetic field. Anisotropy is incorporated in
the effective mass tensor M = (mij ), whose components can
be conveniently expressed as a ratio of integrals over the Fermi
surface [see Eq. (2) of Ref. [20]]. e∗ is the effective charge, α

and β are energy constants, and � and c are Planck’s constant
(divided by 2π ) and the speed of light, respectively. The
thermodynamic critical field is given by [13]: Hc =

√
4πα2/β,

independent of mass anisotropy. Equation (6) can then be
written in a more convenient form:

(fs − fn)

Hc
2/(4π )

=
∑

i

[(
ξi

∂f

∂xi

)2

+
(

ξi

∂φ

∂xi

− Ai√
2Hcλi

)2

f 2

]

+ 1

2
(1 − f 2)2 + 1

2Hc
2 (Ha − ∇ × A)2, (7)

where we have assumed a layered superconductor with the
anisotropy axis c aligned with one of the three Cartesian
axes, so that i ∈ {x,y,z} in the first term of the right-hand
side, and we have dropped an irrelevant additive constant
1/2. Also, we have rewritten the order parameter as ψ =
|ψ∞| f eiφ , where f and φ are scalar fields, and ψ∞ =
−α/β is the solution infinitely deep in the interior of the
superconductor [13]. The anisotropic penetration depth and
coherence lengths are given by λi = (mic

2/(4π |ψ∞|2e∗2))1/2,
and ξi = (�2/(2mi(−α)))1/2, respectively.

Let the pairs of characteristic lengths (λc,ξc) and (λa,ξa)
be associated with the layer normal and an in-plane axis,
respectively. Define

κ‖ ≡ λa

ξa

, κ⊥ ≡ λc

ξa

= λa

ξc

= γ κ‖, (8)

where the last two relations can be verified using the definition
of λi , ξi , and γ . Following previous calculations of the
superheating field [1,2], we also let Ha be parallel to z, and
the superconductor occupies the half-space region x > 0, so
that symmetry constraints imply that Az = 0, and all fields
should be independent of z. Thus, if the anisotropy axis c is
parallel to z, our GL free energy [Eq. (7)] is directly mapped
into the isotropic free energy of Transtrum et al. [2], with ξ

and λ replaced by ξa and λa , respectively. In particular, the
solution for the superheating field Hsh as a function of κ is
given in Ref. [2] using κ‖ instead of κ . If c is parallel to x or
y, there are a number of scaling arguments that can be used
to map the anisotropic free energy into the isotropic one [24].
Here we consider the change of coordinates and rescaling of
the vector potential:

r =
(

ξx

ξy

x̃,ỹ,z̃

)
, A =

(
Ãx,

ξx

ξy

Ãy,Ãz

)
. (9)

Note that this change of variables does not change the magnetic
field, since Ha is aligned with the z axis, so that the z

component of the field is given by ∂Ay/∂x − ∂Ax/∂y =
∂Ãy/∂x̃ − ∂Ãx/∂ỹ. This coordinate transformation maps the
anisotropic free energy into an isotropic one with ξy and λx

replacing ξ and λ. In particular, now the solution for the
superheating field is given in Ref. [2] using κ⊥ = γ κ‖ instead
of κ . In this paper, we only consider the two representative
cases, c ‖ z and c ⊥ z, as we do not expect appreciable
qualitative changes for arbitrary orientations of c with respect
to the z axis. Notice the interesting fact that a crystal might
be a type I superconductor (κ‖ < 1/

√
2) when c is parallel to

z, and yet be a type II superconductor if γ κ‖ > 1/
√

2 when c
is perpendicular to z (see Fig. 3). This interesting property of
anisotropic superconductors has been discussed in Ref. [25],
and confirmed experimentally in the work of Ref. [26].

Now we turn our attention to the anisotropy of the
superheating field:

H
‖
sh

H⊥
sh

= Hsh(κ‖)

Hsh(κ⊥)
= Hsh(κ‖)

Hsh(γ κ‖)
. (10)

For general κ , approximate solutions for the superheating field
for isotropic systems are given by Eqs. (11) and (12) of Ref. [2],
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which we reproduce here for convenience:

Hsh√
2Hc

≈ 2−3/4κ−1/2 1 + 4.6825120κ + 3.3478315κ2

1 + 4.0195994κ + 1.0005712κ2
, (11)

for small κ , and

Hsh√
2Hc

≈
√

10

6
+ 0.3852κ−1/2, (12)

for large κ . We can use approximations (11) and (12) to find
asymptotic solutions for the superheating field anisotropy:

H
‖
sh

H⊥
sh

≈
{
γ 1/2 for κ � 1/γ,

1 for κ � 1,
(13)

with γ > 1. These asymptotic solutions span a large region in
the phase diagram of Fig. 3, with the shaded blue and orange
regions corresponding to regions where the superheating field
anisotropy can be approximated by γ 1/2 and 1, respectively.
Figure 4 shows a plot of the anisotropy of the superheating
field as a function of the mass anisotropy for several values of
κ‖. The dotted lines are asymptotic solutions given by Eq. (13).
In order to make this plot we considered the solution for the
superheating field to be given by Eqs. (11) and (12) for κ < κth

and κ � κth, respectively, where the threshold κth ≈ 0.56 is
found by equating the right-hand sides of the two approximate
solutions. It is clear that the combination of large γ and small
κ yields the largest anisotropy of Hsh. Notice that the deviation
from the simple asymptotic solution at small κ‖ scales as
(H ‖

sh/H
⊥
sh − γ 1/2)/γ 1/2 = O(κγ ).

In Table II we compare the anisotropy of the superheating
field for different materials; we also present the values that we
used for κ‖ and γ in each case. As we have stressed before, the
superheating field anisotropy is largest for small κ‖ and large
γ . Note that even though type-I superconductors have small
κ , we have not found anisotropy parameters for elemental
superconductors in the literature, probably because anisotropy

FIG. 3. Showing regions in κ‖ × γ space where the crystal is
always type I (left region to blue solid lines), always type II (right
region to red solid lines), or might be of either type (region between
red and blue lines), depending on the orientation of the crystal. The
shaded blue and orange regions correspond to regions where the
Ginzburg-Landau superheating field anisotropy can be approximated
by γ 1/2 and 1, respectively, within 10% of accuracy.

FIG. 4. Anisotropy of the Ginzburg-Landau superheating field as
a function of mass anisotropy for several values of κ‖. The dotted
lines are the limiting solutions given by Eq. (13).

plays a minor role for most of them. Just a few well-studied
nonelemental superconductors are of type I, such as the
layered silver oxide Ag5Pb2O6, with a mass anisotropy of
about 1.43, and κ‖ ≈ 0.01 < 1/

√
2. On the other hand, type-II

superconductors are known for their large anisotropies. The
critical fields of BSCCO, for instance, can vary by two orders
of magnitude depending on the orientation of the crystal. Yet
the anisotropy effects on the superheating field are undermined
[Eq. (10)] by the flat behavior of Hsh at large κ . These effects
are also illustrated in Fig. 5, where we plot the solution
Hsh/(

√
2Hc) as a function of κ , using the asymptotic solutions

given by Eqs. (11) and (12) for κ <= 0.56 and κ > 0.56,
respectively (this approximated solution is remarkably close
to the exact result [2]). Note that within GL theory Hsh/Hc

depends on material properties only through the parameter
κ . The points in Fig. 5 correspond to the solutions of the
superheating field using κ‖ and κ⊥ for Ag5Pb2O6 (blue), C8K
(purple), MgB2 (red), and BSCCO (dark red). Superconductors
with κ‖ ≈ 1 can have an enormous anisotropy γ , say ∼105,
and yet the superheating field will be nearly isotropic.

One should bear in mind that GL formalism is accurate only
in the narrow ranges of temperatures near the critical point. Be-
yond this range, one must rely either on generalizations of GL
to arbitrary temperatures [31,32], or more complex approaches
using BCS theory, Eilenberger semiclassical approximation
and strong-coupling Eliashberg theory. However, note that GL
and Eilenberger theories yield similar quantitative results for

TABLE II. Ginzburg-Landau parameter κ‖ with c parallel to the
z axis, mass anisotropy γ , and superheating field anisotropy for
different materials.

Material κ‖ γ H
‖
sh/H

⊥
sh

Ag5Pb2O6 (Ref. [27]) ∼0.0096 ∼1.43 ∼1.2
C8K (Ref. [26]) ∼0.32 ∼6.2 ∼1.6
NbSe2 (Ref. [28]) ∼9 ∼3.33 ∼1.1
MgB2 (Refs. [23,29]) ∼26 ∼2.6 ∼1.05
BSCCO (Refs. [13,30]) ∼87 ∼150 ∼1.07
YBCO (Refs. [13,30]) ∼99 ∼7 ∼1.04
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FIG. 5. Ginzburg-Landau superheating field Hsh/(
√

2Hc) as a
function of κ . The points correspond to the solutions using κ‖ and κ⊥
for Ag5Pb2O6 (blue), C8K (purple), MgB2 (red), and BSCCO (dark
red).

the temperature dependence of the superheating in the limit of
large κ for isotropic Fermi surfaces (see, e.g., Ref. [1]).

IV. LOW-TEMPERATURE ANISOTROPY OF THE
SUPERHEATING FIELD FOR MgB2

We now turn to MgB2, an anisotropic, layered supercon-
ductor which would likely in practice be used at temperatures
T � Tc where GL theory is not a controlled approximation.
Here we discover that we get three rather different estimates for
the anisotropy in the superheating field, from our two simple
estimates of Sec. II and from an uncontrolled GL-like linear
stability analysis.

The striking qualitative difference between low temperature
MgB2 and GL theory is the violation of the GL anisotropy
relation: λc/λa �= ξa/ξc. For anisotropic superconductors, this
originates in the mass dependence of the penetration and
coherence lengths (λ ∼ m1/2 whereas ξ ∼ m−1/2). Experi-
ments [33–38] and theoretical calculations [23,39,40] for
MgB2 suggest that this relation is violated at lower tempera-
tures; the anisotropies of λ and ξ exhibit opposite temperature
dependences, with

γλ = λc/λa (14)

increasing, whereas

γξ = ξa/ξc (15)

decreases [41] with temperature. Figure 6 shows an illustration
of a vortex section near T = 0. Using calculations from
Ref. [23], γλ and γξ become equal only at T = Tc.

We can use our first method to estimate the low-temperature
superheating field anisotropy by relaxing the constraint λc ξc =
λa ξa in Eq. (4) of Sec. II, resulting in

H
c⊥y

sh

H
c‖y
sh

= γξ

γλ

, (16)

where H
c⊥y

sh means either H
c‖x
sh or H

c‖z
sh . Hsh is isotropic near

T = Tc, since γξ ≈ γλ.
Our other two estimates rely on an uncontrolled

approximation—using Eq. (7) with the low temperature values

FIG. 6. Illustrating a vortex and vortex core (blue and red regions)
of MgB2 near T = 0 (we increased ξa by a factor of 30 with respect
to λa , so that the core features become discernible; the small black
region in the center corresponds to the actual scale). Near zero
temperature, the field penetration region is calculated to be nearly
isotropic (λa ≈ λc), whereas the core shape anisotropy is predicted
to reach a maximum (ξa ≈ 6 ξc) (Ref. [23]).

of λ and ξ . This is not justified microscopically, as the
calculations of Sec. III. Our second estimate draws on Bean
and Livingston to estimate the anisotropy. For the case
c in the xy plane and λc/λa �= ξa/ξc, rather than using
Eq. (16), let us consider the rescaling: r = ((λy/λx) x̃,ỹ,z̃),
and A = (Ãx,(λy/λx) Ãy,Ãz). If we plug these equations into
Eq. (7), assuming γλ �= γξ , we would obtain a GL theory
that is isotropic in λ, but anisotropic in ξ , with λ → λx ,
ξx → (λx/λy)ξx , and 	0 → 	̃0 = (λx/λy)	0. Now we can
plug the new lengths and 	̃0 into Bean and Livingston’s
calculation to obtain

Hsh = 	̃0

4π

1

λx (λx/λy)ξx

= 	0

4π

{
(λc ξc)−1 for c ‖ x,

(λa ξa)−1 for c ‖ y.
(17)

Note that unlike the GL case, 	0 cannot be written as
2
√

2 π Hc λ ξ , and the superheating field is not isotropic. We
find that H

c‖x
sh /H

c‖y
sh = γξ/γλ, as in Eq. (16). Unlike our first

estimate, where z and x are equivalent directions, in this
adaptation of Bean and Livingston’s we find that y and z

are equivalent directions. On the one hand, the only relevant
component of the coherence length is the one that is parallel
to the x axis in Bean and Livingston’s argument. On the other
hand, our estimates assign different energy barriers to vortex
core sections with different areas (πξ 2

a for c ‖ z, and πξaξc for
c ‖ y).

Finally, we note that, while the GL free energy of Eq. (6)
enforces the high temperature anisotropy relation violated
by low-temperature MgB2, when we rewrite it as Eq. (7)
we get a legitimate, albeit uncontrolled, description of a
superconductor with independent anisotropies for λ and ξ . A
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TABLE III. Estimates of the superheating field and maximum
anisotropy of low-temperature MgB2 for the three geometries.

Hsh (Tesla)

Approach c ‖ x c ‖ y c ‖ z Max. Anis.

1st estimate 0.04 0.006 0.04 ∼6
1st (corrected) 0.2 0.03 0.2 ∼6
2nd estimate (B&L) 1.13 0.18 0.18 ∼6
“GL” (Eq. (7)) 0.21 0.22 0.22 ∼1

direct numerical calculation using linear stability analysis on
Eq. (7) for the parameters of MgB2 yields an almost isotropic
result: Hc‖x

sh /H
c‖y
sh ≈ 1 and H

c‖z
sh /H

c‖x
sh = 1.03. Analytical cal-

culations in the large-κ limit (using the methods developed in
the Appendix of Ref. [2]) corroborate this result; the anisotropy
vanishes in the high κ limit of Eq. (7) for independent λ and ξ

as well.
What do these estimates suggest for MgB2? Near T = 0,

the theoretical calculations of Ref. [23] using a two-gap model
for MgB2 suggest that γξ ≈ 6 and γλ ≈ 1. Experimental results
agree with the theoretical predictions near zero temperature,
with γλ being almost isotropic [35,36], and γξ ≈ 6 − 7 (see,
e.g., Ref. [38]). However, beware that reported experimental
results for γξ range from ≈ 1 to ≈ 13 (see Ref. [23] and
references therein).

We summarize our estimates of the superheating field for
the three geometries in Table III, using Hc(0) = 0.26 T from
Ref. [42]. Recall that our first estimates were off from actual
GL calculations by a factor of 5. We hence multiply Hsh

by this factor at lower temperatures, and use this correction
to calculate the results displayed on the second row of
the table: “1st (corrected)”. The last row summarizes the
results of the last paragraph, and the last column shows the
maximum superheating field anisotropy according to the three
methods. In comparison, for Nb the superheating field from
Ginzburg-Landau theory extrapolated to low temperature is
0.24 Tesla [43].

Several things to note about these estimates. (1) All three
methods suggest that, perhaps with suitable surface alignment,
MgB2 can have superheating fields comparable to current
Nb cavities, with a much higher transition temperature (and
hence much lower Carnot cooling costs and likely much lower
surface resistance). (2) One of the three methods suggests
that a particular alignment could yield a significantly higher
superheating field than Nb. (3) It is not a surprise that these
three estimates differ. As discussed in Sec. II, the three methods
have rather different microscopic pictures of the superheating
instability; the surprise is that they all give roughly the same
estimate within GL theory. (The further agreement within
anisotropic GL can be understood as a consequence of our
coordinate transformation, Eq. (9).

Before plunging into an intense development effort for
MgB2 cavities, it would be worthwhile to find out whether
there are dangerous surface orientations, or surface orienta-
tions that would provide significant enhancements, both of
which are allowed by one of our current estimates. Clearly
a direct experimental measurement on oriented single crystal

samples would be ideal, although the engineering challenge of
reaching the theoretical maximum superheating field for a new
material could be daunting. Alternatively, it would be challeng-
ing but possible do a more sophisticated theoretical calculation
for the superheating anisotropy. Eilenberger theory could be
solved either numerically [44] or in the high-κ limit [1] to
address lower temperatures. Eliashberg theory [45–48], which
incorporates realistic modeling of the two anisotropic gaps and
anisotropic electron-phonon couplings, could be generalized
to add a free surface and the resulting system could be solved
using linear stability analysis.

V. CONCLUDING REMARKS

To conclude, we used a generalized Ginzburg-Landau
approach to investigate the effects of Fermi surface anisotropy
on the superheating field of layered superconductors. Using
simple scaling arguments, we mapped the anisotropic problem
into the isotropic one, which has been previously studied by
Transtrum et al. [2], and show that the superheating field
anisotropy depends only on two parameters, γ = λc/λa and
κ‖ = λa/ξa . H

‖
sh/H

⊥
sh is larger when γ is large and κ‖ is

small, and displays the asymptotic behavior H
‖
sh/H

⊥
sh ≈ 1 for

κ‖ � 1/γ , and H
‖
sh/H

⊥
sh ≈ γ 1/2 for κ‖ � 1, suggesting that

the superheating field is typically isotropic for most layered
unconventional superconductors, even for very large γ (see
Table II), when GL is valid. We surmise that the anisotropy of
the superheating field is even smaller for cubic crystals, where
higher-order and/or nonlinear terms have to be included in the
GL formalism.

As a practical question, accelerator scientists have ex-
plored stamping radio-frequency cavities out of single-crystal
samples, to test whether grain boundaries were limiting the
performance of particle accelerators. Our study was motivated
by the expectation that one could use this expertise to
control the surface orientation in the cavity. Such control
likely may yield benefits through either optimizing anisotropic
surface resistance or optimizing growth morphology, for
deposited compound superconductors (growing Nb3Sn from a
Sn overlayer). Our calculations suggest that, for the high-Tc,
high-κ materials under consideration for the next generation
of superconducting accelerator cavities, the theoretical bounds
for the maximum sustainable fields will not have a significant
anisotropy near T = Tc. However, the extension of our intu-
itive arguments for MgB2 to low temperatures, using results
from a two-gap model within BCS theory (Ref. [23]), suggest
a high value for the anisotropy of Hsh near T = 0, contrasting
with the numerical linear stability analysis of Eq. (7) using
the parameters for low-temperature MgB2, which suggest that
the superheating field is still isotropic. This motivates further
investigations by means of more sophisticated approaches and
experiments controlling surface orientation.
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