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Outdoor ambient sound levels can be predicted from machine learning-based models derived 
from geospatial and acoustic training data. To improve modeling robustness, median predicted sound levels 
have been calculated from an ensemble of tuned models from different supervised machine learning 
modeling classes. The ensemble is used to predict ambient sound levels throughout the contiguous 
United States. The training data set consists of 607 unique sites, where various acoustic metrics, such as 
overall daytime L50 levels and one-third octave frequency band levels, have been obtained. Data for 
117 geospatial features, which include metrics such as distance to the nearest road or airport, are used. The 
spread in the ensemble provides an estimate of the modeling accuracy. Results of an initial leave-one-out 
and leave-four-out validation study are presented.
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1. INTRODUCTION

A. GEOSPATIAL ACOUSTICS

An environment’s soundscape is a collection of all the ambient noises in a geographic area. Modeling an envi-
ronment’s soundscape is a challenging problem because ambient noise is the accumulation of many effects, including
diverse sources, barriers to propagation, etc., and can vary with time of day or season. However, the ability to accu-
rately characterize a region’s soundscape has potentially broad applications.

The study of natural soundscapes has been led by the National Park Service (NPS) through the “Natural Sounds
and Night Skies Division,” charged with the protection and restoration of the national parks.1, 2 The natural soundscape
is an important part of a visitor’s experience,2–4 and unnatural contributions to the soundscape, such as recreational
motorized noise, have been shown to negatively impact visitor experience.5

Accurate characterization of soundscapes is also important to ecological studies. Soundscapes play an integral role
in a species’ habitat, particularly for animals that respond to sound such as birds,6–9 marine life,10–14 and anurans (i.e.,
frogs and toads).15 Changes in a soundscape may affect animal behavior by inhibiting communication or masking
predator noise, and may be accompanied by other changes in behavior such as times of activity or communication
patterns.8, 9, 11, 12, 14 The natural acoustic complexity of a region (i.e., not including anthropogenic noise) correlates
with higher biodiversity.13, 16

In areas dominated by anthropogenic sources, sound levels correlate with depression and anxiety,17 as well as
hypertension.18–20 Public health studies have found that increased noise may be associated with changes in blood
pressure, heart rate, and stress.18, 20 Elevated sound levels also affect mental health, impairing reading comprehension,
recognition memory, and motivation in children.21 In adults, sound that varies significantly in pitch, timbre, or tempo
over time has been shown to impair cognitive function.22 Accurate models of anthropogenic soundscapes will be
increasingly important to public health studies as data continue to accumulate.20 An accurate soundscape model also
may hold commercial applications for real estate and urban development and have implications for social justice.

This paper describes an ambient soundscape model developed using machine learning algorithms that take geospa-
tial data as inputs. Previously, Mennitt et al.23–25 used machine learning to relate geospatial features and acoustic met-
rics. Elsewhere, linear and nonlinear land-use regression models have been used to map urban environmental noise.26

In our team’s approach we used an ensemble of machine-learned models to estimate both the ambient sound levels as
well as the uncertainty in the model predictions. In addition to quantifying model confidence, uncertainty estimates
provide additional insights into the behavior of the model and will be useful to guide future acoustic data collection
efforts. Our team found that with limited acoustic measurement data available, model uncertainty can be high, but that
with targeted data collection strategies, there is the potential for improvement.

B. VALIDATION AND UNCERTAINTY QUANTIFICATION

A central question in machine learning is the problem of model validation. (We direct the reader to Evaluating
learning algorithms: a classification perspective27 for further explanation than what is provided in this paper of
validation methods in machine learning.) Validation metrics estimate model accuracy for inputs that are statistically
similar to the training set. Most often, validation is performed on a subset of the available data using methods such as
Leave-One-Out (LOO), k-fold, or a holdout validation method. A broader question is that of transferability, i.e., the
ability of a model to accurately make predictions for novel inputs that are statistically different from the training set.

In LOO cross validation, one data point is omitted from the training set and used to validate the learned model
that is based on the remainder of the training set. The procedure is then repeated for each data point and statistics are
collected on the predicted errors for each data point. Compared to other validation methods (such as 10-fold or holdout
validation), LOO cross validation is better suited to limited data sets because it makes maximal use of the available
data. LOO has a computational disadvantage in that it requires training the model many times (i.e., once for each data
point); however, when data are limited this is a reasonable tradeoff.

When large amounts of labeled data are available, it is common to use holdout validation methods. In these
approaches, the data is partitioned into a training and validation set. However, for limited data sets, as is presently
the case for ambient soundscapes, each data point may contain unique information about the input/output relationship.
Randomly omitting instances from the training set results in a high probability of leaving out information that is
important for a predictive model. In this case, the testing error will vary greatly depending on the random subset
selected for training and testing.
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Validation becomes more challenging when the model is to make predictions on data that are statistically different
from the training set. In this case, validation methods, including LOO cross validation, will give overly optimistic
error measures. The ability of a model to make accurate predictions for inputs that are statistically different from those
on which it is trained is called transferability. Transferability estimation is an important, open problem in machine
learning.28 One of the main objectives of this paper is to explore the transferability of machine-learned models for
ambient soundscapes.

Our team’s approach is inspired by techniques from the uncertainty quantification community. Uncertainty Quan-
tification (UQ) has existed as long as probability and statistics and is the science of identifying, quantifying, and
reducing uncertainty when predicting Quantities of Interest (QoIs).29 More recently, an interdisciplinary community
has emerged to systematize the study of issues related to uncertainty, with particular relevance for estimating trans-
ferability in machine learning. In the broadest sense, there are two main types of uncertainty, aleatoric and epistemic
uncertainty.29 Aleatoric uncertainty, or statistical uncertainty, is inherent to a problem, and hence cannot be reduced
and is generally represented in terms of probabilities.29 Epistemic, or systematic, uncertainty originates from an in-
complete knowledge or missing physics in a model and can be reduced through better modeling methods.29 Following
Kennedy et al.,30 uncertainty types may be further refined into six classes: parameter uncertainty, model inadequacy,
residual variability, parametric variability, observation error, and code uncertainty. Of these six sources, our team is
primarily interested in model inadequacy. Model inadequacy, or structural uncertainty, originates from uncertainty in
the form of the model due to limited knowledge of the true underlying mechanisms that generate the data.30

Because our team used a data-driven, machine learning approach, our model necessarily omitted potentially rele-
vant physics. In our case, this is not just a practical convenience; indeed, many physical-principles relevant to ambient
sound levels are unknown. Although machine learning methods are applicable to describing complex behaviors in
which the underlying physical principles are unknown, success often hinges on the availability of large data sets on
which to train the model. Furthermore, assessing the accuracy, precision, and transferability of the learned models is
often not straightforward.

To make these ideas more concrete, consider the following problem formulation. Training data comes from a
“true” (but unknown) generating function. Ideally one would like to learn this generating function out of a candidate
set, but in practice there are many different functions consistent with the available measurements. The set of functions
consistent with the training data form an equivalence class. Although each of these functions is consistent with the
training data, they may disagree in their predictions under novel conditions. Our team lacks confidence in our model’s
predictions because we do not know which model from the equivalence class is correct. Therefore, our team’s goal is
to characterize the range of predictions in this equivalence class of functions.

C. PAPER OVERVIEW

In this study, our team chose a single function from each of six classes of machine learning models. Models from
each model class were trained to predict ambient sound levels throughout the Contiguous United States (CONUS).
From each class, our team selected the best model (as measured by the LOO cross validation error) and considered
their acoustic predictions on new spatial and frequency domains.

The range of predictions from the ensemble of models serves as a surrogate for the accuracy of a single model.
Because our team’s ensemble consisted of the single best model from each machine learning class, we interpreted
this range as a measure of the structural uncertainty, i.e., the uncertainty due exclusively to differences in functional
forms. Predictions for which the range of ensemble predictions is large correspond to greater structural uncertainty. In
principle, this ensemble could be extended to account for other types of uncertainty. The ensemble not only provides a
method of quantifying uncertainty, but also aids in directing further data collection efforts. Our team demonstrate the
performance of our approach on a leave-four-out validation study.

2. METHODS

A. DATA

A machine learning model was developed using a database of geospatial and acoustic data points (hereafter referred
to as the “soundscape database”).

The soundscape database’s geospatial data contains CONUS layers for 117 geospatial features from the NPS
Natural Sounds and Night Skies and Inventory and Monitoring Divisions database.31, 32 The geospatial features can
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be classified into six categories: topography, climate, land cover, hydrology, anthropogenic, and position. An example
CONUS layer for the mean upward radiance at night (using a 270 meter area of analysis) is shown in Figure 1.

Figure 1: Mean upward radiance at night with a 270 meter area of analysis.

The soundscape database’s acoustic data contains measurements from 607 distinct training sites; compiled from
multiple sources including Blue Ridge Research and Consulting, LLC’s internal soundscape data, the NPS soundscape
database,31, 32 and a 1974 Environmental Protection Agency (EPA) study.33 The acoustic measurements from each site
are summarized on a seasonal basis using several statistical measures including the NN% time exceeded level (LNN ;
e.g., L50 and L90) and the equivalent sound level (Leq). These acoustic metrics were integrated over three durations:
daytime (7 AM to 7 PM), nighttime (7 PM to 7 AM), and hourly (024 hour). Spectral LNN data were also calculated on
a one-third octave band daytime and nighttime basis. Note, measurement data during all four seasons is not available
at every site. Therefore, the model results are presented for the summer acoustic metrics as the largest number of
acoustic training sites (502 of 607) contain summer data.

The raw acoustic measurement data are the result of considerable effort in terms of number of recorded hours.
However, the summary statistics on which our team performed machine learning are actually a very limited data set.
Our training set consists of only a few hundred instances, while many of the more dramatic successes of machine
learning are known to require millions of training instances.34, 35 Although the formalism of machine learning can
be applied to our data set, it is unclear whether the predictions will be accurate away from the training sites. In this
limited data regime, statistical validation measures (such as LOO) do not reflect the actual confidence our team has in
model predictions and more sophisticated uncertainty quantification techniques are needed.
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B. COMPUTATIONAL METHODS

Our team implemented a computational pipeline to facilitate the machine learning process, summarized in Figure 2.
First, we load training data for all acoustic metrics and geospatial features. A subset of the geospatial features is
selected for learning, along with target acoustic metrics, i.e., QoIs. All data are scaled (normalized) to remove artifacts
of measurement units. Our team used a “standard scaler,” which normalizes each feature to have zero mean and a
standard deviation of one. After this initial pre-processing, models from a selected set of machine learning classes are
trained. The result of the pipeline is one or more models trained on the selected QoIs using the specified geospatial
features.

Figure 2: Flowchart of the computational pipeline.

This pipeline enabled our team to explore different validation metrics and a wide variety of machine learning
models. As an initial investigation, we explored six machine learning model classes: Gradient Boosted Regression
trees (GBRs), Neural Networks (NNs), K-Nearest Neighbors (KN), Support Vector machines (SVs), Kernel Ridge
regression models (KRs), and Gaussian Process Regression models (GPRs). Algorithms for the six machine learning
model classes were implemented using the Python library scikit-learn.36 To compare initial model performance, LOO
cross validation was used to calculate the Root-Mean-Square Error (RMSE) and Median Absolute Deviation (MAD)
for each model. Hyperparameters were optimized for each model to minimize the MAD LOO cross validation errors.

3. RESULTS

A. MODEL SELECTION AND PREDICTIONS

A comparison of the prediction errors from the six model classes is presented in Table 1. The residuals given
by the LOO cross validation errors are non-Gaussian and the MAD is typically about half the value of the RMSE.
The difference between the MAD and RMSE is explained by the existence of large outliers in LOO cross validation
residuals. Similar results are reported by Mennitt et al.24, 25 The results in Table 1 show that the MAD and RMSE
of the LOO cross validation errors are comparable for each model class and the difference in errors is statistically
indistinguishable. Therefore, each of the model classes give an adequate fit to the available training data.

Our team discovered that using an ensemble of the models, defined as the median predicted value of the six
optimized model classes, reduces the model’s sensitivity to outliers. The ensemble model predictions appear more
physically accurate in the extrapolation regimes.

The ensemble model’s summer daytime L50 predictions are presented in Figure 3.

B. UNCERTAINTY ESTIMATES

A benefit of using an ensemble model is that it provides some measure of uncertainty when the models must
extrapolate outside their training regime. Although individual model predictions may look reasonable, they generally
provide no measure of confidence to their predictions. In contrast, the range of predictions within the ensemble
provides an estimate of the expected uncertainty of each model.
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Table 1: Fit and LOO cross validation errors for six different machine learning models.

Model Class Leave-One-Out
MAD (dBA)

Leave-One-Out
RMSE (dBA)

Fit MAD (dBA) Fit RMSE (dBA)

GBR 3.5 6.0 0.08 1.2
NN 3.7 6.3 3.4 5.7
KR 3.6 6.3 0.3 1.4
KN 3.7 6.6 0.0 1.2
GPR 3.6 6.2 2.1 4.0
SV 3.4 6.2 1.3 4.2

Figure 3: Ensemble model predictions for the A-weighted summer daytime L50 for CONUS.

The standard deviation of the ensemble model’s predictions was used as a measure of uncertainty. The variation
among ensemble members is a surrogate estimate of the accuracy for any individual model. Because our team’s
ensemble was generated from the single optimal model in each class, this uncertainty estimate quantifies the variability
due to the functional form of the model, called “structural uncertainty.” Figure 4 shows the standard deviation of
ensemble model predictions. The confidence intervals provided by the standard deviation of ensemble predictions are
similar to those generated by a GPR model, which also uses an ensemble of models, or functions.

The uncertainty estimates are useful for guiding data collection efforts. When selecting geographic sites for ad-
ditional training data, one should target areas with large uncertainty as these are the sites that will provide the most
constraint on the model predictions. Presumably these sites have geospatial features that are underrepresented by the
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sites in the training set.
The uncertainty analysis can also guide feature reduction strategies. For example, as can be seen in Figure 4,

sites with large uncertainty include areas around Iowa and Illinois, and the unusual large circular regions in western
Texas, eastern New Mexico, and eastern Montana. These circular regions correlate with a single geospatial feature: the
maximum upward radiance at night using a 69,120 meter area of analysis. Note, the geospatial feature set also includes
the maximum upward radiance at night using a 270 meter area of analysis. This suggests that the 69,120 meter area of
analysis data may not be adding any predictive power to the model while increasing the extrapolation error. In future
studies, this feature could be removed to improve model accuracy when extrapolating outside the training set.

Figure 4: Standard deviation of ensemble model predictions for the A-weighted summer daytime L50 for CONUS.

4. LEAVE-ONE-OUT AND LEAVE-FOUR-OUT VALIDATION STUDY

Four sites were selected to be removed from the training set as part of a more extensive validation study. These sites
were chosen to be unique from one another and illustrate strengths and weaknesses of the ensemble model approach.
We present the results of this validation study for two of the four sites: (1) a site at Gilmore Meadow in Acadia
National Park which is representative of the large number of national park training sites, and (2) a private home in a
residential area in Asheville, North Carolina where significant insect noise occurs during the evening hours.

Figure 5 presents a comparison of the measured versus predicted daytime spectra levels for the two aforementioned
validation sites, where the predicted levels in the left column of figures used the full training set and the predicted levels
in the right column of figures used a training set that omitted the target prediction site (i.e., LOO). Similarly, Figure 6
presents the measured versus predicted nighttime spectra levels. The results presented in Figures 5 and 6 indicate that
the model predictions are somewhat sensitive to the removal of a single training site as LOO predictions are not as close
to the measured values as full model predictions. The results shown for these two validation sites are representative of
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the results from all four validation sites.
Note, the NNs for all four sites are the only model that struggled to fit the measured data when the full training data

set was used. This is likely because the NNs were very shallow (to prevent overfitting). The median ensemble LOO
predictions were fairly stable and resilient to abrupt or drastic changes in one or two individual models’ predictions.
For example, at the Acadia National Park site, the KN algorithm tended to underpredict and the NN tended to over-
predict, but the ensemble did a fairly good job of matching the measured values. However, there are some exceptions
to the accuracy of the ensemble LOO predictions. In particular, none of the models were able to accurately predict
the high-frequency daytime levels at the site in Acadia National Park or high-frequency nighttime levels at the site in
Asheville. Our team speculates that the discrepancy in LOO model predictions and measured values in Asheville and
Acadia is due to insect noise. It is possible that the geospatial data is insufficient to account for insect noise. It is also
possible that the training data do not include sufficient examples of insect noise.

Figure 5: Daytime predictions and measured levels at the first two chosen validation sites as a function of fre-
quency. Plots on the left show daytime model predictions when the complete training data set is used. Plots on the
right are similar, but were created from predictions using a leave-one-out training data set in which all models were
trained using the complete training data set, excluding the site of interest.

Figure 7 presents a comparison of the measured versus predicted daytime and nighttime spectra levels for the
Gilmore Meadow and Asheville validations sites, where the predicted levels used a training set that omitted all four
validation sites (i.e., leave-four-out). Note that the leave-four-out and LOO predictions are very similar. In both
the leave-four-out and LOO plots, the GBR model has a tendency to predict values which oscillate as a function of
frequency. This is more pronounced in the leave-four-out analysis and could be due to the propensity of decision
tree-type models to overfit the training data. The ensemble, however, does not have this characteristic.
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Figure 6: Nighttime predictions and measured levels at the first two chosen validation sites as a function of
frequency. Plots on the left show nighttime model predictions when the complete training data set is used. Plots on
the right are similar, but were created from predictions using a leave-one-out training data set in which all models
were trained using the complete training data set, excluding the site of interest.
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Figure 7: Plots on the left and right show daytime and nighttime model predictions respectively for the first two
validation sites when the four validation sites were removed from the training data set. The plots show the predicted
and measured levels at the four chosen validation sites as a function of frequency.
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5. CONCLUSION AND FUTURE WORK

Our team used a computational pipeline to facilitate the development of models from six different machine learning
algorithms: gradient boosted regression trees, neural networks, k-nearest neighbors, support vector machines, kernel
ridge regression models, and Gaussian process regression models. The six model classes were combined into an
ensemble of machine learning models that made predictions of ambient sound levels and corresponding uncertainty
estimates for sites within the contiguous United States. Our team’s proof-of-concept study used the standard deviation
of the ensemble predictions for the summer daytime L50 levels throughout the contiguous United States. Additionally,
our team performed a leave-one-out and leave-four-out validation study that included spectral predictions.

Beyond estimating model accuracy, there are several advantages for using an ensemble model. Our team found
that the ensemble predictions are more robust in extrapolation regions. The uncertainty measures gave an estimate of
the model accuracy and can guide future data collection and feature reduction strategies.

This study motivates several future research directions. Our team’s ensemble model quantified “structural uncer-
tainty,” i.e., uncertainty due to the functional form of the model. More extensive ensembles could be generated to
account for other sources of uncertainty. In this regard, the uncertainty estimates reported here are conservative.

Soundscape modeling is an important acoustical question with potentially broad applications. The limitations of
the available data, however, demand sophisticated uncertainty quantification tools in order to assess model transfer-
ability and improve predictive performance away from the training set. Uncertainty quantification methods will play
an important role in guiding future data collection, feature reduction, and model selection.
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