
Adaptation in Enzyme Networks: Searching for Minimal Mechanisms

Merrill E. Asp

A senior thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Mark K. Transtrum, Advisor

Department of Physics and Astronomy

Brigham Young University

April 2016

Copyright © 2016 Merrill E. Asp

All Rights Reserved

ABSTRACT

Adaptation in Enzyme Networks: Searching for Minimal Mechanisms

Merrill E. Asp
Department of Physics and Astronomy, BYU

Bachelor of Science

Adaptation is an important biological function that can be achieved through networks of en-
zyme reactions. These networks can be modeled by systems of coupled differential equations.
There has been recent interest in identifying what aspect of a network allows it to achieve adapta-
tion. We ask what design principles are necessary for a network to adapt to an external stimulus.
We use an information geometric approach that begins with a fully connected network and uses
automated model reduction to remove unnecessary combinations of components, effectively con-
structing and tuning the network to the simplest form that still can achieve adaptation. We interpret
the simplified network and combinations of parameters that arise in our model reduction to identify
minimal mechanisms of adaptation in enzyme networks, and we consider the applications of these
methods to other fields.

Keywords: Enzyme network, model reduction, adaptation, systems biology, information geometry,
manifold boundary approximation method

ACKNOWLEDGMENTS

I would like to acknowledge the help of my wife Chelsea for her support and interest in my

research, as well as Dane Bjork, who wrote code that greatly aided the programming necessary

for this project. The computational work done here could not have occurred without the generous

resources provided by the BYU Physics Department for my research group. Thanks also to all

those who took the time to review drafts of this thesis, which greatly improved the structure and

flow of the ideas presented here.

Contents

Table of Contents iv

List of Figures vi

1 Introduction 1
1.1 Motivation . 1
1.2 Enzyme Networks and Systems Biology . 3
1.3 Adaptation . 4

2 Methods 7
2.1 The Fully-Connected Network . 7
2.2 The Model Manifold . 11
2.3 Model Reduction . 14

2.3.1 Initial Points . 16
2.3.2 Calculating the Geodesic . 16
2.3.3 Identifying Boundaries . 18
2.3.4 Interpreting Boundaries . 18
2.3.5 Simplifying the Model . 21
2.3.6 Fitting the New Model . 22

2.4 Manually Discerning Limits . 23
2.5 Automating Model Reduction . 25

2.5.1 Primary Functions . 27
2.5.2 Effectiveness of Automation . 30

3 Results 32
3.1 Reduced Networks and Future Research . 32
3.2 Conclusion . 37

Appendix A Limits of the Michaelis-Menten Equations 39
A.0.1 Differential Limits . 40
A.0.2 Saturation Limits . 42
A.0.3 Rescaling Limits . 44

iv

CONTENTS v

Appendix B Code 46

Appendix C Network Definitions 78

Bibliography 79

Index 80

List of Figures

1.1 The parameters that define an adaptation curve. 5

1.2 Two simple networks shown to achieve adaptation. 6

2.1 Diagram of the three-node fully connected network with special case. 8

2.2 Diagram contrasting alternative methods of finding minimal networks. 10

2.3 A time evolution that exhibits adaptation. 12

2.4 An example model manifold . 13

2.5 Model reduction as finding model manifold boundaries 15

2.6 Parameter velocities along a geodesic. 19

2.7 Parameter values along a geodesic. 20

2.8 Flowchart for the automated model reduction code. 26

2.9 Probabilities of the number of initial automatic reductions 31

3.1 Network diagram for a reduced network . 33

3.2 Sampling of adaptation curves produced by a reduced network 36

vi

List of Tables

2.1 Common parameter limits for Michaelis-Menten dynamic equations. 22

vii

Chapter 1

Introduction

1.1 Motivation

Enzyme interactions drive many interesting biological behaviors, and are thus scientifically valu-

able to understand (Ma et al. 2009). Enzyme reactions are a fundamental building block of bio-

chemical pathways, and are among the most basic elements of the chemistry of life. The organiza-

tions of enzyme reactions determine in a non-trivial way what higher-level behaviors will emerge

in the organism (Alon 2006). Networks of such reactions are studied in many contexts includ-

ing gene transcription, metabolism, neurology, and cancer research. Continuing progress in these

fields requires a strong understanding of how enzyme networks behave the way they do, and what

fundamental aspects of a network are behind its specific behaviors.

To discover what minimal mechanisms are at play behind a certain behavior, we can first ab-

stract a model of the behavior, often in the form of a network, with individual parts influencing

each other in specific ways. From these networks we then seek equivalent, simplified networks

in order to get a closer understanding of the behaviors they achieve. The function of a network

can be understood on different scales of detail, from a black box interpretation of the network’s

1

1.1 Motivation 2

overall function to a detailed account of the individual molecular reactions that take place. A

highly detailed, or fine-grained, model of an enzyme network is often too complex to provide a

workable explanation for how a certain behavior occurs. However, some specific groups of de-

tails can be ignored or approximated, such as chemical parameters that do not individually impact

overall behavior greatly, or subnetworks that have a single function. If these simplifications can be

performed without losing the network’s overall behavior, something valuable has occurred: The

simpler model more clearly explains why a network performs its behavior, and is thus more useful

for answering the questions of biological research, such as which network elements need to be cor-

rected in case of an overall network malfunction. This application of model reduction is especially

applicable to cancer research.

The question of how to properly simplify a network so that it still exhibits its desired behavior

is generally difficult and has historically depended on experts applying hard-won intuition. The

inherent nonlinearities of network behavior make straightforward attempts at model simplification

difficult. One can always proceed on a case-by-case basis, but at the cost of time and general-

ity. The method of discovering the principles that underlie one network behavior can be entirely

unrelated to the methods necessary for another.

We show that identifying minimal mechanisms for the behavior of adaptation can be done

systematically and in a way that scales well with system size, using information geometry to do so.

We consider what is meant by the term "minimal mechanism," and clarify an objective definition

in terms of our methods. Our results agree with and shed light on previous research and point out

a way to study other behaviors and networks in other contexts.

1.2 Enzyme Networks and Systems Biology 3

1.2 Enzyme Networks and Systems Biology

Enzyme networks are graphically represented by nodes and edges, such as those in Fig. 1.2. Each

node represents a fixed concentration of enzyme that can be either active or inactive in varying

proportions, from 0% active to 100% active. Each edge is directional, and signals one node to

either increase (promote) or decrease (inhibit) the fraction of active enzyme in another node. The

more active enzyme is present in a node, the more edges proceeding from it will promote or inhibit

other nodes.

We model nodes as dynamic variables in a system of coupled ordinary differential equations.

These variables measure the fraction of active enzyme as a number from zero to one. Each edge is

modeled as a term in one of the differential equations. The edges (or interactions between nodes)

obey Michaelis-Menten rate equations, in accordance with other studies into enzyme network be-

haviors (Ma et al. 2009). The term representing one node (X1) promoting another (X2) is

dX2

dt
=C12

X1(1−X2)

1−X2 +K12
, (1.1)

and the term for one node (X1) inhibiting another (X2) is

dX2

dt
=−C′12

X1X2

X2 +K′12
, (1.2)

where we see each edge being characterized by two non-negative parameters, a strength parameter

C and a shape parameter K. In the literature, these constants are called the catalytic rate constants

and the Michaelis-Menten constants, respectively. Significantly, both network topology (how the

network is connected) and these parameter values determine the behavior of the network. Because

choice of parameters affects network behavior in a non-trivial way, the function of a network is an

emergent property of both parameter values and network topology. This behavior can be calculated

by numerically solving the coupled ordinary differential equations that model it.

The study of quantitative models of emergent biological behavior in networks is called systems

biology (Alon 2006). Systems biology seeks to answer the question of what solutions nature can

1.3 Adaptation 4

produce to solve specific biological problems. To begin to tackle this question, a researcher must

choose where to first look for the decisive aspects of a network that define its overall behavior.

Literature on systems biology focuses on network topology, or the way the nodes of the network

are connected, to explain how a network behaves a certain way. This is understandable because

diagrams of network topology, such as the ones in Fig. 1.2, seem to hold intuitive explanations for

how the individual enzyme reactions combine into a single output. However, it is already well-

known that the network topology does not fully specify the network’s final behavior, or even the

function of the network’s edges (Alon 2006). Often, specific equations with finely tuned param-

eters are necessary to fully specify a network. This disconnect between information and intuition

motivates a different search for where the decisive mechanisms of network behaviors exist.

We intend to show that fundamental biological networks that achieve certain functions can be

found and understood with a method of systematic model reduction described in Section 2.

1.3 Adaptation

We choose a specific behavior of enzyme networks to investigate. Adaptation, or the ability for a

system to respond to a stimulus and afterwards return to equilibrium, is a significant behavior of

enzyme networks (Artyukhin et al. 2009). This is the behavior we seek to understand in this thesis.

Adaptation curves can be characterized by four parameters, as shown in Fig. 1.1.

We model adaptation as arising from a disturbance in a fully inactive enzyme network. This

disturbance is a steady promotion of an input node that begins at a time t = 0. We choose an output

node to exhibit the desired behavior. Any other nodes perform secondary tasks in order to translate

the stimulus in the input node into adaptation in the output node. A typical diagram of this setup is

shown in Fig 2.1b. There is general academic consensus that a network requires at least three nodes

to achieve adaptation (Artyukhin et al. 2009). We thus narrow our search for minimal mechanisms

1.3 Adaptation 5

P-1

S

tw

ta

Adaptation

Input Stimulus

Figure 1.1 A typical adaptation curve (beginning from complete inactivity) with the
parameters that describe its shape. This curve exhibits adaptation to the input stimulus that
begins at time t = 0. The difference between the initial concentration and the maximum
response is called the sensitivity (S). The inverse of the difference between the initial
concentration and the final equilibrium is called the precision (P). There are also two
characteristic times, the activation time (ta), which elapses between the initial response
and the maximum reponse, and the time width (tw), which characterizes the width of the
curve. Adapted from Ma et al. 2009.

1.3 Adaptation 6

I

O

I

O

a)
b)

Figure 1.2 Two simple networks shown to achieve adaptation in previous research (Ma
et al. 2009). Diagram (a) is an example of an incoherent feed-forward loop, and dia-
gram (b) is an example of a negative feedback loop. Each circle represents an enzyme
concentration that can be 0% to 100% active. The networks react to a steady input stimu-
lus (I) that begins at a time t = 0, and the enzyme concentration in the output node (O) is
checked for adaptive behavior. Each edge with an arrow represents active enzyme activat-
ing another node (promotion). Each edge with a bar represents active enzyme deactivating
another node (inhibition).

of adaptation to three node networks, with one input, one output, and one secondary node.

Systems biology literature identifies two classes of network topologies that minimally achieve

biological adaptation through a brute force search of three-node, three-edge networks (Ma et al.

2009). They are called the incoherent feed-forward loop and the negative feedback loop (see

Fig. 1.2). These two classes of topologies are believed to be fundamental to adaptation because

in a wider search of all three-node networks (with any number of edges), no adaptive network

was found that does not contain one or the other. Although such methods can effectively identify

simple networks that achieve adaptation, they are limited in their scope to very small networks, as

will be elaborated on in Section 2.1. They also require extensive searches of an infinite parameter

space, which can be difficult to declare exhaustive.

We seek a general method for relating behavior to mechanism that scales better with system

size and provides insight into the way the network achieves adaptation.

Chapter 2

Methods

2.1 The Fully-Connected Network

The fully-connected network (FCN) contains three nodes and all possible activation and inhibition

edges between the nodes, including inhibition from the environment (see Fig. 2.1a). Although this

particular network is probably not present in nature and is certainly not minimal for adaptation,

studying it can reveal information about minimal mechanisms and the relationships between them.

This is because all three-node networks are contained in the FCN as special cases (as illustrated in

Fig. 2.1). Since each edge of an enzyme network is modeled by a term in a differential equation,

and each such term has a strength parameter, setting the strength parameter to zero is equivalent

to removing the edge. The behavior of all three-node networks — including those that minimally

achieve adaptation — is therefore somewhere within the FCN, for the right choice of parameters.

As further elaborated on in Section 2.3, we can fit the parameters of a given network to achieve

adaptation. Performing model reduction on an FCN from many such initial sets of fitted parameters

(fitting to adaptation along the way) is a highly scalable method for finding minimal mechanisms.

An alternative method to studying the FCN is first tabulating all possible network topologies, and

7

2.1 The Fully-Connected Network 8

I

O

I

O

a)

b)

Figure 2.1 Diagram of the three-node fully connected network (a) with a special case (b),
a negative feedback network. Each circle is an enzyme concentration that can be 0% to
100% active. The networks react to a steady input stimulus (I) that begins at a time t = 0,
and the enzyme concentration in the output node (O) is checked for adaptive behavior.
Each edge with an arrow represents active enzyme activating another node (promotion).
Each edge with a bar represents active enzyme deactivating another node (inhibition).
Each edge is defined by terms as Eq. (1.1) or Eq. (1.2) in a differential equation, with
two parameters per edge. If the strength parameter in an edge of the FCN is set to zero,
the edge is effectively erased. Erasing the appropriate edges from the FCN yields any
particular three-node network, including the negative feedback network (b), which can
achieve adaptation for the correct values of the remaining parameters.

2.1 The Fully-Connected Network 9

then searching the parameter space of each such network one by one. This method has been

used by other researchers (Ma et al. 2009). However, as these researchers claim, there are 16 038

network topologies for three nodes alone, and about 500 topologies were considered candidates for

minimal networks (because they have only three edges). Each of these networks was tested with

10 000 different random parameter combinations to in order to find which networks could achieve

adaptation. On the other hand, we search only one network topology, the FCN. It contains 31

parameters (the full network definition is contained in Appendix C), and finding minimal networks

is achieved by performing model reduction repeatedly on the FCN until no more reductions can be

performed. The difference between these approaches is illustrated in Fig. 2.2. In particular, we note

the difference between the two definitions of a minimal network: the work of Ma et al. identifies

three-edge adaptive networks as minimal, since no two-edge or two-node networks can adapt at

all. The definition of a minimal network in this thesis is based on our model reduction process, and

will be explained in further detail in Subsection 2.3.6.

Each such process of reductions (described in the rest of this chapter) produces a minimal

network with no need for brute force searching an infinite parameter space or enumerating possible

network topologies. Granted, the process of model reduction must be repeated from a different set

of initial parameters to find another minimal network, but each such process yields a minimal

network, which greatly improves efficiency of computation. The number of possible network

topologies increases exponentially with number of nodes, with almost 500 000 possible four-node

networks. In constrast, the number of parameters in an FCN increases only quadratically, with 57

parameters describing a four-node FCN.

Because of the inherent scalability of this method, model reduction from an FCN could be used

to find minimal mechanisms that achieve behaviors more complex than adaptation that require

more than three nodes.

2.1 The Fully-Connected Network 10

Minimal Networks

Adaptation?

YES NO

0.1, 1.2, 3.5, 2.0, ...
0.1, 1.2, 3.5, 2.0, ...

0.1, 1.2, 3.5, 2.0, ...
0.1, 1.2, 3.5, 2.0, ...

2.1, 1.6, 8.2, 3.7, 9.5, 0.01, ...
2.1, 1.6, 8.2, 3.7, 9.5, 0.01, ...

2.1, 1.6, 8.2, 3.7, 9.5, 0.01, ...
2.1, 1.6, 8.2, 3.7, 9.5, 0.01, ...

Automatic

MBAM

Manual

MBAM

Minimal?
NO

YES

1 fully-connected topology

10 000 x (6 parameters),

randomly chosen

≈ 500 three-edge topologies

3000 x (31 parameters),

fitted to adaptation

0.1, 1.2, 3.5, 2.0, ... 0.1, 0, 1.2, 0, 3.5, 2.0, ...

a) b)

1)

2)

3)

Figure 2.2 Alternative methods for finding minimal adaptive networks. This diagram
contrasts the method of Ma et al. (a) with the method of this research (b), the manifold
boundary approximation method (MBAM) from a fully-connected network (FCN). In
(1), one network topology is chosen from about 500 choices (each which have only three
edges). To this network is applied a group of 10 000 random parameter sets, each of
which mathematically define the network’s edges. In (2), each such set of parameters is
used to find the output of the network, which may or may not exhibit adaptation. If the
network is adaptive, it has been identified as a minimal adaptive network. In (3), a set
of parameters for which the FCN is already adaptive is used to begin model reduction
(explained in Section 2.3). Each such set of parameters can eventually produce a minimal
adaptive network.

2.2 The Model Manifold 11

2.2 The Model Manifold

Enzyme network behaviors can be understood in terms of input and output. For our input, we

choose a set of parameters to fill in our network definition and make it numerically explicit. Then

we computationally solve the coupled differential equations of our network. This produces the

network’s output: a time evolution of the enzyme concentrations in the output node, such as that

shown in Fig. 2.3. For our analysis, an enzyme network is a machine that takes in parameter values

and outputs time evolutions. The model manifold is a means of representing all possible mappings

from input to output.

The finite number of parameter values for a given model can be considered a vector. This

vector indicates a position in parameter space. When we list the network’s corresponding output

at a finite number of time points, we obtain an output vector in data space. If we sweep through

all parameter space vectors, we can sweep through all possible associated outputs, and we have

traced out a smooth surface — a manifold — in data space. This manifold is called the model

manifold, and it therefore contains all possible outputs of an enzyme network. This mapping from

input (parameters) to output (time evolution) is elaborated on in Fig. 2.4, where we show a model

manifold that can be visualized.

A specific network behavior (time evolution) is represented by a single point in data space. We

create a toy function (see Fig. 2.3) to represent a typical adaptation curve. We sample 250 time

points of this toy function, and we now have a vector in data space, which we call the adapta-

tion point. Networks that achieve adaptation are represented by model manifolds that contain the

adaptation point somewhere on their surface. This is to say that for some parameter values, that

network can output an adaptation curve. It is possible that a given output (represented as a data

space vector) can have many parameter space vectors that map to it or very close to it. The vectors

in parameter space that map to the adaptation point indicate what parameter values such a model

must have in order for adaptation to be achieved.

2.2 The Model Manifold 12

0 5 10 15 20

Time (dimensionless)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
a
ct
io
n
 o
f
a
ct
iv
e
 e
n
zy

m
e

Figure 2.3 An enzyme network time evolution that exhibits adaptation. When the equa-
tions that define an enzyme network are solved, a function is produced that shows how
the concetration of active enzyme in the output node changes with time. If that output
resembles the function pictured, we say that the network is adaptive. This pictured curve
is a toy function representing an ideal adaptation. Explicitly, the function is given by
1
2e−0.2(t−5)2

+ 1
4(1− e−t)5, although actual time evolutions tend not to have simple ana-

lytic forms.

2.2 The Model Manifold 13

010901-3 Transtrum et al. J. Chem. Phys. 143, 010901 (2015)

FIG. 2. The model manifold: a simple model16,17 of an enzyme-catalyzed
reaction can be expressed as a rational function in substrate concentration (u)
with four parameters (θ) predicting the reaction velocity (y) (inset, top). By
varying θ, the model can predict a variety of behaviors y as a function of u
(top). The model manifold is constructed by collecting all possible predictions
of the model at specific values of u (red vertical lines at u = 0.1,2.0,4.0).
To visualize the manifold, we take a two-dimensional cross section of the
four dimensional manifold by choosing θ1 and θ2 to best fit the experimental
data. Varying θ3 and θ4 then maps out a two-dimensional surface of possible
values in three-dimensional data space (bottom). Each curve in the top figure
corresponds to a point of the same color on the model manifold (bottom); the
red crosses on top are data corresponding to the red dot below.

maximizing the log likelihood is equivalent to minimizing the
sum of squared residuals, sometimes referred to as the cost or
χ2 function,

χ2(θ) =

i

r2
i =

i

(di − y(ui, θ))2. (4)

A sum of squares is reminiscent of a Euclidean distance.
Fitting a model to data by least squares is therefore minimizing
a distance in data space between the observed data and the
model. Distance in data space measures the quality of a fit
to experimental data (red point in Figure 2). Distance on the
manifold is induced by, i.e., is the same as, the correspond-
ing distance in data space and is measured using the metric
tensor,11,18

gµν =

i

∂ y(ui, θ)
∂θµ

∂ y(ui, θ)
∂θν

= (JT J)µν, (5)

where Jiµ = ∂ y(ui, θ)/∂θµ is the Jacobian matrix of partial
derivatives. This metric tensor is precisely the well-known FIM
defined below, specialized to our least-squares problem. The
FIM plays a key role in optimal experimental design19 and
the selection of a particular kind of non-informative Bayesian
prior.20 The matrix in Eq. (5) is also equal to the least squares

Hessian matrix,3 measuring sensitivity of the fit to changes
in parameters using second derivatives of 1/2χ2 from Eq. (4),
evaluated where the data point d is taken to be perfectly pre-
dicted by y(θ). On the manifold, the least-squares distance
between two alternate models is a measure of identifiability—
how difficult it would be to distinguish nearby points on the
manifold through their predictions.

This general approach to identifiability allows us to discuss
multiparameter models for systems with non-Gaussian distri-
butions or error estimates that vary with parameters. This can
include the extreme case of models (like the Ising model9)
that predict entire probability distributions. For the purpose of
modeling, the output of our model is a probability distribution
for x, the outcome of an experiment. A parameterized space of
models is thus defined by P(x |θ). To define a geometry on this
space, we must define a measure of how distinct two points θ1
and θ2 in parameter space are, based on their predictions.21

Imagine getting a sequence of assumed independent data
x1, x2, . . . with the task of inferring the model which produced
them. The likelihood that model θ would have produced these
data is given by

P(x1, x2, . . . |θ) =

i

P(xi |θ) = exp *,

i

log P(xi |θ)+- . (6)

In maximum likelihood estimation, our goal is simply to
find the parameter set θ which maximizes this likelihood. It
is useful to talk about log P(x |θ), the log-likelihood, as this
is the unique measure which is additive for independent data
points. The familiar Shannon entropy of a model’s predictions
x is given by minus the expectation value of the log-likelihood,

S(θ) = −

x

P(x |θ) log P(x |θ). (7)

The Shannon entropy is the average likelihood of the data being
generated from the model. We can define an analogous quantity
that measures the likelihood that model θ2 would produce
typical data from θ1,

x

P(x |θ1) log P(x |θ2). (8)

The Kullback-Leibler divergence between θ1 and θ2 measures
how more likely θ1 is to produce typical data from θ1 than θ2
would be,

DKL(θ1||θ2) =

x

P(x |θ1)
�

log P(x |θ1) − log P(x |θ2)
�
. (9)

Thus, DKL is an intrinsic measure of how difficult distinguish-
ing these two models will be from their data.

The KL divergence does not satisfy the mathematical
requirements of a distance measure. It is asymmetric and does
not satisfy even a weak triangle inequality: in some cases,
DKL(θ1||θ3) > DKL(θ1||θ2) + DKL(θ2||θ3). However, for models
whose parameters θ and θ + δθ are quite close to one another,
the leading terms are symmetric and can be written as

DKL(θ ||θ + δθ) = gµνδθµδθν + Oδθ3, (10)

where gµν is the FIM, which can be written as

gµν(Pθ) = −

x

Pθ(x)
∂

∂θµ
∂

∂θν
log Pθ(x), (11)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.187.192.217 On: Wed, 01 Jul 2015 21:03:19

Figure 2.4 An example model manifold, showing the mapping from parameter space to
data space. The function y(u), which models enzyme reaction velocities, is written with
its parameters θi. A target set of data points (red crosses) is graphed along with several
curves representing y(u) for different values of θ3 and θ4, with the other parameters held
fixed. For one set of parameters, we obtain the blue curve, for another the green, and for
another the yellow. We sample the y values of these curves at u = 0.1,2, and 4, and each
curve is mapped to a point on the smooth model manifold. Each axis of the data space
in which the manifold is embedded corresponds to a different u-value, so each curve is
mapped to a point in this three-dimensional data space. The blue curve is mapped to the
blue dot, the yellow curve to the yellow dot, and so on, with the red dot representing the
set of target data points (red crosses). The rest of the manifold is obtained by moving
through all possible values of θ3 and θ4, sampling the y values, and sweeping out the
surface in data space. Figure used with permission (Transtrum et al. 2015).

2.3 Model Reduction 14

The number of dimensions in parameter space is the number of parameters in the network

(N), and the number of dimensions in data space is the number of time points (M) chosen for the

numerical output of the network. The model manifold is thus an N-dimensional surface embedded

in an M-dimensional space. This manifold in its entirety is difficult to work with and impossible

to visualize directly, since we choose a 31-dimensional manifold (31 parameters for the three-

node FCN) embedded in a 250-dimensional data space (250 time points for the toy adaptation

function). However, it is possible to find within this model manifold simpler models that still

achieve adaptation.

2.3 Model Reduction

Model reduction is the process of finding a simplified, approximate model that still achieves a

desired behavior. We perform model reduction by reducing the number of parameters one by one.

The number of parameters required to characterize an adaptation curve (four, see Fig. 1.1) gives

an estimate for the number of parameters the simplest adaptive network should have. We seek to

reduce the FCN from its 31 parameters to about four in order to find the simplest mechanisms for

adaptation.

We use the manifold boundary approximation method (MBAM) (Transtrum & Qiu 2014)

to systematically reduce the FCN. This method relies on the fact that the boundaries of an N-

dimensional model manifold are themselves (N−1)-dimensional model manifolds. These bound-

aries thus represent models with one fewer parameter. We therefore seek a trajectory (we choose

a geodesic, as explained in Subsection 2.3.2) across the manifold that can take us to a boundary,

and then the boundaries of that boundary, over and over. Hopping across the model manifold to

regions of lower and lower dimension is the essence of the process of model reduction, sketched

in Fig 2.5.

2.3 Model Reduction 15

Iterating this process for the exponential example reveals
that all boundaries of the model manifold correspond to
physically simple limits. They include λμ → 0, so that
Ae−λt → A as we have seen. Additionally, λμ → ∞, so that
Ae−λt → 0 for t > 0, as well as Aμ; λμ → Aν; λν, so that two
terms merge together. Repeated evaluation of these limits
yields a reduced model of the form ~yðt; ~A; ~λ; ~BÞ ¼P

N0
μ

~Aμ expð−~λμtÞ þ ~B, where N0 < N and we have
denoted the reduced parameters with a tilde. The number
of terms in the reduced model will depend on the time
points tm and the desired fidelity to the original model’s
predictions.
Although the boundary is identified using a linear

combination of parameters, evaluating the limit in the
model can identify nonlinear combinations in the reduced
model. For example, two parmeters may become infinite in
such a way that only their ratio is retained in the final
model. The combination depends on the functional form of
the model so that the reduction is customized to the specific
system (see examples in the Supplemental Material [41]).
It appears to be a general feature that these limiting
approximations have simple physical intepretations, such
as well-separated time scales in the exponential model.
Because inferred parameters often have large uncertain-

ties, knowing true parameters as a starting point for
geodesics is often unrealistic. Large uncertainties imply
that many different parameter values lead to the same
model behavior, i.e., occupy a small region on the model
manifold. This “compression” of large regions of parameter

space into indistinguishable predictions is analogous to
universal behavior in other systems, such as near critical
points or phase transitions [17]. Model reduction reflects
this property by compressing the parameter space along the
geodesic into a few, relevant parameter combinations.
Inspecting Fig. 1, all of the parameter values that lie along
a geodesic path map to the same point on the boundary.
Similarly, points on other nearby geodesic paths map to the
same boundary but with slightly different parameter values.
Thus, by construction, the large parameter uncertainties are
compressed along the geodesic into the relevant parameters
of the reduced model. Repeating the model reduction
process with different initial parameter values but with
similar model predictions therefore leads to the same
reduced model. We explicitly check this argument with
the models considered here for several initial parameter
values with statistically equivalent behaviors. We find the
final reduced model is indeed robust to the starting point.
We now return to the complicated EGFR model. This

model already employs the most “obvious” approxima-
tions, using Michaelis-Menten reactions and ignoring
spatial variations in concentrations and flucutations in
particle number. That is, the model already employs
quasi-steady state approximations, mean-field approxima-
tions, and a type of thermodynamic limit. It also excludes
many other details that a biological expert would consider
irrelevant (a comprehensive model of the same system
involves 322 chemical species and 211 reactions [43]). In
spite of these approximations, most of the parameters in the
model remain irrelevant when fit to data, as illustrated by
the FIM eigenvalues in Fig. 3, but it is not immediately
clear what else can be removed.
Applying the MBAM further simplifies the model from

48 to 12 parameters and from 15 to 6 independent differ-
ential equations as summarized in Fig. 3. These approx-
imations are more diverse than those in the exponential

FIG. 2 (color online). Approximating the manifold by its
boundary. A high-dimensional, bounded manifold may be
approximated by a low-dimensional manifold. Parameter degrees
of freedom are systematically removed, one at a time, by
approximating the full manifold by its boundary. After several
approximations, the reduced model is represented by a hyper-
corner of the original manifold that preserves most of the original
model’s behavior.

FIG. 1 (color online). Identifying the boundary limit. For the
exponential model in the text with eight parameters, initially,
the least sensitive parameter combination involves many param-
eters and is difficult to remove (inset, top left). By following a
geodesic to the manifold boundary (solid line), the combination
rotates to reveal a limiting behavior; here, only one parameter
(an exponential rate) becomes zero (inset, bottom left). As the
boundary is approached, one eigenvalue of the FIM approaches
zero (inset, right). Once the smallest eigenvalue becomes well
separated from the other eigenvalues, the limiting behavior
becomes apparent. This limit is largely independent of the starting
point; nearby parameter values all map to the same simplified
model (dashed lines).

PRL 113, 098701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

29 AUGUST 2014

098701-3

Figure 2.5 A diagram of model reduction cast as finding manifold boundaries. From a
point on the manifold determined by initial parameters, a geodesic curve can be drawn
along the N-dimensional manifold (N-parameter model) to its boundary (an (N − 1)-
parameter model). Within this boundary, another boundary can be found, recursively
finding simplified models with one fewer parameter each step. As long as this process
stays within the vicinity of the adaptation point, all of the reduced models will be able to
achieve adaptation. Figure used with permission (Transtrum & Qiu 2014).

The full process of MBAM can be expressed algorithmically, as follows:

1. Gather a large sampling of initial parameter values that achieve adaptation in the FCN.

2. From an initial point, calculate a geodesic across the model manifold that stays near the adaptation point.

3. Identify when the geodesic is approaching a boundary.

4. Interpret the boundary as a limit of the model parameters.

5. Apply that limit to the equations of the model to create a simplified model.

6. Find a parameter vector that achieves adaptation in the new model.

7. With that parameter vector as jumping-off point, repeat the process from step 2 until the
simplified model can no longer achieve adaptation.

This process terminates in a maximally simplified model with as few parameters as possible

to achieve a desired behavior. If it is then repeated for each of the initial points in the large

sampling, we can be confident that a thorough search for minimal networks has been accomplished.

2.3 Model Reduction 16

This overall process is scalable, deterministic, and general for many complex systems that can

be modeled with coupled ordinary differential equations. We will interpret the minimal models

produced through MBAM to identify the fundamental mechanisms of adaptation in Section 3. For

now, we approach each step of the overall process in more detail.

2.3.1 Initial Points

Because the coupled equations of the FCN are non-linear, we must use a specialized method to

find parameter values that can achieve adaptation. The Levenberg-Marquardt algorithm is used,

from a large number of randomly distributed points in parameter space, to robustly converge on

parameter values that achieve adaptation in the FCN. The algorithm was designed to solve just such

a parameter optimization problem as this one, for which there is a target function that a parameter-

based model is to achieve (Marquardt 1963). We choose our target function to be the toy function

chosen previously (see Fig. 2.3), although any function can be used in principle. Roughly one third

of the random points converge to succesful initial points that produce output almost identical to the

toy funtion. Model reduction can begin from these points.

2.3.2 Calculating the Geodesic

An initial point in parameter space corresponds to a particular point on the model manifold. From

this point, we calculate a geodesic across the model manifold. Geodesics are paths of least distance

on a curved surface, and can thus be used to approach boundaries as quickly as possible, without

the meandering that a non-geodesic path may take across the manifold.

A geodesic is determined by the second-order differential equation

d2xk

ds2 +Γ
k
i j

dxi

ds
dx j

ds
= 0 (2.1)

in the parameter space position xi (the i is a superscript, not an exponent, which labels the compo-

2.3 Model Reduction 17

nent of the vector x) with s a distance parameter in data space along the geodesic and the Christoffel

symbol Γk
i j containing curvature information about the mapping between parameter space and data

space. This equation can be reliably solved by a standard numerical differential equation solver.

The calculation of a geodesic reveals a path in data space by determining the path in parameter

space that corresponds to it. Because the geodesic equation Eq. (2.1) is second order, the path of a

geodesic is fully specified by an initial point and an initial direction in parameter space. We have

our initial point, so we now ask which initial direction should be chosen in order to reliably find a

useful boundary.

A natural choice for this direction comes from the singular value decomposition of the Jacobian

matrix that describes the mapping from N-dimensional parameter space to M-dimensional data

space at our initial point (Transtrum & Qiu 2014). Essentially, the Jacobian matrix J contains local

information that maps a small change in parameter space, dxi, to the corresponding small change

in data space, dyi (we now use subscripts to label different vectors). This relation can be written as

J dxi = dyi. (2.2)

The singular value decomposition of J can be written as

Jvi = σiui, (2.3)

where vi is one of N unit vectors in RN , ui is one of N unit vectors in RM, and the σi are non-

negative numbers called the singular values. Comparing Eq. (2.2) to Eq. (2.3), we see that vi

corresponds to a direction in parameter space that maps to the direction ui in data space, scaled by

a factor of σi. Typical values of σN , the smallest σi, can be as small as 10−14 in the FCN. When

we calculate the singular value decomposition of J and thus find the vector vN corresponding to

this smallest singular value, we have found a direction in parameter space that causes an almost

imperceptible change in data space (the output of our model). This is the parameter space direction

in which we choose to start our geodesic, so that we do not stray far from our desired output.

2.3 Model Reduction 18

Unfortunately, the calculation of the vector vN is not unique, and may yield either vN or −vN ,

so we must have one extra criterion for choosing whether to pursue the vN direction forwards or

backwards. We choose the direction that causes the parameter velocities to initially increase. The

motivation for this criterion is described in the next subsection.

2.3.3 Identifying Boundaries

In order to determine if a geodesic has run sufficiently close into a boundary on the model manifold

to be able to discern what the boundary is, we may track the change in parameter values as we move

along the geodesic. As the geodesic comes steadily closer to a boundary that is defined by some

limit in the parameter values, the parameter values themselves will asymptotically approach that

limit (see Fig 2.6). For example, if a manifold boundary is defined by the parameters C13 and K13

approaching infinity, as the geodesic approaches the boundary in data space, the parameters will

skyrocket in magnitude as they race to keep up. This is evident in the parameter velocities, or the

rate of change of the parameters with respect to motion along the geodesic. These velocities grow

very large when a manifold boundary begins to be approached.

A significant increase in parameter velocity (typically 25 times larger than the initial velocity)

thus signals when a boundary has been reached. This also gives us our desired criterion for choos-

ing either vN or−vN for our initial geodesic direction: choose the direction that initially causes the

parameter velocity to increase rather than decrease, which generally indicates continued parameter

acceleration afterwards.

2.3.4 Interpreting Boundaries

It is helpful at this point to reconsider why locating and interpreting boundaries of the model

manifold is a method of model reduction. The FCN is represented by a 31-dimensional model

manifold, so the boundaries of this manifold are 30-dimensional — just as the boundary of a two-

2.3 Model Reduction 19

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Distance along geodesic

0

2

4

6

8

Lo
g
(P
a
ra
m
e
te
r
V
e
lo
ci
ti
e
s)

Parameter Velocities Along Geodesic

C13

K13

Figure 2.6 Semilogarithmic plot of parameter velocities along a geodesic, with one curve
for each parameter. This model has 14 parameters, but only the curves for the two param-
eters C13 and K13 are labelled, since the other parameter velocities are indistinguishable
from each other. This clearly indicates the limit C13,K13→∞. The significant increase in
overall velocity also indicates that the boundary corresponding to this limit is being ap-
proached on the model manifold. Parameter values can also be considered for discerning
a limit. Compare Fig. 2.7.

2.3 Model Reduction 20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Distance along geodesic

−6

−4

−2

0

2

4

6

8

Lo
g
(P

a
ra

m
e
te

r
V
a
lu

e
s)

Parameter Values Along Geodesic

C13

K13

Figure 2.7 Semilogarithmic plot of parameter values along the same geodesic as used in
Fig. 2.6, with one curve for each parameter. This model has 14 parameters, but only the
curves for the two relevant parameters C13 and K13 are labelled. This indicates the limit
C13,K13→ ∞, where the steady ratio between the two parameters (a steady difference on
this plot) is visible. Parameter velocity plots such as those in Fig. 2.6 are often used to
discern parameter limits, since they contain the same limit information as parameter value
plots in a clearer form.

2.3 Model Reduction 21

dimensional manifold (such as a disk) is one-dimensional (the circle bounding the disk). These

boundaries are smooth, finite manifolds themselves, but of a lower dimension. They also represent

enzyme networks that achieve adaptation, but that do so with one fewer parameter. Fortunately, the

models that these simpler manifolds represent can be found from the FCN by interpreting a given

boundary, as I now explain below.

Once it is clear that our geodesic has brought us near an edge on the model manifold, we can

see how the parameters change along the geodesic. There are two particular limits that are eas-

ily discerned by looking at the parameter velocities along the geodesic, one of which is shown

in Fig. 2.6. In fact, these limits can be recognized automatically by a computer, as will be ex-

pounded upon in Section 2.5. They consist of one parameter approaching zero, or two parameters

approaching infinity at the same rate. These limits are indeed extreme parameter values, which

result in outputs of the model that cannot be exceeded for any other parameter combination. This

is why we can interpret model manifold boundaries as limits of the model parameters.

2.3.5 Simplifying the Model

When parameter limits are applied mathematically to the equations of the model, a simplified

model emerges with one fewer parameter. The two most common limits and their effects on the

terms of the model’s differential equations are tabulated in Table 2.1. We note here that the work

of Ma et al. identified these limits (called saturated and linear, respectively) in order to specify the

parameter ranges in which their classes of minimal networks (see Fig 1.2) achieve adaptation.

In general, there are many different types of limits that can be discerned from parameter veloc-

ities along a geodesic, each one producing one fewer parameter in total when applied to a model’s

differential equations. New parameters may arise that are combinations of the old parameters. The

form of the equations may also change significantly (as seen in Table 2.1). It is in these emergent

parameters and the new forms of the model’s equations that minimal mechanisms begin to reveal

2.3 Model Reduction 22

Table 2.1 Common parameter limits for Michaelis-Menten dynamic equations. As pa-
rameters in a model reach certain extreme values, their limits can be recognized, and
these limits can be applied to the model’s equations to create simpler equations, and thus
a simpler model. These limits often affect only a few terms of the full equations, so we
have included just one term to demonstrate how the model’s equations change. For these
expressions, the Xi are dynamic variables measuring the fraction of active enzyme in node
i, and all other variables are model parameters.

Parameter limit Term before limit Term after limita New parameters

K→ 0 CX1(1−X2)
1−X2+K CX1H (1−X2) None

C,K→ ∞
CX1(1−X2)

1−X2+K pX1(1−X2) p =C/K

a The function H used here is the Heaviside step function, with convention H (0) = 0.

themselves.

We note here that when an edge of the FCN is "erased," the C and K parameters of the edge are

usually combined first, and the combined parameter C/K then approaches zero, so that only one

parameter is removed at a time. In general, parameter limits either remove edges from a network,

or they fix ranges in which edge parameters must fall in order for the network to achieve adaptation.

We consider this interpretation of parameter limits further in Section 3.1.

If the geodesic has not taken us far from the adaptation point on the model manifold, we can be

confident that the manifold boundary in which we now reside contains or is very near the adaptation

point. Thus the simplified model we have found can likewise achieve adaptation.

2.3.6 Fitting the New Model

In general, a geodesic traced across the manifold will terminate on a point in data space that is not

as close to the adaptation point as possible. This requires us, once we have written a new reduced

model, to do two things: First, we must find the N−1 parameters that correspond to the end of the

2.4 Manually Discerning Limits 23

geodesic in our new model, and then we must perform another Levenberg-Marquardt fitting to find

the parameter vector that brings the output of the reduced model as close to the adaptation point as

possible.

We can take the N parameters of the parameter vector at the end of our geodesic, and apply the

limit we discerned to find N−1 parameters that correspond to an equivalent point on the manifold

boundary, the new model. After the Levenberg-Marquardt fitting, we have a parameter vector that

achieves adaptation in the model with N−1 parameters.

This simplified model defines a new manifold, and we have a new initial point to run geodesics

from. The algorithm can be repeated identically from this new initial point, finding boundary

within boundary and interpreting limit after limit until there is no manifold boundary that contains

or is nearby the adaptation point.

Once a manifold contains the adaptation point but none of its boundaries do, we can say that

the model corresponding to that manifold is fully reduced. This also serves as our definition of

a minimal network. That is to say, when a network cannot be further reduced without losing its

adaptive behavior, it is minimal. It is at this point that we can analyze the fully-reduced network

equations and their emergent parameters (which are algebraic combinations of the original FCN

parameters) to identify the minimal mechanisms that achieve adaptation.

2.4 Manually Discerning Limits

As explained in Section 2.3, the process of model reduction with MBAM involves calculating

trajectories (specifically, geodesics) in parameter space. These trajectories are then inspected to

see what limit of the parameters they represent, and then this limit is applied to the equations of

the model to yield a simplified model. This process is repeated over and over again until the model

cannot be simplified any further and still exhibit adaptation.

2.4 Manually Discerning Limits 24

Although common, the easily recognizable limits like the ones in Table 2.1 are not the only

limits to appear. It takes 27 model reduction steps to bring the 31-parameter FCN to the goal of four

parameters, and it is likely that other, less clear limits will appear during that process. Typically,

it is not difficult to identify a novel limit, since almost all limits are represented by parameters

approaching zero or diverging to infintity (occasionally a limit will have two parameters becoming

equal to each other, which may be more subtle to discern). However, applying a new type of limit

to the equations of the model can be challenging.

The guidelines for applying limits are simple: Each parameter approaching a specific value

must be removed from the model. If P parameters are involved in the limit, a total of P− 1 new

parameters must be introduced that are combinations of these parameters, bringing the net total

number of parameters down by exactly one every model reduction step (Transtrum & Qiu 2014).

New parameters must be finite, made in combinations such as ∞/∞, 0 ·∞, ∞−∞, or 0/0.

Although the requirements for a correct reduction are simple, evaluating an unusual limit may

involve multiple equations, require rescaling of the dynamic variables, or change a differential

equation into an algebraic equation, as shown in the limits delineated in Appendix A.

We show an example of a less common limiting process. The affected equation is

dX2

dt
=−θ0X2 +C12X1H (1−X2)+

C32X3(1−X2)

1−X2 +K32
−C′32X3, (2.4)

with θ0 a parameter created in previous reductions, and the limit is

K32→ 0,

C32, C′32→ ∞.

2.5 Automating Model Reduction 25

We may group the last two terms of Eq. (2.4), writing 1−X2 = X2I for brevity, and obtain

X3

(
C32X2I

X2I +K32
−C′32

)

= X3
C32X2I−C′32X2I−C′32K32

X2I +K32

= X3
(C32−C′32)X2I−C′32K32

X2I +K32
.

We are now in a position to evaluate the limit, which we write into Eq. (2.4) to obtain

dX2

dt
=−θ0X2 +C12X1H (1−X2)+X3

θ1(1−X2)−θ2

1−X2 + ε
. (2.5)

We have included a small constant ε to keep the denominator of the final term nonzero when X2 = 1,

but this quantity is not a model parameter (meaning it is chosen arbitrarily, and it is not tuned to fit

the reduced model to the adaptation point). Two new model parameters were obtained, defined by

θ1 = C32−C′32 and θ2 = C′32K32, which are both finite combinations of the divergent parameters.

These two new parameters offset the three parameters we have eliminated so that the net number of

parameters decreases by exactly one. At this point, we accept Eq. (2.5) as the differential equation

of our new model.

2.5 Automating Model Reduction

The algorithmic structure of MBAM lends itself to being implemented as a program with limited

human intervention. One of the primary goals of this research has been the implementation of an

automated model reduction program. This program is largely based upon functions in the Python

programming language (using the NumPy and SciPy packages) organized into a class structure.

Original code is included in Appendix B, with a flowchart detailing its structure in Fig. 2.8.

Reduction begins with a model definition file for the FCN (a file like Enz3_31.py in Ap-

pendix B). This file contains all of the parameter names and the explicit differential equations that

2.5 Automating Model Reduction 26

>_

Export

Reduce

Enz3_N Expon-

SetICX

Resid-

ualsX EnzX_

Model

DAECalc

MMAuto

Reduce

geodesiclm
 Model Object

Discern

v0

calcgeodesic

Fit evallim

requestManual

Model definition

with differential

equations

Run a batch

of reductions

Run one

reduction

Enz3_(N-1)

Trans

Template

TeX_

Template

Trans-

form parameters

OUTPUT

Legend

.py

file

function

Outside

program
 Other

Figure 2.8 Flowchart for the automated model reduction code. A prepared model defi-
nition file (upper-left) can be used to begin a model reduction from the console (center-
right). The MBAM algorithm is run by the functions of the MMAutoReduce class (blue
box). This produces output (green box) as the algorithm iterates to a minimal network, or
a LATEX document specifying a limit for the user to evaluate manually.

2.5 Automating Model Reduction 27

define a three-parameter FCN. Using the DAECalc class written by Mark K. Transtrum, a suite of

four Python scripts (including EnzX_Model) creates a model object, from which time evolutions,

the Jacobian matrix, and other quantities can be accessed directly. It is at this point we choose adap-

tation as our goal behavior (the toy adaptation curve in Fig. 2.3 is coded into ResidualsX.py),

as well as the initial conditions for our network (in SetICX.py). The file Exponential.py pro-

vides for the model object to work not with parameter values directly, but with the logarithm of the

parameter values, also called log-parameters. This is appropriate, since all parameter values are

positive, and can differ in size by many orders of magnitude.

This model object is used by the rest of the model reduction code. The function geodesiclm

uses this model object to perform Levenberg-Marquardt fitting of the FCN, which gives us our

initial parameters that achieve adaptation for the FCN. For each set of initial parameters, we have

a folder that will contain all model reduction information and output from that parameter vector.

The user can begin a reduction by calling Reduce.py from the console (or Export.py, to

run a batch of reductions simultaneously) when initial parameters and a model object have been

prepared.

We now consider the automatic reduction algorithm itself, contained in MMAutoReduce.py, by

touching on each function contained in the class definition.

2.5.1 Primary Functions

We begin with the first major function that MMAutoReduce.py calls after starting a new reduction

from an initial point in parameter space.

v0 — First, the Jacobian matrix is calculated at the initial point. As explained in Subsection

2.3.2, the singular value decomposition of the Jacobian matrix is used to choose an initial direction

for the geodesic. This initial point and initial direction are passed to calcgeodesic.

calcgeodesic — A path in parameter space corresponding to a geodesic in data space is

2.5 Automating Model Reduction 28

calculated stepwise, at each point measuring the increase in parameter velocity. Once the velocity

has increased by a factor of 25 from its initial size, the geodesic stops. Subsection 2.3.3 explains

that this implies that the geodesic is near a manifold boundary, where a simplified model can be

found. This new position in parameter space is passed to Discern.

Discern — The Jacobian matrix and its singular value decomposition are again calculated at

the end of the geodesic in order to discern a parameter limit. The direction vN , corresponding to

the parameter space direction that causes the least change in the model’s output (see Subsection

2.3.2), is checked for large components. These large components correspond to parameters that

are diverging to infinity or to zero (since we use log parameters, diverging to a value of zero means

diverging to negative infinity in log space, making these limits easier to see). The two types of

limits mentioned in Table 2.1 can be discerned and evaluated automatically.

If a different type of limit is discerned, the reduction will first try to run v0 again from the

initial point, but in the reverse direction. Although the criterion for choosing the direction of the

geodesic mentioned in Subsection 2.3.2 is often reliable, it is not infallible, and occasionally the

boundary of the model manifold lies in the opposite direction of what was expected.

If the backwards running geodesic also fails, the function requestManual is run, which stops

automatic reduction and produces a LATEX document specifying what type of limit was discerned,

so that a manual reduction can easily be begun.

However, if one of the two types of limits in Table 2.1 is discerned, the parameter limit infor-

mation is passed to evallim.

evallim — A parameter limit is evaluated with an expanded version of the symbolic package,

written by Dane Bjork using SymPy. A single parameter approaching zero can always be evaluated,

simply be replacing the parameter with ε , an arbitrary small constant (which we fix at 10−4). This

prevents division by zero in our computational models. Incidentally, this ε is also used to make a

differentiable analog to the Heaviside step function H (x) ≈ x/(x+ ε), for non-negative x. Also,

2.5 Automating Model Reduction 29

the function check_ck 1 is used to recognize if two parameters that diverge to infinity are part of

the same term, in which case the limit is evaluated using the gruntz function in SymPy, which

evaluates simple symbolic limits. These limits are evaluated in the model definition file, creating a

new model definition file, such as Enz3_30.py, with one fewer parameter and simpler differential

equations. The parameters of the new model are renamed to run from p0 to p(N-1), where N

is the reduced number of model parameters. This is done for convenience in working with the

parameters, which are internally numbered from zero to N− 1. The new model definition file is

then used to make a new model object (as Enz3_31.py was).

Information about which limit was discerned is further used in multiple places. First of all, a

Transform file is written using the template TransTemplate.py. This Transform file algebraically

relates the parameters of the new model to the parameters of the old model, allowing one to sys-

tematically retrieve what the combined parameters of the reduced model are in terms of the original

FCN parameters. Second, the position of the end of the geodesic is still given by N numbers, in-

stead of the N−1 numbers that should specify a position in the parameter space of the new reduced

model. The Transform file converts the N parameters to an array of N− 1 parameters, which is

now passed to Fit.

Fit — As mentioned in Subsection 2.3.6, another fit with the Levenberg-Marquardt algorithm

is necessary to ensure that the new model achieves adaptation as close as possible to the ideal

time evolution shown in Fig. 2.3. Once this fit is completed, we now have a new initial point to

calculate our geodesic from, and the process can repeat, by passing this new initial point to v0.

This repetition is written into a for loop in Reduce.py. Assuming the previous reduction occurred

without error, the next reduction step is taken automatically.

1written on page 74 in Appendix B

2.5 Automating Model Reduction 30

2.5.2 Effectiveness of Automation

In this way model reduction with MBAM can be automated. This process will terminate either

with a minimal network or information on what parameter limit needs to be manually evaluated in

order to proceed with model reduction, whereafter automatic reduction can begin again.

As an indicator of the effectiveness of the current version of the automatic reduction code, a

representative sample of 72 reductions (performed from 72 distinct sets of parameters that produce

adaptation in the FCN) was run automatically. The number of model reductions the program

successfully performed before a manual reduction was required is organized in Fig. 2.9. In short,

the number of automatic reductions ranged from 0 to 26, with about 15 being most common, and 11

the average. Thus several models were reduced just a few steps away from fully-reduced networks,

which requires about 27 reduction steps. At the point each automatic reduction stopped, a manual

reduction can be perfomed, and then automatic reduction can be resumed.

All reductions in the sample were performed simultaneously, and all had terminated after about

three hours. In general, each reduction requires anywhere from one to twenty minutes, depending

on the number of steps that need to be calculated for the geodesic.

2.5 Automating Model Reduction 31

0 5 10 15 20 25

Number of Automatic Reductions

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
ro
b
a
b
ili
ty

Initial Automatic Model Reductions

Figure 2.9 Probabilities of the number of initial automatic reductions performed before
manual reduction was required. This data comes from a representative sample of 72
model reductions from the FCN.

Chapter 3

Results

3.1 Reduced Networks and Future Research

Using a combination of automated model reduction and manual limit interpretation, several re-

duced networks have been found. We consider one such reduced network as an informative exam-

ple. Although it is not fully reduced according to the definition in Subsection 2.3.6, it has begun

to show several of the features of a fully-reduced network, and we can use it to understand a min-

imal mechanism of adaptation. We include the network diagram in Fig. 3.1. This diagram can

be produced either from inspection of the equations that define the model, or by going through

the reduction steps individually and erasing edges from the FCN when the reduction step sets the

strength parameter of the edge to zero. We will elaborate further on the relationship between the

network diagram and the model definition equations. The equations for each node are reproduced

here:

32

3.1 Reduced Networks and Future Research 33

I

X3

X1

X2

Figure 3.1 Network diagram for a reduced network, with steady input stimulus I begin-
ning at time t = 0 and X3 being the output node in which adaptation behavior is expected.
This representation arises from the network definition equations Eq. (3.1) - (3.3). Equiva-
lently, as the FCN was reduced to eventually obtain this network, the C/K ratios of various
edges were set to zero one by one. Erasing these edges yields the diagram shown. The
network achieves adaptation for the correct values of the network definition parameters.

dX1

dt
= IIC

1−X1

1−X1 +KIC
+C31X3H (1−X1) (3.1)

X2 =
θX1

1+θX1
(3.2)

dX3

dt
=C23X2H (1−X3)−C′13

X1X3

X3 +K′13
. (3.3)

3.1 Reduced Networks and Future Research 34

Two features of these equations are immediately of note — first that Eq. (3.2) is an algebraic

equation instead of a differential equation, and second that there is an emergent parameter, θ , that

has resulted from the reduction. The value of θ in terms of the FCN parameters is

θ =
C12K′E2
K12C′E2

.

These two aspects of the reduced equations are linked — the equation for X2 became algebraic

in a reduction step in which both C12 and the ratio parameter C′E2/K12 tended to infinity together1.

Since C12 characterizes how strongly X1 promotes X2 and C′E2 characterizes how strongly X2 is

inhibited by the environment, we can interpret this limit as a balance being struck between the

inhibition and promotion of X2. Since both of these reactions are very strong, they occur with a

very short reaction time, causing X2 to be slaved to X1 according to Eq. (3.2). Both reactions are

present, which is why they are included on the network diagram in Fig. 3.1, even though their

presence is not obvious from the appearance of Eq. (3.2).

However, in a very real sense, the model definition equations are a more precise way of artic-

ulating the network behavior than the network diagram. It is not at all obvious from the network

diagram that there is a functional relationship between the concentrations of active enzyme in X1

and X2. Also, the form of the emergent parameter θ shows that the individual parameters C12, K12,

K′E2, and C′E2 are not significant individually, but only in combination. Adjusting the parameters

one at a time yields complementary effects which may amplify each other or cancel each other

out. For example, doubling both K′E2 and K12 would have no effect on the output of the reduced

network. This fact is not apparent from the network diagram alone. The rules for these cancella-

tions and amplifications are new information that we have obtained through the process of model

reduction, and that information is encoded in the reduced equations.

1This limit is shown in Appendix A on page 42, with θ0 =C′E2/K12, although two more reduction steps are required

before the model definition equation can be written as Eq. (3.2).

3.1 Reduced Networks and Future Research 35

For this network, the essential minimal mechanism is a secondary node that channels the input

stimulus directly into the output node, allowing the input and output node to directly balance each

other. Notably, this network diagram does not fall into the two classes (see Fig. 1.2) believed to be

the only basis for adaptation in enzyme networks. Although it seems to have a negative feedback

loop built into it (compare Fig. 1.2b), X2 being slaved to X1 provides for X1 to directly promote and

directly inhibit X3, instead of X2 being used as a buffer, as the negative feedback loop does. It is

likely because this network has four edges that it was not identified as minimal in the work of Ma

et al. However, we can show that this network achieves adaptation with arbitrary sensitivity and

precision2, as shown in Fig 3.2. We have thus uncovered a new possible solution that nature has

for the problem of adaptation.

We should remark that when we speak of a "minimal mechanism" for adaptation, the only way

to be completely clear about what we mean is to specify the transformed network equations and

emergent parameters of our network. The work of Ma et al. also included parameter limits for each

minimal adaptive network, and it identified trends in parameter values that increase the likelihood

of a given network topology being adaptive. These parameter ranges were pursued by intuition and

mathematical consideration of individual networks. In contrast, MBAM automatically generates

limits that indicate what parameter ranges are necessary for a network to adapt, decreasing the need

for ad-hoc analysis and facilitating in-depth understanding of numerous adaptation mechanisms.

With the many limits that arise from the Michaelis-Menten equations through MBAM, we have

a much richer language at our disposal to express how a network achieves adaptation the way it

does. The most significant classes of limits and several examples are included in Appendix A.

In short, the limits performed in the process of model reduction inform us which edges of

the FCN can be ignored, which extreme values parameters must have for the network to properly

2For completeness, we add that the parameter values necessary to achieve the adaptation curve in Fig 3.2 with

highest sensitivity and precision are KIC = 18.76, C31 = 0.23, θ = 37.02, C23 = 2.06, C′13 = 22.56, K′13 = 0.25.

3.1 Reduced Networks and Future Research 36

0 5 10 15 20 25
Time (dimensionless)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
n
ce

n
tr
a
ti
o
n
 o
f
A
ct
iv
e
 E
n
zy

m
e

Sampling of Adaptation Curves in Reduced Network

Figure 3.2 A sampling of output curves showing the variety of adaptation behaviors that
the reduced network of Eq. (3.1) - (3.3) can produce. Starting from a fit to the toy adapta-
tion behavior shown in Fig. 2.3, these curves were produced by adjusting only the model
parameters θ and C′13. As these two parameters are increased together, the sensitivity and
precision of the output increases (sensitivity and precision are defined in Fig. 1.1).

3.2 Conclusion 37

function, and what parameter combinations are important to the model output. Each process of

model reduction yields a simple network with its own minimal mechanism (although different

model reductions may converge to the same minimal network). The limits themselves and the

equations they imply articulate what is behind the adaptation behavior of a certain network.

Future research will require many more reductions to be completed so that a large representa-

tive sampling of minimal networks can be found. This is being worked towards by increasing the

number of different types of limits that can be automatically discerned by the automated model

reduction program.

3.2 Conclusion

Here we recapitulate what we have accomplished. We have identified a new minimal mechanism

that achieves adaptation in the form of the network in Fig. 3.1 with its attendant equations. We

have thus demonstrated a practical implementation of model reduction with the model boundary

approximation method (MBAM), showing the insight it provides into network behaviors. We have

also shown that model reduction from a fully-connected network (FCN), although the FCN by

itself is not physically meaningful, leads to physically meaningful mechanisms. The conclusions

of this research agree with and expand on other key systems biology research on adaptation.

This process has illustrated that the implementation of MBAM can be automated. In principle,

this can be done to search for any behavior of enzyme networks, including oscillations, memory, or

other behaviors, simply by changing the toy function to which parameters are fitted, and possibly

the input function.

Also, although the code used in this research is intended particularly to identify parameter

limits of the Michaelis-Menten dynamic equations, the method can be extended to any system that

is modelled by ordinary differential equations, including models in ecology, economics, population

3.2 Conclusion 38

dynamics, and control theory. This research presents an illustration of a general framework that

articulates how systems achieve interesting behaviors. It uses the language of parameter limits and

emergent equations, which we hope will aid in understanding emergent behaviors across many

fields of inquiry.

Appendix A

Limits of the Michaelis-Menten Equations

A number of recurring types of limits beyond those included in Table 2.1 shed light on some of the

biophysics behind the adaptive behaviors of three-node networks. We identify three particularly

clear types of parameter limits that also qualify as candidates for automation in future work.

First, we have saturation limits, in which all of the reactions feeding into a particular node be-

come very strong. Mathematically, this uniformly overwhelms the rate of change dX
dt and changes

the differential equation for that node into an algebraic equation. Physically, this represents re-

duced reaction times between nodes, which sets up a functional relationship between them.

Second, we have differential limits, in which promotion and inhibition from the same node

become strong and balance each other. The emergent parameters from these limits are differences

of the Michaelis-Menten parameters.

Finally, we have rescaling limits, in which the concentration of active enzyme in a node be-

comes very small at the same time the effect of that node on the rest of the network becomes very

strong. This can have the effect of bypassing a node, or using a bypassed node to both promote

and inhibit another node.

Two examples of each type of limit are included in the following subsections.

39

40

A.0.1 Differential Limits

Eq:
dX2

dt
=−θ0X2 +

C12X1(1−X2)

−X2 +1+ ε
+

C32X3(1−X2)

K32−X2 +1
−C′32X3

Limit: K32→ 0,

C32, C′32→ ∞

Combining the second and third to last terms, we take X2I = 1−X2, and

dX2

dt
=−θ0X2 +

C12X1(1−X2)

−X2 +1+ ε
+

C32X2I−C′32K32−C′32X2I

K32 +X2I
X3.

After evaluating the limit,

dX2

dt
=−θ0X2 +

C12X1(1−X2)

−X2 +1+ ε
+

θ1X2I−θ2

X2I + ε
X3

where

θ1 =C32−C′32,

θ2 =C′32K32.

41

DIFFERENTIAL LIMIT

Eq:
dX3

dt
= θ0X3 +

C13X1(1−X3)

K13−X3 +1
+

C23X2(1−X3)

−X3 +1+ ε
−

C′13X1X3

K′13 +X3
−

C′23X2X3

K′23 +X3

Limit: K13, K′13→ 0,

C13, C′13→ ∞

Combining the second and fourth terms together with XI3 = 1−X3 yields

X1
C13XI3K′13 +C13XI3X3−C′13X3K13−C′13X3XI3

(K13 +XI3)(K′13 +X3)
.

After evaluating the limit,

dX3

dt
= θ0X3 +

C23X2(1−X3)

−X3 +1+ ε
−

C′23X2X3

K′23 +X3
+X1

θ1XI3−θ2X3 +θ3XI3X3

XI3X3 + ε

where

θ1 =C13K′13,

θ2 =C′13K13,

θ3 =C13−C′13.

42

A.0.2 Saturation Limits

Eq:
dX2

dt
=

C12X1(1−X2)

1−X2 +K12
−θ0X2

Limit: C12, θ0→ ∞

Dividing all terms by θ0,

1
θ0

dX2

dt
=

(
C12

θ0

)
X1(1−X2)

1−X2 +K12
−X2.

After evaluating the limit, we have

0 = θ1
X1(1−X2)

1−X2 +K12
−X2

The differential equation is now algebraic, with

θ1 =C12/θ0.

43

SATURATION LIMIT

Eq:
dX3

dt
=

C13X1(1−X3)

K13−X3 +1
−C′23X2−

C′E3X3

K′E3 +X3

Limit: C13, C′23, C′E3→ ∞

After evaluating the limit,

0 =
X1(1−X3)

K13−X3 +1
−θ1X2−

θ2X3

K′E3 +X3

The differential equation is now algebraic, with

θ1 =C′23/C13,

θ2 =C′E3/C13.

44

A.0.3 Rescaling Limits

Eqs:
dX1

dt
=

C21X2(1−X1)

−X1 +1+ ε
+

IIC(1−X1)

KI1−X1 +1

dX2

dt
=

C12X1(1−X2)

−X2 +1+ ε
+

C32X3(1−X2)

−X2 +1+ ε
−

C′12X1X2

K′12 +X2
−

C′E2X2

K′E2 +X2

dX3

dt
=

C13X1(1−X3)

K13−X3 +1
+

C23X2(1−X3)

K23−X3 +1
−

C′13X1X3

K′13 +X3
−

C′E3X3

K′E3 +X3

Limit: C12, C′12, K′12, C′E2, K′E2, C32→ 0,

C21, C23→ ∞

After evaluating the limit, we have

dX1

dt
=

X̃2(1−X1)

−X1 +1+ ε
+

IIC(1−X1)

KI1−X1 +1

dX̃2

dt
= θ1X1 +θ2X3−

θ3X1X̃2

θ4 + X̃2
− θ5X̃2

θ6 + X̃2

dX3

dt
=

C13X1(1−X3)

K13−X3 +1
+

θ7X̃2(1−X3)

K23−X3 +1
−

C′13X1X3

K′13 +X3
−

C′E3X3

K′E3 +X3

where X̃2 =C21X2, and

θ1 =C12C21,

θ2 =C32C21,

θ3 =C′12C21,

θ4 = K′12C21,

θ5 =C′E2C21,

θ6 = K′E2C21,

θ7 =C23/C21.

45

RESCALING LIMIT

Eqs:
dX1

dt
=

C31X3(1−X1)

−X1 +1+ ε
−

C′21X1X2

K′21 +X1
+

IIC(1−X1)

KI1−X1 +1

dX2

dt
=

C12X1(1−X2)

−X2 +1+ ε
+

C32X3(1−X2)

K32−X2 +1
−

C′E2X2

K′E2 +X2

dX3

dt
=

C13X1(1−X3)

−X3 +1+ ε
+

C23X2(1−X3)

K23−X3 +1
−

C′23X2X3

K′23 +X3

Limit: C′21, K′21, C31→ 0,

C12, C13, KI1→ ∞

After evaluating the limit, we have

dX̃1

dt
= θ1X3−

θ2X̃1X2

θ3 + X̃1
+

IIC

θ4

dX2

dt
=

X̃1(1−X2)

−X2 +1+ ε
+

C32X3(1−X2)

K32−X2 +1
−

C′E2X2

K′E2 +X2

dX3

dt
=

θ5X̃1(1−X3)

−X3 +1+ ε
+

C23X2(1−X3)

K23−X3 +1
−

C′23X2X3

K′23 +X3

where X̃1 =C12X1, and

θ1 =C31C12,

θ2 =C′21C12,

θ3 = K′21C12,

θ4 = KI1/C12,

θ5 =C13/C12.

Appendix B

Code

This appendix contains original Python code that runs automated model reduction. The general

structure of the code has Reduce.py initiating and overseeing reductions, with the primary work

being performed by the various functions in MMAutoReduce.py. Other important files serving

incidental functions are also included. A flowchart for the more detailed structure of the code is

included in Fig 2.8.

This code relies on the open-source NumPy, SciPy, and geodesiclm packages, as well as the

symbolic package written by Dane Bjork, and the following code written by Mark K. Transtrum:

class definitions BaseModel, Composition, modeling, geometry, and DAECalc.

46

47

Reduce.py

import numpy as np

import sys

sys.path.append('/data/merrill/DAEAutoReduction')

import MMAutoReduce

reload(MMAutoReduce)

R = MMAutoReduce.MMAutoReduce

from EnzX_Model import BuildModel

fast = True

sval = False

debug = False

bkw = False

N = int(sys.argv[1])

if 'slow' in sys.argv:

fast = False

if 'svp' in sys.argv:

sval = True

if 'debug' in sys.argv:

debug = True

if 'b' in sys.argv:

bkw = True

def assemblemodel(N):

return BuildModel('Enz3_%02i' % N, N, 3, np.linspace(0,25,250))

48

reduction = R(assemblemodel,'Enz3',N,4,path='../')

if bkw:

x = np.load('../xValues/xtrue_%02i.npy' % N)

try:

reduction.iterate(x,fast,'b',1,sval)

N -= 1

except:

raise

for i in range(N-2):

x = np.load('../xValues/xtrue_%02i.npy' % (N-i))

try:

reduction.iterate(x,fast,'s',1,sval)

except:

if not debug:

try:

reduction.iterate(x,fast,'b',1,sval)

except:

try:

reduction.iterate(x,fast,'s',3,sval)

except:

try:

reduction.iterate(x,fast,'b',3,sval)

except:

reduction.requestManual()

raise

49

else:

raise

fast = True

sval = False

MMAutoReduce.py

import numpy as np

import logging

from symbolic import Sym

from modeling.DAECalc import MakeandCompile

from geodesiclm import geodesiclm

from datetime import datetime

from TransTemplate import template

logger = logging.getLogger(__name__)

logger.setLevel(logging.DEBUG)

from scipy.optimize import brentq

class NoEdgeFound(Exception):

def __init__(self):

pass

class EdgeNotRecognized(Exception):

def __init__(self):

pass

50

def vdota(v, j, A):

g = np.dot(j.T,j)

a = -np.linalg.solve(g, np.dot(j.T, np.dot(np.dot(A, v), v)))

return np.dot(v, a)

def vPerp(v1,v2):

v2new = v2 - v1*np.dot(v1,v2)/(np.linalg.norm(v1))**2

v2new = v2new/np.linalg.norm(v2new)

return v2new

def FindPerp(lst): #creates unit vector perpendicular to all in lst

N = len(lst[0])

vtest = np.random.randn(N)

vtest = vtest/np.linalg.norm(vtest)

if(np.linalg.norm(lst[0]) != 0):

for v in lst:

vperp = vtest - v*np.dot(vtest, v)/np.linalg.norm(v)**2

vperp = vperp/np.linalg.norm(vperp)

vtest = vperp

return vtest

def vdath(th,vp,vp2,j,A): #returns interpolation between ortho vectors vp, vp2

v = np.cos(th)*vp + np.sin(th)*vp2

return vdota(v,j,A)

def Search(lst,j,A):

51

global spv

vp = FindPerp(lst) #vector perp to all vectors in lst

vp = vp/np.linalg.norm(vp)

vp2 = FindPerp(lst) #another

vp2 = vPerp(vp,vp2) #made perp with vp

vp2 = vp2/np.linalg.norm(vp2)

vs = []

i=0

sg = np.sign(vdota(vp,j,A))

a = 0

th = 0.1

while(th < np.pi): #fills vs with all vectors v for which v.a=0

#in the plane of vp, vp2

vda = vdath(th,vp,vp2,j,A)

if(np.sign(vda) == sg):

a = th

else:

b = th

th0 = brentq(vdath,a,b,args=(vp,vp2,j,A))

#remove vectors that are similar in dspace

vtest=np.cos(th0)*vp + np.sin(th0)*vp2

addOn=1

for v in vs:

if(np.abs(np.dot(np.dot(j,vtest),np.dot(j,v)))>0.95):

addOn=0

if(addOn==1):

vs.append(vtest)

52

#

i += 1

a = th

th += 0.1

sg = np.sign(vda)

return vs

def Branch(j,A):

global nvec

global vdas

N = j.shape[1]

if(N==2):

vs = Search([np.zeros(2)],j,A)

while(len(vs)==0):

vs = Search([np.zeros(2)],j,A)

bases = []

for v in vs:

bases.append([v])

else:

vp = np.random.randn(N)

vp = vp/np.linalg.norm(vp)

chk = Search([vp],j,A)

if(chk == []):

chk = Search([vp],j,A)

bases = [[chk[0]]]

for i in range(N-2):

addbases = []

53

for lst in bases:

poss = Search(lst,j,A)

while(poss==[] or np.isnan(poss[0][0])):

poss = Search(lst,j,A)

if(len(poss)>1):

for v in poss[1:]:

addbases.append(lst + [v])

lst.append(poss[0])

bases = bases + addbases

return bases

def Findv0s(j,A):

bases = Branch(j,A)

v0s = []

for basis in bases:

m = np.zeros((j.shape[1]-1, j.shape[0]))

for k in range(j.shape[1]-1):

m[k] = np.dot(j,basis[k])

m = m.T

u,s,vh = np.linalg.svd(m,0)

vrand = np.random.randn(j.shape[1])

d = np.dot(j,vrand)

dp = np.dot(np.eye(u.shape[0]) - np.dot(u,u.T), d)

uj,sj,vhj = np.linalg.svd(j,0)

v0 = np.zeros(j.shape[1])

for n in range(j.shape[1]):

v0 += np.dot(dp,uj.T[n])/sj[n]*vhj[n]

54

v0 = v0/np.linalg.norm(v0)

if(vdota(v0,j,A)<0):

v0 *= -1

v0s.append(v0)

return v0s

def Discern(x,v,model):

Disc = {}

j = model.j(x)

u,s,vh = np.linalg.svd(j)

vnorm = vh[-1]/np.linalg.norm(vh[-1])

if np.dot(vnorm,v)<0:

vnorm *= -1

n=-1

arglist = list(np.argsort(np.abs(vnorm)))

arglist.reverse()

for i in range(len(vnorm)-1):

if np.abs(vnorm[arglist[i]]) - np.abs(vnorm[arglist[i+1]]) > 0.8/np.sqrt(i+1):

n = i+1

break

if n==-1:

return Disc

for j in arglist[:n]:

if vnorm[j]>0:

Disc[j] = np.inf

55

else:

Disc[j] = 0

return Disc

def JDiscern(xi,xf,v,model):

Disc = {}

ji = model.j(xi)

jf = model.j(xf)

u,s,vh = np.linalg.svd(jf-ji)

vnorm = vh[-1]/np.linalg.norm(vh[-1])

if np.dot(vnorm,v)<0:

vnorm *= -1

n=-1

arglist = list(np.argsort(np.abs(vnorm)))

arglist.reverse()

for i in range(len(vnorm)-1):

if np.abs(vnorm[arglist[i]]) - np.abs(vnorm[arglist[i+1]]) > 0.8/np.sqrt(i+1):

n = i+1

break

if n==-1:

return Disc

for j in arglist[:n]:

if vnorm[j]>0:

Disc[j] = np.inf

56

else:

Disc[j] = 0

return Disc

def SDiscern(vec):

Disc = {}

vnorm = vec/np.linalg.norm(vec)

n=-1

arglist = list(np.argsort(np.abs(vnorm)))

arglist.reverse()

for i in range(len(vnorm)-1):

if np.abs(vnorm[arglist[i]]) - np.abs(vnorm[arglist[i+1]]) > 0.8/np.sqrt(i+1):

n = i+1

break

if n==-1:

return Disc

for j in arglist[:n]:

if vnorm[j]>0:

Disc[j] = np.inf

else:

Disc[j] = 0

return Disc

57

class MMAutoReduce:

def __init__(self,assemblemodel,modelname,N,Noffset=0,lim=25,path='../',rand=False):

'''

modelname is the base name of the models,

then _xx is appended, where xx is the number of parameters.

assemblemodel is a function that produces a model given

the number of parameters

'''

self.lim = lim

self.Noffset = Noffset

self.modelname = modelname

self.assemblemodel = assemblemodel

self.loadmodel(modelname + '_%02i' % N)

self.path = path

if(self.path[-1]!='/'):

self.path += '/'

if rand:

randLogString = '_boundaries'

else:

randLogString = ''

handler = logging.FileHandler(path + modelname + randLogString + '.log')

handler.setLevel(logging.DEBUG)

logger.addHandler(handler)

logger.info('\n*** ' + str(datetime.now()) + ' ***')

58

def loadmodel(self,fullmodelname):

self.modeldef = __import__(fullmodelname)

self.N = len(self.modeldef.parameters) - self.Noffset

self.model = self.assemblemodel(self.N)

def v0(self,method='s'):

self.v0method = method

if(method=='s' or method=='b'): #smallest sval direction

u,s,vh = np.linalg.svd(self.j)

v = vh[-1]

jt = np.transpose(self.j)

jtjin = np.linalg.inv(np.dot(jt,self.j))

a = -np.dot(jtjin,np.dot(jt,self.model.Avv(self.x,v)))

if np.dot(a,v) < 0:

v = v * -1

if(method=='b'):

logger.info('Used reverse smallest sval direction for v0.')

v = v * -1

if(method=='h'): #hyperplane norm method

logger.info('Used hyperplane norm method for v0.')

A = self.model.A(self.x)

v = Findv0s(self.j,A)[0]

if(method=='rand'):

v = np.random.rand(self.N)

v[-1] = 1

return v

59

def callback(self,geo):

lim = self.lim

Dmethod = self.Dmethod

if(self.v0method != 's'):

geoappend = '.' + self.v0method

else:

geoappend = ''

if(Dmethod==3):

geoappend += 'j'

if(geoappend[0] != '.'):

geoappend = '.' + geoappend

if self.v0method == 'rand':

geoappend += '%03i' % self.iter

print geo.t, np.linalg.norm(geo.vs[-1])

np.save(self.path + "Geodesics/ts%s.%02i"% (geoappend, self.N), geo.ts)

np.save(self.path + "Geodesics/xs%s.%02i"% (geoappend, self.N), geo.xs)

np.save(self.path + "Geodesics/vs%s.%02i"% (geoappend, self.N), geo.vs)

if Dmethod==1:

Disc = Discern(geo.xs[-1], geo.vs[-1], self.model)

elif Dmethod==2:

Disc = SDiscern(geo.vs[-1] - geo.vs[-2])

else:

Disc = JDiscern(geo.xs[-2], geo.xs[-1], geo.vs[-1], self.model)

if(self.isfast):

return (Disc=={} and np.linalg.norm(geo.vs[-1]) < lim*self.v0norm)

else:

60

return np.linalg.norm(geo.vs[-1]) < lim*self.v0norm

def calcgeodesic(self):

if(self.svalpath):

logger.info('Follows direction corresponding to the smallest singular value of j')

from svalpath import geodesic

else:

from geometry import geodesic

model = self.model

x=self.x

v=self.v

geo = geodesic(model.r,model.j,model.Avv,model.M,model.N,x,v,atol=1e-3,rtol=1e-3,

callback = self.callback)

geo.invSVD = True

geo.integrate(100, 400)

logger.info('Residual norm geodesic end: %g' % np.linalg.norm(self.model.r(geo.xs[-1])))

return geo

def saveandcompile(self,sym,reparam=True):

N = self.N

if(self.rename==''):

self.rename = 'Enz3_%02i' % (N-1)

if reparam:

for i in range(N-1):

#This dummy renaming ensures no parameter is renamed twice

sym.replaceparam(i+self.Noffset, "P%d"%i)

for i in range(N-1):

61

#Renames with correct names

sym.replaceparam(i+self.Noffset, "p%d"%i)

sym.savetofile(self.rename,True)

MakeandCompile(self.rename,True,True)

def Fit(self):

model = self.model

x = np.load(self.path + 'xValues/xinit_%02i.npy' % self.N)

logger.info('Residual norm pre-fit: %g' % np.linalg.norm(self.model.r(x)))

try:

xf,info = geodesiclm(model.r,x,jacobian = model.j,Avv = model.Avv, full_output = 1,

print_level = 0, maxiter = 300, ibold = 0)

xfs = xf

except:

logger.error('Fitting failed')

raise

logger.info('Residual norm post-fit: %g' % np.linalg.norm(self.model.r(xfs)))

np.save(self.path + 'xValues/xtrue_%02i' % self.N, xfs)

def evallim(self):

Disc = self.Disc

sym = Sym(self.modeldef)

logger.debug('Discern: %s' % Disc)

if Disc == {}:

logger.error('No edge was discerned.')

62

raise NoEdgeFound

#if one parameter goes to zero

if len(Disc.keys())==1:

if Disc.values()[0] != 0:

raise EdgeNotRecognized

idx = Disc.keys()[0] + self.Noffset

pname = sym.parameters[idx]

logger.info('%s -> 0' % pname)

sym.substituteall(sym.parray[idx], 0.0001)

logger.debug('1e-04 substituted for %s' % sym.parameters[idx])

logger.debug('%s removed' % sym.parameters[idx])

sym.remparam(sym.parameters[idx])

x = self.geo.xs[-1]

newx = np.empty(len(x) - 1)

tstring = ''

for i in range(len(newx)):

if(i < Disc.keys()[0]):

newx[i] = x[i]

tstring += ' x[%d],%s' % (i,'\n')

else:

newx[i] = x[i+1]

tstring += ' x[%d],%s' % (i+1,'\n')

np.save(self.path + 'xValues/xinit_%02i.npy' % len(newx), newx)

temp = template % {'name1':'%02i' % len(x), 'name2':'%02i' % len(newx),

63

'M':len(newx), 'N':len(x), 'transforms':tstring}

fo = open("../Transforms/Trans%02i_to_%02i.py" % (len(x), len(newx)),'w')

fo.write(temp)

fo.close()

else:

#if we have a CK pair

if len(Disc.keys()) != 2:

raise EdgeNotRecognized

if(Disc.values()[0] != np.inf or Disc.values()[1] != np.inf):

raise EdgeNotRecognized

idx1 = min(Disc.keys()) + self.Noffset

idx2 = max(Disc.keys()) + self.Noffset

if not sym.check_ck(idx1,idx2):

raise EdgeNotRecognized

logger.info('%s / %s' % (sym.parameters[idx1], sym.parameters[idx2]))

pnew = 'CK'

pnew += sym.parameters[idx1][1:]

sym.ckratio(pnew, idx1, idx2)

p1 = sym.parameters[idx1]

p2 = sym.parameters[idx2]

logger.debug('%s removed' % p1)

sym.remparam(p1)

logger.debug('%s removed' % p2)

sym.remparam(p2)

x = self.geo.xs[-1]

64

newx = np.empty(len(x) - 1)

skip = 0

tstring = ''

for i in range(len(newx) - 1):

while(Disc.has_key(i+skip)):

skip += 1

newx[i] = x[i+skip]

tstring += ' x[%d],%s' % (i+skip,'\n')

newx[-1] = x[min(Disc.keys())] - x[max(Disc.keys())]

tstring += ' x[%d] - x[%d]' % (min(Disc.keys()), max(Disc.keys()))

np.save(self.path + 'xValues/xinit_%02i.npy' % len(newx), newx)

temp = template % {'name1':'%02i' % len(x), 'name2':'%02i' % len(newx),

'M':len(newx), 'N':len(x), 'transforms':tstring}

fo = open("../Transforms/Trans%02i_to_%02i.py" % (len(x), len(newx)),'w')

fo.write(temp)

fo.close()

self.saveandcompile(sym)

def requestManual(self, TeX=True):

logger.info('Automatic reduction failed.')

logger.info('Manual reduction required.')

if TeX:

import re

import os

from toTeX import toTeX

65

cdir = os.path.realpath('..')

location = re.findall(r'R.+$', cdir)[-1]

toTeX(self.modeldef, location, 'Enz3_%02i' % self.N, self.Disc1,

TeXname='%s_%02i.tex' % (location, self.N))

def iterate(self,x,isfast=True,v0method='s',Dmethod=1,svalpath=False,rename='',iter=0):

logger.info('Iterating from %i parameters' % self.N)

self.x = x

self.j = self.model.j(x)

self.N = len(x)

self.isfast = isfast

if not isfast:

logger.info('Running geodesic until velocity increases by a factor of %d' % self.lim)

self.Dmethod = Dmethod

self.svalpath = svalpath

self.rename = rename

self.iter = iter

self.v = self.v0(v0method)

self.v0norm = np.linalg.norm(self.v)

self.geo = self.calcgeodesic()

if Dmethod == 1:

Disc = Discern(self.geo.xs[-1],self.geo.vs[-1],self.model)

elif Dmethod == 2:

logger.info('Using parameter acceleration to discern limit')

66

Disc = SDiscern(self.geo.vs[-1] - self.geo.vs[-2])

else:

logger.info('Using sval decomp of jacobian difference to discern limit')

Disc = JDiscern(self.geo.xs[-2],self.geo.xs[-1],self.geo.vs[-1],self.model)

self.Disc = Disc

#Saves the Discern dictionary of the first geodesic, which tends to be the best for

#finding manual limits.

if v0method == 's':

self.Disc1 = Disc

self.evallim()

self.loadmodel(self.modelname + '_%02i' % (self.N - 1))

self.Fit()

67

Export.py

import numpy as np

import shutil

import subprocess

import sys

fam = int(sys.argv[1])

fits = np.loadtxt('xf%04i.txt' % fam)

rng = range(int(sys.argv[2]),int(sys.argv[3]))

for i in rng:

if(not np.isnan(fits[i][0])):

nm = 'R.%d.%03i' % (fam,i)

shutil.copytree('NewReduction', '../../%s' % nm)

np.save('../../%s/xValues/xtrue_31.npy' % nm, fits[i])

shutil.os.chdir('../../%s/ModelDefs' % nm)

subprocess.Popen(['nohup', 'python', 'Reduce.py', '31'])

shutil.os.chdir('../../Enz3/FitParameters')

68

Enz3_31.py

parameters = [

"X1_IC",

"X2_IC",

"X3_IC",

"I_IC",

"Cp_E_1",

"Kp_E_1",

"C_1_2",

"K_1_2",

"Cp_1_2",

"Kp_1_2",

"C_1_3",

"K_1_3",

"Cp_1_3",

"Kp_1_3",

"C_2_1",

"K_2_1",

"Cp_2_1",

"Kp_2_1",

"Cp_E_2",

"Kp_E_2",

"C_2_3",

"K_2_3",

"Cp_2_3",

"Kp_2_3",

"C_3_1",

69

"K_3_1",

"Cp_3_1",

"Kp_3_1",

"C_3_2",

"K_3_2",

"Cp_3_2",

"Kp_3_2",

"Cp_E_3",

"Kp_E_3",

"K_I_1",

]

assignments = []

DVars = [

("X1", 1, "X1_IC"),

("X2", 1, "X2_IC"),

("X3", 1, "X3_IC"),

]

RESs = [

"I_IC*(1-X1)/((1-X1)+K_I_1) + X2*C_2_1*(1-X1)/((1-X1)+K_2_1) +

X3*C_3_1*(1-X1)/((1-X1)+K_3_1) - X2*Cp_2_1*X1/(X1+Kp_2_1) - X3*Cp_3_1*X1/(X1+Kp_3_1)

- Cp_E_1*X1/(X1+Kp_E_1) - X1_prime",

"X1*C_1_2*(1-X2)/((1-X2)+K_1_2) + X3*C_3_2*(1-X2)/((1-X2)+K_3_2) - X1*Cp_1_2*X2/(X2+Kp_1_2)

- X3*Cp_3_2*X2/(X2+Kp_3_2) - Cp_E_2*X2/(X2+Kp_E_2) - X2_prime",

"X1*C_1_3*(1-X3)/((1-X3)+K_1_3) + X2*C_2_3*(1-X3)/((1-X3)+K_2_3) - X1*Cp_1_3*X3/(X3+Kp_1_3)

70

- X2*Cp_2_3*X3/(X3+Kp_2_3) - Cp_E_3*X3/(X3+Kp_E_3) - X3_prime",

]

if __name__ == "__main__":

from modeling.DAECalc import MakeandCompile

MakeandCompile("Enz3_31", True, True)

EnzX_Model.py

import numpy as np

from modeling import Composition

from modeling.BaseModel import BaseModel

from modeling.DAECalc import DAECalc

class EnzX(BaseModel):

def __init__(self,name,rel,nodes,ts):

self.name = name

self.rel = rel

self.nodes = nodes

self.ts = ts

self.calc = DAECalc("__%s__" % (name), "__d%s__" % (name), "__d2%s__" % (name))

self.calc.kwargs['max_steps'] = 10000

BaseModel.__init__(self, len(ts)*nodes, rel+nodes+1, "Arbitrary enzyme reaction network")

def r(self, x):

sol = self.calc.evaluate(x, self.ts)

return sol.flatten()

71

def v(self, x, v):

solv = self.calc.evaluate_derivative(x, v, self.ts)

return solv.flatten()

def Avv(self, x, v):

solAvv = self.calc.evaluate_Avv(x, v, self.ts)

return solAvv.flatten()

def Auv(self, x, u, v):

solAuv = self.calc.evaluate_Auv(x, u, v, self.ts)

return solAuv.flatten()

def BuildModel(name,rel,nodes,ts):

baremodel = EnzX(name,rel,nodes,ts)

from Exp_Model import Exponential

from SetICX import SetICX

from ResidualsX import ResidualsX

prep = Composition(SetICX(baremodel.rel, nodes), Exponential(baremodel.rel))

model = Composition(baremodel, prep)

residuals = Composition(ResidualsX(nodes,baremodel.ts), model)

return residuals

72

SetICX.py

import numpy as np

from modeling.BaseModel import BaseModel

class SetICX(BaseModel):

def __init__(self, N, nodes):

self.nodes = nodes

BaseModel.__init__(self, N + nodes + 1, N, "Adds initial conditions to the input vector")

def r(self, x):

IC = np.concatenate((np.zeros(self.nodes),np.array([0.5])))

return np.concatenate([IC, x])

def v(self, x, v):

return np.concatenate([np.zeros((self.nodes+1)),v])

def Avv(self, x, v):

return np.zeros((self.M))

def Auv(self, x, u, v):

return np.zeros((self.M))

73

ResidualsX.py

import numpy as np

from modeling.BaseModel import BaseModel

def dfault(t):

return 0.5*np.exp(-0.2*(t-5)**2) + 0.25*(1-np.exp(-t))**5

def rsine(t):

return -0.5*np.exp(-t) + 0.1*np.sin(t*2*np.pi/10) + 0.5

class ResidualsX(BaseModel):

def __init__(self, nodes, ts, s=0.1, dat=dfault):

self.nodes = nodes

self.ts = ts

if s == 0:

s = 0.25

self.s = np.zeros((len(self.ts))) + s

self.dat = dat

BaseModel.__init__(self, len(self.ts), len(self.ts)*nodes,

"Subtracts data from final section of input vector and divides by sigmas")

def r(self, x):

return (x[(self.nodes-1)::self.nodes] - self.dat(self.ts))/self.s

def v(self, x, v):

return v[(self.nodes-1)::self.nodes]/self.s

def Avv(self, x, v):

74

return self.s*0

def Auv(self, x, u, v):

return self.s*0

Additional function added to symbolic.py

def check_ck(self, idx1, idx2):

'''

returns a boolean = True if param[idx1] and param[idx2] occur

only in the same residual terms, False otherwise.

'''

for res in range(len(self.rarray)):

spec1 = [] #indices of terms that contain param[idx1]

spec2 = [] #indices of terms that contain param[idx2]

for j in range(len(self.rarray[res].args)):

if(self.rarray[res].args[j].has(self.parray[idx1])):

spec1.append(j)

if(self.rarray[res].args[j].has(self.parray[idx2])):

spec2.append(j)

if len(spec1) == len(spec2):

tested = True

for k in range(len(spec1)):

if spec1[k] != spec2[k]:

tested = False

else:

75

tested = False

return tested

TransTemplate.py

template="""

import numpy as np

from modeling import BaseModel

class Trans%(name1)s_to_%(name2)s(BaseModel):

def __init__(self):

BaseModel.__init__(self,%(M)i,%(N)i,'%(name1)s_to_%(name2)s')

def r(self,x):

return [

%(transforms)s

]

trans = Trans%(name1)s_to_%(name2)s()

"""

76

TeX_Template.py

template="""

\documentclass[12pt]{article}

\usepackage{amsfonts,amssymb,amsthm,amsmath}

\setlength{\oddsidemargin}{-0.1in} \setlength{\\textwidth}{6.5in}

\setlength{\\topmargin}{-.75in} \setlength{\\textheight}{9.75in}

\\newenvironment{problems}{\\begin{list}{}{\setlength{\labelwidth}{.7in}}}{\end{list}}

\\newcounter{problempart}

\\newenvironment{parts}{\\begin{list}{(\\alph{problempart})}{\setlength{\itemsep}{0pt}

\usecounter{problempart}}}{\end{list}}

\linespread{1.1}

\\newcommand{\\notR}{\\not{\hskip -3pt R}}

\\begin{document}

\\noindent {

\sc %(location)s \hfill

RESs%(slice)s \hfill

%(filename)s

}

\\bigskip

\\begin{problems}

77

\item [RES:]

%(res)s

\item[Limit:]

%(lim0)s

%(lim_inf)s

\\bigskip

After evaluating the limit,

\\bigskip

\\framebox[1.1\width]{Final limit here}

\\bigskip

where

\\bigskip

$\\theta_1 = ,$ \\\\

$\\theta_2 = $.

\end{problems}

\end{document}

"""

Appendix C

Network Definitions

The explicit coupled ordinary differential equations for the three-node fully connected enzyme

network are written here. The dynamic variables Xi record the fraction of active enzyme in each

node. The variable X1 is the concentration of the input node, excited with the constant stimulus

IIC (set to a value of 0.5). The variable X3 corresponds to the output node, which is checked for

adaptive behavior, with the variable X2 corresponding to the intermediary node. All other variables

are tunable model parameters, which can assume any non-negative value. In particular, the C′Ei

represent constant inhibition reactions from the environment, and the C and K variables are the

normal Michaelis-Menten rate constants for node-to-node reactions.

dX1

dt
= IIC

1−X1

1−X1 +KIC
+C21

X2(1−X1)

1−X1 +K21
+C31

X3(1−X1)

1−X1 +K31
−C′21

X2X1

X1 +K′21
−C′31

X3X1

X1 +K′31
−C′E1

X1

X1 +K′E1

dX2

dt
=C12

X1(1−X2)

1−X2 +K12
+C32

X3(1−X2)

1−X2 +K32
−C′12

X1X2

X2 +K′12
−C′32

X3X2

X2 +K′32
−C′E2

X2

X2 +K′E2

dX3

dt
=C13

X1(1−X3)

1−X3 +K13
+C23

X2(1−X3)

1−X3 +K23
−C′13

X1X3

X3 +K′13
−C′23

X2X3

X3 +K′23
−C′E3

X3

X3 +K′E3

78

Bibliography

Alon, U. 2006, An Introduction to Systems Biology: Design Principles of Biological Circuits

(CRC Press)

Artyukhin, A. B., Wu, L. F., & Altschuler, S. J. 2009, Cell, 138, 619

Ma, W., Trusina, A., El-Samad, H., Lim, W. A., & Tang, C. 2009, Cell, 138, 760

Marquardt, D. W. 1963, Journal of the Society for Industrial and Applied Mathematics, 11, 431

Transtrum, M. K., Machta, B., Brown, K., Daniels, B. C., Myers, C. R., & Sethna, J. P. 2015, J.

Chem. Phys., 143

Transtrum, M. K., & Qiu, P. 2014, Phys. Rev. Lett., 113

79

Index

adaptation, 4
adaptation point, 11, 22
algorithm, 15
automation, 25, 29, 43

cancer research, 1
Christoffel symbol, 16

data space, 11, 17
differential equation, 3, 11, 31, 75

edge, 3
emergent parameter, 21, 32, 34, 36

fully-connected network, 7, 75
fully-reduced model, 23

gene transcription, 1
geodesic, 14, 16, 27

incoherent feed-forward loop, 6
inhibition, 3
initial direction, 17
initial parameter, 16, 25
input, 4

Jacobian matrix, 17, 25

Levenberg-Marquardt algorithm, 16, 22, 29
log parameter, 25

manifold boundary, 14, 18
manual reduction, 23
MBAM, 14, 23, 25
metabolism, 1
Michaelis-Menten dynamics, 3, 36, 75
minimal mechanism, 14, 15, 23, 34

model manifold, 11
model reduction, 14, 21, 23, 28

negative feedback loop, 6
network behavior, 11
neurology, 1
node, 3

parameter limit, 18, 21–24, 27
parameter space, 11, 17
promotion, 3
Python, 25, 43

singular value decomposition, 17
systems biology, 3

time evolution, 11
topology, 3, 7
toy function, 11, 16

80

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Enzyme Networks and Systems Biology
	1.3 Adaptation

	2 Methods
	2.1 The Fully-Connected Network
	2.2 The Model Manifold
	2.3 Model Reduction
	2.3.1 Initial Points
	2.3.2 Calculating the Geodesic
	2.3.3 Identifying Boundaries
	2.3.4 Interpreting Boundaries
	2.3.5 Simplifying the Model
	2.3.6 Fitting the New Model

	2.4 Manually Discerning Limits
	2.5 Automating Model Reduction
	2.5.1 Primary Functions
	2.5.2 Effectiveness of Automation

	3 Results
	3.1 Reduced Networks and Future Research
	3.2 Conclusion

	Appendix A Limits of the Michaelis-Menten Equations
	A.0.1 Differential Limits
	A.0.2 Saturation Limits
	A.0.3 Rescaling Limits

	Appendix B Code
	Appendix C Network Definitions
	Bibliography
	Index

