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Abstract: This study describes a new class of system identification procedures, tailored to electric power systems with
renewable resources. The procedure described here builds on computational advances in differential geometry, and offers a
new, global, and intrinsic characterisation of challenges in data-derived identification of electric power systems. The approach
benefits from increased availability of high-quality measurements. The procedure is illustrated on the multi-machine benchmark
example of IEEE 14-bus system with renewable resources, but it is equally applicable to identification of other components and
systems (e.g. dynamic loads). The authors consider doubly-fed induction generators (DFIG) operating in a wind farm with
system level proportional–integral controllers.

1 Introduction
Dynamic models used in analysis of power systems (e.g. electro-
mechanical models used in transient analysis) have grown in size
to thousands of generators and tens of thousands of nodes.
However, this growth in quantitative terms has largely been
unaccompanied with improvements in fidelity of predictions.
Specifically, models have been largely unable to replicate major
system-wide events like the 2003 blackout in the Eastern
interconnection [1], and several such events in the 1990's in the
Western interconnection [2]. This is even more disturbing, given
the relatively widespread presence of sensors that have made
detailed recordings during transients.

System identification is particularly lacking in medium-voltage
(MV) networks, where much of renewable energy integration is
occurring. These ‘active distribution’ networks are evolving at a
fast pace because of: (i) changes within (MV lines are relatively
easy to build, with potentially more renewables in spatial
proximity), (ii) changes above (in transmission – e.g. topology
control), and (iii) changes below (more storage, power electronic
loads). The increased presence of renewable resources interfaced
through power electronic converters has recently led to some
qualitatively new stability problems in such networks. The lack of
accurate parameter values is common in power systems, because
manufacturers do not provide many of the data sets required for
analysis. Moreover, parameter values vary under different
operating conditions. The deployment of digital fault recorders by
the utilities has enabled the use of disturbance recordings for
estimation of missing or changed parameters.

The use of operational, on-line data to tune dynamical models
of key components [e.g. synchronous generators (SGs)] has a long
history in power systems. General dynamical systems concepts like
trajectory sensitivity have been introduced more than a quarter
century ago [3, 4]. An extension of that particular approach to
hybrid systems was presented in [5]. Another influential approach
is based on extracting local information from the measurement
Jacobian, as described in [6]. To handle the numerical ill
conditioning which often accompanies the parameter estimation
problem, the reference proposes that a subset of parameters of the
model be fixed to prior values, while estimating the remaining
parameters from the available data (denoted as the subset selection
method). In the sequel, we only list references directly related to
our development here. Cari and Alberto [7] considered parameter

estimation for a single generator and formulated the SG
identification problem in a differential-algebraic equation (DAE)
framework. Huang et al. [8] considered the same overall setup, but
with phasor measurement unit measurements.

If the sensitivity to the interaction among parameters in a given
set is greater than the sensitivity to individual parameters within
the same set, the estimation problem is denoted as over-
parametrised, and numerical ill-conditioning is to be expected. The
performance of parameter estimates depends on the number of
uncertain parameters and on available on-line measurements. It is
well appreciated by practitioners that optimisation-based
approaches to parameter identification often encounter the so-
called plateau phenomenon, when the criterion function becomes
insensitive over large portions of the parameter space and the
problem is characterised by multiple local solutions [9].

In [10], we offer a differential geometric explanation of this
phenomenon, based on model manifolds, while in [11] we applied
this method for reduction of dynamic models in power systems. In
[12], we have presented results of the same analysis on direct-drive
SGs (DDSG) and DFIG considered as components individual
components. In this paper, we consider the case of DFIG wind
farms, with added farm-level controllers that respond to commands
issued by the system operator. This is significant, as it has already
been shown in [13, 14] that the control loops have dominant
influence on the system-wide response of DFIG.

Our dynamic system identification procedure also has
implications for steady-state problems in power systems. One
example is provided by the conventional power system state
estimation, which is essentially a (steady-state) parameter
identification problem. Its practical performance has long been
plagued by convergence and uniqueness problems [15]. We
envision applications of our identification procedure in microgrids,
in virtual utilities and energy hubs that are often considered
essential for long-term evolution of smart grids, and in future
electricity markets where shorter time-scale operation will increase
the importance of dynamic model fidelity. It is also important for
load modelling, which typically introduces the largest uncertainty
in the overall dynamic model.

The outline of the paper is as follows. Section 2 describes the
class of power system models considered in identification; Section
3 discusses conditions for well-posedness of parameter estimation,
while Section 4 introduces information geometry, a global
sensitivity-based approach to model identification; Section 5
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describes results obtained for a multi-machine benchmark example;
and Section 6 contains our recommendations and conclusions.
Appendix provides details for DFIG described by differential and
algebraic equations.

2 Power system model for identification
The presence of widely different time scales leads to DAE as the
standard form of power system models [16]

dx
dt = f (x, z, p, t); (1)

0 = g(x, z, p, t), (2)

where x is the vector of (differential) state variables, z is the
algebraic variable, p is the parameter (typically assumed to be
unknown in estimation studies) and t is the (scalar) time variable.
System measurement vector is assumed to be of the form [6, 7]

y = h(x, z, p, t) . (3)

The parameters (p) are to be estimated from measurements (y);
there typically exists prior information about individual
parameters, often in the form of plausible ranges for each. The
least-squares optimisation formulation of the identification
problem is the most prevalent in the literature by far. In that case,
the key quantities are parametric sensitivities whose dynamics is
described by the following equations:

d
dt

∂x
∂p = ∂ f (x, z, p, t)

∂x ⋅ ∂x
∂p + ∂ f (x, z, p, t)

∂z
⋅ ∂z

∂p + ∂ f (x, z, p, t)
∂p ;

(4)

0 = ∂g(x, z, p, t)
∂x ⋅ ∂x

∂p + ∂g(x, z, p, t)
∂z ⋅ ∂z

∂p + ∂g(x, z, p, t)
∂p ; (5)

∂h
∂p = ∂h(x, z, p, t)

∂x ⋅ ∂x
∂p + ∂h(x, z, p, t)

∂z ⋅ ∂z
∂p + ∂h(x, z, p, t)

∂p . (6)

These equations are linear in terms of sensitivities, but the matrices
involved vary along each system trajectory. In the multivariable
case, the overall problem dimensionality can grow quickly as, for
example, ∂x/∂p = ∂x/∂p1 ⋯ ∂x/∂pi ⋯ ∂x/∂pp

T and
∂x/∂pi is an n-dimensional vector (p is total number of uncertain
parameters and n is total number of state variables). Details about
DAE modelling of a doubly-fed induction generator (DFIG) and a
transmission network are in the Appendix.

3 Parameter estimation
Equation (6) determines the (m × p)-dimensional (m is total number
of available measurements) Jacobian matrix Jp(t) = ∂h(t)/∂p, or
the matrix of first partial derivatives of system measurement vector
(3) with respect to the parameter vector (p) at each time point. In
the neighbourhood of true parameter values, the full Hessian
matrix of second derivatives is well approximated with
Hp(t) = Jp

T(t)Jp(t), which is symmetric and positive semidefinite
(all its eigenvalues are real and non-negative). Consider the case
when Hp(t) is singular with a single eigenvalue at 0; then the
variation of parameters along the corresponding eigenvector cannot
be detected from measurements. Typically Hp(t) is not exactly
singular, and nearness to singularity is measured by the condition
number κ(Hp), which for a symmetric and positive matrix is the
ratio of the largest (λmax) to smallest eigenvalue (λmin) [6].

There are important consequences of the Hessian near-
singularity. The first is that the solution of DAEs (1) and (2) varies
much more slowly in some parameter p directions than in others.
The second is that the vector p is poorly estimated in directions
where the curvature is small (relative to directions with high
curvature). Numerous literatures [3, 6–8] state that all parameters

cannot be estimated together in typical cases. In our work, the ill-
conditioned parameters are detected using participation factors of
Hp(t) [11].

4 Information geometry, semi-global and global
sensitivities
It has been shown recently that for understanding the global
properties of models and for advancing numerical techniques for
exploring them, it is beneficial to focus on data (measurement)
space rather than parameter space [17, 18]. This shift in viewpoint
is known as information geometry, since it combines information
theory with differential geometry, and it is a natural mathematical
language for exploring parameterised models [19]. The foundation
of the approach is the interpretation of a model as a manifold
embedded in the space of data, known as the model manifold. The
key features of the approach are:

• There is no information loss, since the manifold retains
information about all model predictions [17, 18]. In contrast, the
cost surface in parameter space condenses the high-dimensional
quantities such as the prediction and measurement vectors into a
single number – the cost.

• Information geometry separates the model (the manifold
embedded in data space), from the data to which it is being fit (a
point in the data space [17, 18]). This is a useful abstraction,
allowing study of intrinsic properties of the model regardless of
any particular experimental observation. In contrast, the cost
surface in parameter space is a function of, and often very
sensitive to, the observation.

• The set of points that constitute the model manifold is the same
regardless of possible model re-parameterisations [17–19]. The
parameters are not disregarded completely, since they act as
coordinates on the manifold.

• The Riemannian metric on the model manifold (describing
differences in predictions of two models that are infinitesimally
apart) is the Fisher information matrix (FIM), i.e. the Hessian
matrix introduced above [17–19]. Information geometry thus
naturally connects the local and the global analysis.

• The language of differential geometry naturally accommodates
the potentially large dimensionality of both the parameter and
the data spaces.

Our procedure complements the more commonly used local
parameter sensitivity analyses with semi-global and global
techniques. Semi-global methods address the inadequacies of local
methods by sampling parameter space in a finite neighbourhood
around the best fit; standard tools include scanning and Bayesian
methods. Information geometry aims to capture the global
properties of models and to numerically explore them. The main
idea is to consider a model as a manifold embedded in the space of
data. Since the information geometric approach has been recently
described in considerable detail elsewhere, both for the general
modelling case [17, 18], as well as for power systems specifically
[10, 11], we omit a detailed description here. Instead, we focus on
the key quantity that will be used in this paper: geodesics.

Geodesics are distance minimising curves, i.e. analogues of
straight lines, on curved surfaces. They are found as the
(numerical) solution to a second-order ordinary differential
equation in parameter space (while utilising quantities from the
data space)

∂2pi

∂τ2 = ∑
j, k

Γ jk
i ∂p j

∂τ ⋅ ∂pk

∂τ ; Γ jk
i = ∑

ℓ, m
(I−1)iℓ ∂ym

∂pℓ ⋅ ∂2ym

∂p j∂pk . (7)

where Γ are known as the Christoffel symbols [11], which are
expressed in terms of the parametric sensitivities in (4)−(6) and I is
the FIM which is well approximated by the Hessian. The parameter
τ is the arc length of the geodesic curve as measured on the model
manifold, i.e. in data space. Notice how the model provides the
connection between the parameter space and data space through the
Jacobian matrix Jp(t) = ∂h(t)/∂p as calculated in (4)–(6). Further
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note that the Christoffel symbols involve the second-order
sensitivities that are found by taking another derivative in (4)−(6).
We do not give an explicit formula because, although the
derivation is straightforward, the result is lengthy and does not give
any new insights. Furthermore, because we evaluate these
sensitivities using automatic differentiation [11], these expressions
are not explicitly needed. There is a technical subtlety in the
evaluation of (7) that is critical for our approach to be tractable for
large models. As the second derivative of the observation vector is
contracted twice with the geodesic velocity vector (i.e. the sums
over indices j and k in (7) form two ‘dot products’ with the
geodesic velocities and the array of second derivatives), only a
directional second derivative is needed, which can be calculated
efficiently as in [11].

Solutions to the geodesic (7) are calculated using standard
methods for numerically integrating initial value problems. The
geodesic is found by first selecting initial parameter values and an
initial direction in parameter space (∂p/∂τ). In this example, we
take these to be the ‘true’ parameter values and the eigenvector of
the FIM with smallest eigenvalue (we use quotes to denote that
these ‘true’ parameter values are not necessarily the true values
used to generate the data; they are the starting point of a geodesic).
Our global analysis requires starting from a variety of initial
parameter values and directions. Next, we numerically solve the
model DAEs (1) and (2), the sensitivities (4)−(6), and the second-
order sensitivities in the direction of ∂p/∂τ. These quantities are
used to construct the Jacobian matrix (Jp(t) = ∂h(t)/∂p), the FIM
matrix I = Jp

TJp, and the geodesic acceleration (7). Next, we
numerically solve (7), evaluating the model equations and first-
and second-order sensitivities at each step of the integration. The
geodesics extend the parameter identifiability analysis of the
MCMC. The geodesic curves are parameterised by the proper
distance on the model manifold, i.e. by changes in model
behaviour. When geodesic curves extend parameter values to zero
or infinity in a finite distance on the model manifold, the
corresponding parameter is susceptible to identifiability problems.

A key observation from information geometry is that the model
manifold for energy systems (similar to models in many other
fields) is bounded. Furthermore, the differential structure on the
boundary (i.e. cusps and edges) naturally divides the boundary into
a hierarchy of cells. The relevant structure is similar to a polygon –
a hierarchy of faces, edges, vertices – generalised to higher
dimensions (i.e. a polytope). Unlike a traditional polytope whose
faces and edges are flat, the faces and edges of the model manifold
are typically curved, but are smooth. The manifold is therefore
equivalent to a polytope in the differential topological sense, i.e.
equivalent under diffeomorphisms.

The faces of the model manifold occur when parameters can
vary over their entire physically allowed range, i.e. take on extreme
values, without the model predictions becoming infinite. To

illustrate consider an example in which a dynamical system
modelled as a set of differential equations has parameters
associated with several relevant time scales, a common occurrence
in power systems. The limit in which a single time scale becomes
zero, the model becomes a set of differential-algebraic equations
through a singular limit. The resulting DAEs model corresponds to
a face on the model manifold. An alternative singular limit in
which a different time scale becomes zero (leading to a different
set of differential-algebraic equations) corresponds to a different
face of the model manifold.

The faces of the model manifold are particularly relevant for
parameter identifiability analysis. If the observed data are not
sufficiently informative, the confidence region may extend to the
boundary of the model manifold. Since the manifold boundary
maps to extreme values of the parameters, the data effectively
place no constraints on the allowed parameter values, i.e. the
confidence region of one or more parameters may be infinite. If
this is the case, then we say the parameter is practically
unidentifiable.

5 Application
We have developed a Matlab-derived simulation environment,
which considers stability-related models in the DAEs based form
(1) and (2). Our environment is based on PSAT, which is a suite of
freely available Matlab routines well documented in [20], to which
we have added our code for evaluation of measurement
sensitivities (in Matlab) and for computational differential
geometry (in Julia). Our Matlab code is general in the sense that it
allows for a variety of on-line measurements: rotor angle and
speed, nodal active and reactive power injections, nodal voltage
magnitude and angle, branch active and reactive flows, and branch
current magnitude.

Original IEEE 14-bus test system [20] is modified to include
DFIG (capturing prevalent type of wind plants today), DDSG (used
by industry to model solar plants and a new generation of wind)
and SGs (describing conventional units and interconnections) as
shown in Fig. 1. Detailed analyses for SG and DDSG parameter
identifiability from the information geometric perspective are
presented in [10, 11] and [12], respectively. In this paper, we study
DFIG with added farm-level proportional–integral (PI) controllers
to achieve responsiveness to system operator requests [13, 14]
(please see the Appendix for details). 

Input parameters for analysed DFIG are as follows:
Vn = 13.8 kV, rs = 0.01 pu, xs = 0.1 pu, rr = 0.01 pu, xr = 0.08 pu,
xμ = 3 pu, Hm = 3MWs/MVA, Kp = 10, Tp = 3 s, Kv = 10,
Te = 0.01 s, R = 75 m, np = 4, nb = 3, nGB = 0.01123596,
Pmax = 1 pu, Pmin = 0, Qmax = 0.7 pu, Qmin = − 0.7 pu, Te2 = 0.005 s,
kp1 = 1, ki1 = 0.1, kp2 = 1, ki2 = 0.1 and Qref = 0.1, where (other
parameters are described in Appendix) Kv is the voltage control
gain; R is the rotor radius; Np is the number of poles; Nb is the
number of blades; nGB is the gear box ratio; Pmax, Pmin are maximum
and minimum active power, respectively; Qmax, Qmin are maximum
and minimum reactive power, respectively.

5.1 Local sensitivity analysis

In the case of DFIG from (8) and (9) each unit (assumed DFIG
driven) has six states (ωm, θp, x1, ird, x2 and irq) and one algebraic
variable [Pw

∗ (ωm)]. We classify the uncertain parameters into four
groups: (i) electrical (Te, xs, xμ, and Te2), (ii) mechanical (Hm and
Tp), (iii) control (kp1, ki1, kp2 and ki2), and (iv) setting parameters
(Qref). Available measurements for the DFIG resource are the rotor
angle (δ) and speed (ω) [Note that the rotor angle cannot be
measured directly. However, the indirect methods where the rotor
angle is calculated from on-line measurements of active/reactive
powers and voltage in connection point can be applied (e.g. see
[21, eq. (8)].)], the real and reactive powers (Pg and Qg,
respectively), as well as the terminal voltage magnitude and angle
(V and θ, respectively).

In the case of parameter estimation for a single machine from
local measurements, we can remove the algebraic equations

Fig. 1  Modified IEEE 14-bus test system with three types of resources (SG,
DFIG, and DDSG)
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(denoted with g in (9) in Appendix) altogether; the algebraic
variables z (1)–(3) still remain (V, θ for network buses and other
for resource units as described above). In order to demonstrate
salient features of our method on a model that is relevant, but
straightforward enough for tracking key relationships, we focus on
the six differential equations on DFIG example (denoted with f (8)
in Appendix).

However, in actual power systems (also in the analysed
modified IEEE 14-bus power system test example), there exist
additional dynamical components (exciters, automatic voltage
regulators, steam/wind turbines etc.), as well as multiple generators
and loads in buses. A single DFIG unit described by f in (8) would
see these other differential/algebraic components through variation
in the wind power [Pw

∗ (ωm)] and in the complex voltage in the point
of connection (represented by V and θ). For simplicity, we assume
that interface variables for DFIG in bus 6 (that are Pw

∗ (ωm), V6 and
θ6) are known functions of time. This, of course, is an
approximation for a multi-machine system, but it allows direct
comparison with numerous references that focus on a single unit.

We start transients in sensitivities following inadvertent opening
of the line 2–4 (see Fig. 1), which is reclosed after 200 ms. For
example, the transient variations of the voltage magnitude and
angle at bus 6 (where DFIG is connected) are ∼4% and 20°,
respectively. Our repeated analyses with different line opening
locations and power system's loading levels have yielded the same
qualitative and quantitative results. The issue of robustness of our
procedure to changes in measurement structure has been addressed
in [11] for the case of SG.

In Table 1 we present the eigenvalues, condition numbers and
participation factors for different uncertain parameter sets. The
sloppiness of most of the uncertain parameter sets used is clear. 

If we consider, for example, the control parameters, it is clear
that kp2 and ki2 are harder to identify, as they dominantly participate
in smallest eigenvalues. This is important, as modal analysis from
[13, 14] has already established the key importance of control
parameters in quantifying wind farm effects on the power system.
Please note that [13, 14] have focused on dynamics of the state,
while our emphasis is on parameters, providing a complementary
set of conclusions. Our global analysis will provide additional
insight into root causes of this challenge.

5.2 Semi-global and global analysis

We have generated artificial data for a set of ‘true’ parameter
values and performed a Markov Chain Monte Carlo (MCMC)
sampling of the posterior distribution for the model fit to the data.
Our MCMC sampling was performed using the ‘affine invariant
MCMC ensemble sampler’ of Goodman and Weare [22]. For the
analysed type of distributed resource (DFIG) projecting the cloud
of points onto each pair of parameter axes typically results in a
cloud that is not elliptical (see Fig. 2). Deviations from an elliptical
cloud indicate that a simple local analysis will not capture many
important structural features of the model.

Consider for example, the cloud of the kp2 and ki2 cross-section
(lower-right in Figs. 2 and 3) which we have seen participating
significantly in the smallest eigenvalues and that will be the focus
of our global analysis below. The Bayesian sampling suggests that
both parameters are unidentifiable from below, i.e. they can be
taken to zero without a substantial change in the model behaviour.
However, these non-identifiabilities are not independent – taking
both parameters to zero results in drastic changes to the model's
predictions, as seen by the value of the criterion in Fig. 3, lower
left. The reason for this is that the cost surface has a long-narrow

Table 1 Condition numbers [κ(Hp)], eigenvalues (λi), and participation factors (pki) for characteristic sets of uncertain
parameters
Uncertain parameters Condition numbers,

κ(Hp)
Eigenvalues, λi Participation factors, pki

electrical parameters: Te, xs, xμ, Te2 6.1 × 108 8.43 × 107 0.0000; 0.0021; 0.0011; 0.9968

8.02 × 107 0.0018; 0.1508; 0.8474; 0.0000

2.68 × 1010 0.0011; 0.9953; 0.0010; 0.0026

5.21 × 1016 0.9974; 0.0000; 0.0026; 0.0000

mechanical parameters: Hm, Tp ∞ 0.00 0.5000; 0.5000

4.84 × 107 0.5000; 0.5000

electrical and control parameters: Te, xs, xμ, Te2,kp1, ki1, kp2,
ki2

5.95 × 1011 86,050 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00;
1.00

251,838 0.11; 0.42; 0.07; 0.39; 0.00; 0.00; 0.00;
0.00

2,950,604 0.07; 0.25; 0.06; 0.59; 0.01; 0.03; 0.00;
0.00

1.04 × 108 0.00; 0.00; 0.00; 0.00; 0.95; 0.05; 0.00;
0.00

3.39 × 109 0.00; 0.01; 0.00; 0.01; 0.06; 0.91; 0.01;
0.00

2.67 × 1010 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.99;
0.00

8.11 × 1012 0.75; 0.24; 0.01; 0.00; 0.00; 0.00; 0.00;
0.00

5.11 × 1016 0.07; 0.07; 0.85; 0.00; 0.00; 0.00; 0.00;
0.00

control parameters: kp1, ki1, kp2, ki2 9,688,780.7 2.54 × 106 0.0000; 0.0000; 0.9072; 0.0928

1.14 × 107 0.0000; 0.0000; 0.0928; 0.9072

1.19 × 1012 0.9072; 0.0928; 0.0000; 0.0000

2.47 × 1013 0.0928; 0.9072; 0.0000; 0.0000

control parameters: kp2, ki2 44.41 5,971,094 0.9705; 0.0295
265,203,912 0.0295; 0.9705

setting parameters:Qref 1.00 6.43 × 107 1.0000
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canyon that makes a sharp turn near the centre of the kp2 and ki2
plane in Figs. 2 and 3. Thus, if one carefully tunes kp2, then the
parameter ki2 becomes unidentifiable and vice-versa. This non-
linear effect cannot be described by a covariance matrix, but is
clearly visible in the MCMC sampling clouds of Figs. 2 and 3. It is
also reflected in the geodesic paths and we consider shortly. 

We complement this semi-global analysis with a global analysis
based on information geometry. As mentioned above, relevant
structures are analogous to faces on a high-dimensional polytope.
We identify these faces by numerically constructing multiple
geodesics on the model manifold (the process is described in more
detail in [10, 11]) originating from random positions and with
random velocities on the model manifold. The geodesics terminate
at faces of the model manifold. By inspecting the parameter values
along the geodesics curves, we infer the limiting case of each
manifold face. In this way, we identify all of the faces of the model
manifold.

As a simple illustration of how these ideas and concepts come
together to produce a useful insight into model behaviour, consider
Fig. 3 in which we demonstrate with a pair of parameters for which
the non-linearities in the model are particularly pronounced: kp2,
ki2. We use the model to generate artificial data. Next, we fix the
values of parameters kp2 and ki2 and vary the remaining parameters
to minimise the difference between the model behaviour at the
fixed values of kp2 and ki2 and the artificial data. This process is
repeated for different values of kp2 and ki2. The colours in Fig. 3
represent the sum of squares difference between the model
behaviour and the artificial data at each kp2, ki2 value; in statistics
language, this is known as a pairwise likelihood profile. The green
dots correspond to the Bayesian sampling from Fig. 2. The black
lines are geodesic curves originating from the ‘true’ parameters.
Notice that the geodesics naturally align with the local structure of
the cost function and are therefore attracted to the limits ki2 → 0
and kp2 → 0. Indeed, these two limits correspond to faces on the
model manifold.

For the case of the DFIG with eight electrical and control
parameters, we identify ten faces, each of which corresponds to a
different unidentifiable parameter in the model. We represent these
faces as limits. For example, we find that a particular face
corresponds to the limit ki2 → 0. This notation indicates that the
parameter ki2 is unidentifiable from below (notice the agreement
with the MCMC sampling above) and that the corresponding
reduced model without this parameter is constructing by taking the
limit ki2 → 0 with all other parameters are held fixed. Similarly, we
find the following faces: kp2 → 0, Te2 → 0, xμ → ∞, xs → 0,
Te → 0, ki1 → 0, and kp1 → 0.

The two remaining limits are more subtle and require further
explanation. We find the limit ki2 → ∞, kp2 → ∞, and Te2 → ∞.
However, these are not three independent limits. Rather, they
reflect a structural correlation in the uncertainty of these
parameters. To make this explicit, we introduce new parameters
k
~

i2 = ki2/Te2 and k
~

p2 = kp2/Te2. In this new parameterisation, the
limit takes the form Te2 → ∞ with the new parameters k

~
i2 and k

~
p2

remaining finite. We refer to k
~

i2 and k
~

p2 as the identifiable
combinations. We also find that ki1 → ∞, kp1 → ∞, and Te → ∞
with k

~
i1 = ki1/Te1, k

~
p1 = kp1/Te the identifiable combinations.

Sensitivities of time responses of voltage magnitude and angle in
DFIG connection bus to parameters of PI controller (kp1, ki1, kp2,
and ki2) are illustrated in Fig. 4. Sensitivities of time responses of
DFIG output active power to parameters of PI controller (kp1, ki1,
kp2, and ki2) are illustrated in Fig. 5. The local analyses tell a
complementary story – the Hessian is ill-conditioned (0.8 × 1012),
without a clear gap in the eigenvalues, and the participation factor
analysis [16] identifies ki2 and Te2 as the dominant in the smallest
two eigenvalues. Similarly, the subset selection method [6] looks at
the singular value decomposition of the Jacobian, and identifies kp2

and Te2 as the least identifiable parameters. 
The two faces described in the previous paragraph are

interesting, because they result from a non-linear correlation
among the parameters. One of the useful insights to be gained from

MCMC sampling clouds, such as those above, is similar
correlations among parameters. As the dimensionality of the
parameter space grows, there arises the potential for high-
dimensional correlations similar to those described above. It also
becomes increasingly difficult to identify these correlations from
two (or even three)-dimensional projections. In contrast, the
geometric analysis that we describe identifies these correlations in
a systematic and scalable way.

The global analysis just described has several features that
naturally complement the local and semi-global analysis. We here
focus on three key observations. First, the analysis is global. The
method identifies all of the potentially unidentifiable parameters. If
the same model class is used to model a different unit under
different operating conditions, then the local and semi-global
analyses must be repeated. In contrast, the global approach
identifies all of the potentially unidentifiable parameters that could
arise for these scenarios and potentially could be used to guide
repeated local or semi-global analysis. Second, the geometric
analysis identifies high-dimensional correlations among parameters
in a scalable way. Finally, the geometric analysis makes clear that
practically non-identifiable parameters are not a pathology that
results from a poor model choice or bad data, but is rather an
intrinsic consequence of the mechanistic (physucal) structure of the
model. It further gives insights into how to construct grey-box,
reduced models (a method known as the manifold boundary
approximation method, described in [11]) appropriate for a given
circumstance.

6 Conclusion
This paper describes a new class of system identification
procedures that are well matched to electric power systems with
distributed resources. The approach builds on computational
advances in differential geometry, and offers a new, global
characterisation of challenges that are frequently encountered in
identification of dynamic models in electric power systems. In
particular, we use information geometry to develop global
sensitivity analysis of differential-algebraic equation models for
DFIG-based renewable resource with proportional–integral–
differential controller which today dominate wind energy systems.
Our procedure characterises the key difficulties in identifying the
system parameters (especially in the control loop of a wind unit)
and quantifies all possibly unidentifiable parameters. It can be used
together with [11, 13, 14] to determine low-order equivalent
models for wind farms. Our recommendations for identifying
models of large systems are conceptually described in [10], with
key system modes serving as means to piece together descriptions
of subsystems.
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Fig. 2  Point clouds drawn from an MCMC sampling of the posterior distribution showing pairwise correlations among parameters. Clouds that are not
elliptical indicate that a simple local analysis will not capture many important structural features in the credible region

 

Fig. 3  Illustration of the relationship between likelihood profiles, Bayesian sampling, and model manifold geodesics. The background colour corresponds to
the sum of square difference between model behaviour for fixed values of kp2 and ki2 with the remaining parameters optimised to minimise the difference.
Green dots are a Bayesian sampling. Black curves are geodesics originating from the ‘true’ parameter values
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Fig. 4  Time responses of voltage magnitude and angle in DFIG connection bus to parameters of PI controller
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9 Appendix
 
Typical DFIG configuration used for renewable energy resources
and network model are described in sequel [20, 23].

9.1 Doubly-fed induction generator

Pitch angle control loop, speed/active power control loop, and
reactive power control loop are shown in Figs. 6–8, respectively,
while differential (motion equation and corresponding control
loops) and algebraic equations for DFIG are described,
respectively, as

Fig. 5  Time responses of DFIG output active power to parameters of PI controller
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f ⇒

dωm
dt = τm − τe

2Hm

dθp
dt = 1

Tp
[Kpϕ(ωm − ωref) − θp]

dx1

dt = τm
∗ − Pg

ωm
= Pw

∗

ωm
− Pg

ωm

dirq
dt = 1

Te
kp1 τm

∗ − Pg
ωm

+ ki1x1 − irq

dx2

dt = Qg − Qref

dird
dt = 1

Te2
(ir, ref − ird) = 1

Te2
[kp2(Qg − Qref) + ki2x2 − ird]

; (8)

g ⇒ pw
∗ (ωm) =

0, if ωm < 0.5
2ωm − 1, if 0.5 ≤ ωm ≤ 1
1, if ωm > 1

, (9)

where

τm = (Pw/ωm);

τe = xμ(irqisd − irdisq);

Pg = vsdisd + vsqisq + vcdicd + vcqicq;

Qg = vsqisd − vsdisq + vcqicd − vcdicq;

isq = rs/(rs
2 + (xs + xμ)2) (xs + xμ)/rs( − xμirq + vsd) − xμird − vsq ;

isd = ((xs + xμ)isq + xμirq − vsd)/rs .

9.2 Transmission network model

Matrix and complex form of active/reactive bus injection balances
is

0 = VY∗V∗ − VI(x, V), (10)

or algebraic active and reactive bus injection balances,
respectively, are

Pinj = ∑
j = 1

N
ViV j Gi jcos(θi − θ j) + Bi jsin(θi − θ j) ; (10a)

Qinj = ∑
j = 1

N
ViV j Gi jsin(θi − θ j) − Bi jcos(θi − θ j) , (10b)

where

V = diag{V1 V2 … VN}; V i = Vie
jθi

Y = G + jB − bus admittance matrix .

Fig. 6  Pitch angle control loop for DFIG
 

Fig. 7  Speed/active power control loop for DFIG
 

Fig. 8  Reactive power control loop for DFIG
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