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ABSTRACT

IDENTIFYING AND REMOVING SLOPPY PARAMETERS IN UNDERWATER

TRANSMISSION LOSS MODELS

Hadassah B. Griffin

Department of Physics and Astronomy

Bachelor of Science

Underwater transmission loss profiles can be used by machine learning systems

to identify the type and characteristics of an ocean seabed. When the machine

learning system’s underlying calculations are based on a physical model, its

predictions become more accurate. However, some transmission loss models

are sloppy, meaning that some parameters in the model have a large uncer-

tainty when the model is fit to data. These parameters with large parameter

uncertainty are “sloppy“ parameters, which can be removed from the model

without significantly changing the model’s predictions. Reducing a transmis-

sion loss model to one with fewer parameters yet approximately the same pre-

dictions can improve a machine learning system’s performance. I was tasked

with identifying and removing sloppy parameters from the transmission loss

models for five seabeds. By using manifold boundary approximation methods,

I successfully reduced three of the five seabed models.
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Chapter 1

Context and Motivation

1.1 Machine Learning and Transmission Loss Mod-

els

The acoustic method of analyzing passive sonar has been used by scientists to study

ocean characteristics such as ocean depth, sediment type, and the number of sediment

layers in a given seabed. Passive sonar refers to analyzing ambient ocean noise, which

can come from various sources such as waves crashing on the ocean surface, ship

noise, and biological activity [4]. Approaches to interpreting passive sonar information

include matched-field processing, image-processing based techniques, and machine

learning algorithms [5].

The latter approach for analyzing passive sonar has been the method of choice

for the underwater acoustics research group at Brigham Young University (BYU).

In a machine learning analysis approach, a computer algorithm is given test data

to train with. The algorithm tries to recognize patterns and relationships within

the training data in order to make more accurate predictions when given a newer

data set. The underwater acoustics group uses machine learning to take passive

1



1.1 Machine Learning and Transmission Loss Models 2

sonar data and use that data to identify seabed types and the number of sediment

layers in a given ocean environment [6]. This machine learning approach can be

useful for cases in which it is difficult to take in situ measurements of a given ocean

environment, but we still want to have information about the environment itself.

One of the passive sonar data sets analyzed by the machine learning systems are

transmission loss profiles. Transmission loss profiles are contour plots that show how

sound intensity changes over a range of space at a given frequency. (See, for example,

Figure 1.1.) As the machine learning system works on identifying and learning what

a particular environment is like based on the transmission loss profile, it also tries

to identify characteristics of the environment. For example, the system can try to

identify how close a ship passes by, or what type of sediment the seabed below is [5].

If we treat the environment like a model, the characteristics of this environment are

like the parameters of a model. Based on the parameters chosen for this modeled

environment, weights (parameters in the machine learning process) are made. After

the learning process is complete for the machine learning system, these weights help

the machine learning identify the environment based on a given acoustic signal (Figure

1.2). Parameters used for transmission loss include the density of the layer that the

sound travels through, the sediment layers on the ocean floor, the attenuation (or

energy loss) of the sound, and the sound speed.

There are challenges, however, with making the machine learning system efficient

at identifying seabeds and what their seabed-specific characteristics are. For example,

two distinct “soft” seabed environments can have the same attenuation values for

their first sediment layer. So, other values have to be taken into consideration to

accurately identify the seabed. A second challenge is that there are limited data sets

for the machine learning system to test on. This challenge can be counteracted by

creating physics-based models that generate similar artificial data. Some researchers
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Figure 1.1 A transmission loss plot for an underwater environment with a
sandy seabed. The x axis represents the distance range from a sound source,
which is located in the top left corner of the plot. The y axis represents the
depth below the sound source. The coloring of the contours represents the
sound intensity. As a sound gets further from the source in the top left corner,
the intensity begins to die away. Image credits given to BYU’s underwater
acoustics research team.

Figure 1.2 A simplified diagram which exhibits how a machine learning
system processes data. Input data is given to the machine, represented by
the red input layer. In the hidden layers, the white circles represent weights.
Based on the training a machine learning system has had, these weights will
have different values and help the system determine what the final output
value or prediction is. The final output layer is represented by the rightmost
rectangle. Image credits [1].
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have already applied this method with their own machine learning systems [5].

To create data based on physical models, the BYU acoustics group used ORCA [7],

a numerical simulation program that can create transmission loss profiles for various

seabed environments and other acoustical factors. ORCA has been successful in creat-

ing training data with known parameter values for each environment. However, after

training on simulated data, the parameter values that the machine learning system

identifies from real data still have uncertainty in them. This inversion process, or the

process by which the machine learning system identifies the environment parameter

values, inherently has some uncertainty.

To counteract this challenge, work has been done by some researchers to quan-

tify the uncertainty in identifying these sound parameters [4]. This quantification

of uncertainty is valuable because it can be used to inform a machine learning sys-

tem which sound parameters can be estimated from an environment and which ones

cannot. This in turn can decrease the run time of the machine learning system’s

learning process, because it will be informed about values that are identifiable for an

environment and that can be reasonably learned. Thus, the machine learning system

will take less time trying to identify parameters that are physically unreasonable to

detect. This is useful in the case of real-time measurements made by those working in

the ocean who need parameter value estimates quicker. Additionally, if the machine

learning system is used to identify sound parameter values, the person requesting the

information can be informed about the value’s uncertainty once it has been quantified.

1.2 Sloppy Models

My research group enters the picture at this point. Dr. Tracianne Neilsen of BYU

tasked us with quantifying the uncertainty in sound parameters in transmission loss
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profiles for different seabed environments. Like the machine learning group, we used

ORCA to generate the data for the transmission loss profiles for different models of

seabed environments. We chose to model gravel, sand, silt, clay, and mud seabeds.

Each model consisted of 11 parameters. More details about these models and the

parameters used will be explained in section 2.1.

Our analysis began by noting that the transmission loss models were sloppy mod-

els. Sloppy models are a complex models that have large parameter uncertainty when

they are fit to data. [8] These complex models also tend to be nonlinear and have

very anisotropic responses to changes in parameters [9]. Anisotropic means that the

magnitudes of values in these spaces will vary, depending on the direction one travels.

As a result of the anisotropies, there are some parameters, by themselves or in

combination with others, that are “stiff” and others that are “sloppy.” Stiff parameters

are ones which cause the predictions of a model to change more as the stiff parameter

value changes. Sloppy parameters, on the other hand, can get shifted around by

themselves or in combination with others and the model predictions do not change

as much. [2].

To analyze the stiffness and sloppiness of parameters, we can use an information

geometry approach. Using information geometry allows us to explore aniosotropies in

the parameter space and to quantify the model’s manifold [8]. To understand what

a model manifold is, consider a model to be a mapping from parameter space into a

data or prediction space. The model manifold is the geometric surface in prediction

space which represents the predictions resulting from all the possible variations of the

parameters. (Figure 1.3). Each dimension or degree of freedom in the model manifold

represents a parameter in the model.

Usually, this model manifold is bounded [8] [2]. The property of model manifold’s

being bounded allows us to measure different distances to the boundaries [2]. These
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Figure 1.3 A graphical representation of mapping from parameter space to
prediction space. Image credits [2].

manifold boundaries represent where parameter values in our model have been taken

to extremes such as negative infinity, zero, or positive infinity, depending on the phys-

ically allowed values for a parameter. Finding and characterizing these boundaries at

extreme values of parameters helps us know how a model’s predictions change based

on the value of a parameter. The behavior of the manifold as parameters are taken to

its extremes informs us if the parameter is sloppy or stiff. Sloppiness and stiffness can

then be quantified to inform us about the uncertainty in a parameter. Additionally,

identified sloppy parameters can be removed based on where they become sloppy in

the model manifold in order to simplify the model.

The information geometry approach that Dr. Transtrum proposed for our research

was manifold boundary approximation method (MBAM). Along with fulfilling the

goal of quantifying parameter uncertainties for the transmission loss model, using

MBAM would allow us to simplify the models by informing us how to remove sloppy

parameters. MBAM has previously been used successfully on models such as loads

for power systems [8] and for biological systems [2] [9].

The “boundary approximation method” part of MBAM occurs when parametric
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Figure 1.4 A generic example of reducing the manifold by approximating
it by its boundary. With each iteration, parameters from the model are
removed. After multiple approximations, the model is be represented as a
hypercorner which still has behaviors of the original model manifold. Image
credits [3].

degrees of freedom of the manifold are removed one by one in a systematic way by

approximating the entire manifold by its boundary. This works since boundaries of an

n-dimensional model manifold are (n− 1)-dimensional manifolds themselves. After a

number of approximation steps, the reduced model is represented by a hyper-corner

of the original model manifold. If the process is done successfully, this reduced model

is a good approximation of the original [8]. An visual example of approximating the

manifold for a generic model is given in Figure 1.4.

An advantage to using MBAM on sloppy models is that it is able to identify sloppy

parameters on a global and local scale. Work on a global scale is useful for identifying

an absolute minimum for nonlinear models, which tend to have multiple minima in

the manifold [2]. Global methods are also useful for identifying the manner in which

to remove the sloppy parameter, and thereby approximate the model. For our work

on the underwater transmission loss model, we planned to first create a computer

program that could get the numerical uncertainty in each of these parameter in the

model. Second, we planned to identify the sloppy parameters that could be removed

from the model. Identifying and removing sloppy parameters successfully can create

a reduced model that has numerically similar results. Accomplishing both of these
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goals would help the machine learning system that is identifying seabed environments

be more informed in its learning process, because the system would know which

parameters can be estimated or not. Thus, its run time performance would improve.

Additionally, the uncertainty on the parameter predictions would be quantifiable.

I was tasked with identifying and removing the sloppy parameters from these

transmission loss models. I used the Jacobians of the model and the Fisher Informa-

tion Matrix to identify sloppy parameters on the local scale of the model manifold. I

then used a likelihood profile method to identify sloppy parameters on the global scale

of the manifold. By using both of these methods, I identified sloppy parameters in

the model under a certain set conditions for our five seabed models. I also identified

the order in which these parameters could be removed from each of the models. For

each reduced model, I quantified the cost difference between the original and reduced

models. Thus, I was able to show how reliable each of the reduced models would be

for their predictions, depending on how many sloppy parameters were removed from

the model. Three seabed models were successfully reduced, one had minor success

for model reduction, and the final was not reduced successfully.



Chapter 2

Methods

To accomplish the goal of identifying sloppy parameters and removing them from the

transmission loss models of different seabeds, I needed to work on the local and global

scale of the model manifold in order to obtain reliable results. As explained before,

manifold boundary approximation method (MBAM) analysis done at the local and

global scales is important in this model reduction process. Local calculations are

performed on the region in the model manifold close to the mapped original value

of a parameter. Global regions extend beyond this region. The local calculations

are computationally faster and can identify potential sloppy parameters that can be

compared against the global scale later. The global scale is computationally slower,

but the results are more reliable. The possible discrepancy between local and global

analysis is due to the fact that local and global features are not guaranteed to be

related for nonlinear models. The nonlinearity of a model can lead to it to having

multiple local minima on its cost surface. This can frustrate numerical methods

searching for the global minima [2]. Therefore, global methods must be used to

validate the locally identified manifold features in question.

In the following sections, I give further details on the transmission loss models, the

9
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mathematical representation of the models, the local scale and global scale methods,

and how well the original models compare with the reduced ones.

2.1 Transmission Loss Model Details

I was tasked with reducing the models for five different seabed environments. As

noted in the first chapter, the ORCA program was used to generate the data.

We selected 11 parameters in our transmission loss model, which had empirically

determined values for each seabed. The parameters and their values for each envi-

ronment are listed in Appendix A. The five seabeds were, in order from hardest to

softest: gravel, sand, silt, clay, and mud. We focused on these seabeds since they

offered a good spectrum of different model types to try.

The basic arrangement through which the sound would travel was a 75 meter

water column, a 35 meter thick layer of the sediment in question, and a half-space,

or basement layer, of sediment. The half-space layer is present to ensure that the

transmission loss calculation is numerically bounded and is representative of the at-

tenuation of sound deep below the sea floor. An example of the basic environment

set up is shown in Figure 2.1.

Other important parameters in our data simulations are as follows. The water

above the seabed was modeled as an isotropic water column so that there would be

no sound refraction in the water. This was chosen so that we could just focus on

the effects of the seabed’s sediment on the sound propagation. A frequency of 100

Hertz (Hz) was used for the sound source. Preliminary analysis of the seabed models

done by Mackenzie Allen, a student in Dr. Transtrum’s research group, identified this

frequency as one high enough to distinguish when parameters would begin to exhibit

sloppy behavior.
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Figure 2.1 A graphical representation of the model of the sand environment
that we used for our numerical simulations. The water layer, single sediment
layer, and half-space layer (represented by bottom two blocks) are shown.
The values for the 11 parameters used in the model are also shown. The
other seabed environments have a similar arrangement of sediments, but
contain different sediment values. This plot was created by code from BYU’s
underwater acoustics research group.
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The 100 Hz sound source in the model, which simulates the sound that the trans-

mission loss plot is based off of, was positioned 9 kilometers from the array of “re-

ceivers.” These receivers are what approximates the sound from the simulated source.

256 receivers were positioned at evenly spaced intervals at depths of 10 - 74 meters

below the simulated ocean surface. The large array of receivers was created to cap-

ture a continuum of noise from the simulated ocean so that the transmission loss data

would be more complete. The code used to build the model for analysis can be found

in a code repository link in Appendix E, and is entitled “Environments.py”.

2.2 Mathematical Representation of Model and Cost

The analysis of the transmission loss model requires two things: a mathematical

representation of the model, and a method to best fit the model to data.

With regards to the former matter, we mathematically can represent our n-

parameter model like so. Let t be our regressor variable. We have sampled data

points tm with observed behaviors ym and respective uncertainties σm. Our mathe-

matical model is f (t, θ), for parameters θ [2].

With this representation, we can now determine which parameters in the model

create the best fit for our data. One approach to assessing this is to assume that our

model can reproduce the data, with some error term that accounts for discrepancies:

ym = f (tm, θ) + ζm.

Here, ζm are random variables that are assumed to be independently distributed

according to the normal distribution N (0, σ2
m) [2]. We quantify the difference between

the predicted and actual data of the fit using residuals:
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rm (θ) =
ym − f (tm, θ)

σm
. (2.1)

We determine what these residuals are for each θ by finding the parameter values

which minimize the cost function:

C (θ) =
1

2

∑
m

rm (θ)2 (2.2)

The method of minimizing this cost function depends on whether we are doing a

local or global analysis of our mathematical model. For our local analysis, we evaluate

the Fisher Information matrix at the minimized values. More details will be given

about this process in Section 2.3. The global method used the Simplex algorithm to

minimize the cost along a “likelihood profile”. More information on this will be given

in Section 2.4.

2.3 Local Analysis of the Model Manifold: Jaco-

bians and the Fisher Information Matrix

With the model set up, the tools of Manifold Boundary Approximation Method

(MBAM) can be applied. We begin with our analysis at the local scale. The fol-

lowing example will illustrate a simplified way that the manifold can be analyzed

locally. For visualization purposes, a hypothetical 2-dimensional toy model will be

chosen. Refer to Figure 2.2, which shows a cost surface and a contour plot for the toy

model. This cost surface is constructed by values of the cost function (Equation 2.2)

for different parameter values of the model. The axes in this graphical representation

represent values of the two parameters in the model. The center dot represents the

best fit of the model for the two parameter values.
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Figure 2.2 Figure 2.2a shows a cost surface for a 2-D toy model. The surface
values are calculated with Equation 2.2, and change based on the values of
the parameters. 2.2b shows a contour mapping of this surface. The star in
both images represents where the model is optimized for both parameters θ1
and θ2. The denoted widths of the ellipses in 2.2b represent the values of the
diagonal elements of the Fisher Information Matrix (FIM). Figures created
by Michael Mortenson, graduate student of Brigham Young University.

Note that in Figure 2.2b, there are regions where the prediction oval is thicker

and and some where it is thinner. If a parameter moves in a direction that is thinner

for the ellipse, this represents a stiff parameter. It can only be varied a little before

moving the prediction of the parameter outside of the model. On the other hand,

if a parameter moves in the elongated direction of the ellipse, it is in a confidence

region of the contour for longer. This represents a sloppy parameter, which means

that it can be changed more without significantly deviating from the model’s main

prediction.

Since there is a dimension for each parameter in a model on the model manifold,

we have an 11-dimensional object to analyze. Envisioning this object is rather dif-

ficult since (1) we live in a 3-dimensional space and (2) the plots we can make to

represent data in more than 3-dimensions require creative workarounds for each di-

mension you want to add in. Fortunately, there are tools available to help us identify

the information we need in this multi-dimensional prediction space. The tools we

used for local analysis were the Jacobians of the model and the corresponding Fisher
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Information Matrix (FIM).

The Jacobian matrix is a matrix of the derivatives of the cost function of a model

with respect to the parameters in that model [2]:

Jmµ = ∂µrm (2.3)

where rm is defined by Equation 2.1. The first expression on the right hand side is

defined as

∂µ ≡
∂

∂θµ
, (2.4)

which denotes the partial derivatives with respect to each parameter in the model.

The subscripts in Equation 2.3 indicate the positions within the matrix.

The FIM is a square matrix composed of the Jacobian transpose matrix and

Jacobian matrix of a model:

F = JTJ. (2.5)

FIM and the Jacobians are useful tools because they inform about the uncer-

tainty in each parameter value. In the case of Jacobians, we can do a singular value

decomposition on the Jacobian matrix to gain valuable information:

J = UΣV T (2.6)

The symbol Σ in 2.6 represents a matrix whose diagonal contains the singular

values of the Jacobian. The singular values are the square roots of the eigenvalues

of the FIM matrix: σi =
√
λi. V is a matrix whose columns represent the the local

eigenparameters of the FIM with eigenvalues λi = σ2
i . U matrix columns represent

eigenpredictions. The singular values are of note because they inform us how much the
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Figure 2.3 A Fisher Information Matrix plot created for the transmission
loss data for the 100 Hz sand seabed model. The axes represent the dif-
ferent parameters in the model. The color bar shows how correlated these
parameters are with respect to each other. Lighter colors represented higher
correlated parameters. Darker colors represent very uncorrelated parame-
ters. The uncorrelated ones usually are sloppy parameters. Plot created by
Michael Moretenson, BYU graduate student.

the mapped eigenvectors of U stretch in prediction space. Therefore, if the singular

values of the Jacobian have low values, that means that the prediction made by their

respective parameters do not change a lot. Therefore, those particular parameters

are sloppy and have a high uncertainty [2]. The diagonals of the FIM matrix quantify

uncertainty in each parameter. The FIM also informs us how correlated parameters

are to each other within the model. See, for example, Figure 2.3. The brighter colors

on this plot represent higher parameter correlations. The darker colors represent low

parameter correlations.

In our toy 2-dimensional model in Figure 2.2b, there are red brackets spanning

the width of the ellipse of the first contour surrounding the optimal value of the

parameters in the model. This value is the same as 1√
FIMii

, where the indices indicate

the corresponding diagonals of the FIM for each parameter. Within this bracketed

region, the parameter can vary while still yielding the same cost.
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Along with using the FIM to visually and numerically identify which parameters

were more correlated, I used the Jacobians of each model to identify frequencies at

which the highly uncorrelated parameters became sloppy. The Jacobians for differ-

ent seabeds and a range of frequencies were calculated using code contained in the

code repository link in Appendix E entitled “CalculateJacobians.py”. After these

calculations were completed, I created a program, also contained in the repository,

that performed the singular value decomposition on the Jacobians. If the singular

values were below a certain threshold, the parameters were identified as sloppy and

the frequency at which this occurred was noted. This local analysis gave preliminary

guesses for what parameter could be sloppy the global scale.

2.4 Global Analysis of the Model Manifold: Like-

lihood Profiles

With local analysis completed on the manifold by using the Jacobians and the Fisher

Information Matrix (FIM), the next step was to run calculations on the global scale.

We used the global analysis method of creating likelihood profiles of for each

parameter in a given model. A likelihood profile is a cost curve traced out by a

parameter that is held at a fixed value while the rest of the parameters in the model

are shifted around until the minimum cost is found.

We will return to our 2-dimensional toy model example to help us visualize how

this process is done. In Figure 2.4, the yellow ellipse in the center of the plot represents

the analysis that we performed before on the local scale in Figure 2.2b. Notably,

instead of having just ellipses as before, there is a nonlinear canyon shape. This

contour surface is created by error-calculating algorithms that directly calculate the

cost of holding one parameter value fixed and moving around the others in the model.
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Figure 2.4 Figure 2.4a has contours of the cost surface shown. The brighter
colors represent the higher cost interval. The central red dot represents the
best fit of parameters one and two. The black X’s represent values found
when optimizing the model for fixed values of θ1. The cost of the model is
recorded at these locations and used to create a likelihood profile curve like
2.4b. Figure 2.4a originally created by Yonatan Kurniawan, BYU graduate
student.

We are interested in finding how the cost of the function changes as we shift a

parameter value. We take a parameter, in the 2-dimensional toy model case, on

the x-axis of our graph. We fix its value at a point, denoted by the blue dashed

lines on the graph. We then shift the other parameter value on the y-axis around

until a value that minimizes the cost of the model is located, which on these plots is

represented with a black x. We keep shifting our parameter on the x-axis and repeat

this process, recording the minimal cost value as we go. If the optimization of the

y-axis’s parameter is done correctly, the cost values recorded at each step will follow

the shape of the cost canyon.

The cost value at these x’s trace out the likelihood curve. The shape of this cost

curve is informative, because it tells us how the cost of a model changes when a

parameter of interest is held fixed. If we continue to examine Figure 2.4b, we can see

that as θ1 is taken to lower values, the cost flattens out and has a lower magnitude.

On the other hand, increasing the value of θ1 increases the cost of the model. If the

cost has a relatively low magnitude, it indicates that if we take θ1 to an extremely

low value in the model, it becomes sloppy. This then informs us of a possible way
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to remove θ1 from the model. On the other hand, we know that for large θ1 values,

the model differs more between the original and predicted value. That means that θ1

acts like a stiff parameter in that direction. Therefore, we should not take it to high

values if we want to remove it from the model.

Thus, by using a simple error and shifting method to generate the contour plot

and a global optimization method to trace out the likelihood profile, we have two

tools to verify if a parameter in our 2-D toy model is indeed sloppy, as well as identify

values the parameter can be fixed at to reduce the model.

Returning to our 11 parameter transmission loss model, its analysis is more dif-

ficult than our 2-dimensional toy model. In this case, it is better to first calculate

the likelihood values. The contours are calculated for 2-dimensional cross sections of

the model, for two parameters of interest. The likelihood profiles with low costs for

their parameters show us the ones to investigate with the contour plots. We used

our contour plots to verify that our optimization algorithm was working effectively,

as well as check possible ways to remove parameters. Though some parameters can

be removed from the model by fixing their values at an extreme, other parameters

correlate with one another and must be handled differently. An example of this is

where parameters act like a ratio with respect to one another. The contour plots can

help identify this behavior, as is demonstrated in Figure 2.5.

We calculated the contour costs of shifting our original parameter value using the

script in the repository link entitled “CalculateContourCost.py”. We calculated the

likelihood profiles using the script “Calculate Likelihood Simplex.py”. This latter

script used a package called “likelihood simplexMethod.py”, which used the Simplex

method as its global optimization method to minimize the cost function [10] [11]. The

calculated values were plotted using code from “Plot Contour Cost.py” and “Analyze-

Likelihood.py”.
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Figure 2.5 Contour plot of the cost values for shifting the values of ρhsp and
ρ2 in the 9 parameter transmission loss model. The dots represent parameter
values calculated by the optimization algorithm. Notably, the cost contour
and the optimized value agree on a linear relationship for values in the first
quadrant. This indicates that these parameters can be removed from the
model as a ratio. The diverging likelihood-calculated parameter values are
suspected to occur because of some other parameter in the model shifting
the optimal values of these parameters as they decrease in value.

For each full 11 parameter version of the 5 environments, likelihood profiles were

created. The parameter identified with the lowest cost plateau would be selected as

the first to be removed. A reduced model was created for each fixed sloppy parameter,

based on values identified in the likelihood profile. For the reduced model, the process

of creating a likelihood profile of parameters, identifying, and removing continued

until the parameters identified as sloppy from the local calculations were removed.

Contour plots were made at each stage as well to validate the results of the likelihood

profiles, as well as check for parameters that correlated with each other.

At each stage of parameter removal, new best fit parameters were calculated and

used for the reduced model using the code from “Find New Best Fits.py” in the linked

repository in Appendix E. This was done since removing a parameter for the model,

even a sloppy one, can shift the original values in the full model.
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2.5 Analyzing Costs of Reduced Models

After I finished creating the reduced models for transmission loss for each seabed, I

needed to test how well they compared to their original version of the model. I did

this by using the Simplex algorithm [11] to find the optimal parameter values θ of

the reduced model when it was put into a cost function (Equation 2.2). These values

were compared against the data generated for the 11 parameter model.

Data for the comparison was created using the code “DataGenerator.py”. The

model cost comparison was done using the code “Fits.py”.



Chapter 3

Results and Future Work

In this chapter, I explain the results, conclusion, and future work that can be done

with regards to my research. In summary, I was able to identify sloppy parameters.

Using that knowledge, I successfully reduced the transmission loss models for the

seabed environments for gravel, sand, and silt. Clay had some success, while mud

proved to be a difficult model to reduce.

3.1 Results

For the local analysis of the model manifold of the 11 parameter transmission loss

model, we calculated the Jacobian matrices (Equation 2.3). We did a singular value

decomposition (Equation 2.6) on the Jacobian to identify which parameters were

sloppy, based on the singular values. From the Jacobian calculations in a scanning

range of 64 - 256 Hz, for a tolerance of 10−6, we found that the four parameters

αhsp, chsp, ρhsp, and ρ2 became sloppy for the three hardest seabed environments:

gravel, sand, and silt. The clay seabed only had αhsp as a sloppy parameter, and

no other sloppy parameters were detected for the mud seabed. Some details can be

22
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seen in tables 3.1 and 3.2. Tables with the remaining parameters identified as sloppy

from the Jacobians can be found in Appendix B.

Table 3.1 Sand Sloppy Parameters listed

Sand Sloppy Parameters

αhsp 108.9617 Hz

ρ2 150.3648 Hz

chsp 156.8160 Hz

ρhsp 165.8502 Hz

Table 3.2 Clay Sloppy Parameters listed

Clay Sloppy Parameters

αhsp 222.5941 Hz

What is worth noting from these results are that these four parameters appear

consistently in the harder environments. This is useful information because it indi-

cates that there may be a relationship between the model manifolds for the harder

seabed environments where these parameters are sloppy. Therefore, we can have a

good guess on which parameters are sloppy in other seabed models that combine

characteristics of the harder seabeds we modeled.
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Figure 3.2 All likelihood profiles for the 11 parameter mud model.

Figure 3.1 All likelihood profiles for the 11 parameter sand model.

With the local-scale sloppy parameters identified, we could go on to validate that

they are indeed sloppy on a global scale. For the global analysis, the likelihood profiles
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identified sloppy parameters and the recommended order to remove them. Each time

we removed a sloppy parameter, we re-calculated the likelihood profiles of the reduced

model, in case the sloppy parameters of the model shifted around. This changing of

sloppy parameter order for each model reduction occurred in the mud environment.

Table 3.3 shows parameters whose values were fixed to reduce the model.

Table 3.3 Parameters removed in reduced models, as well as value assigned
in order to remove. ρ2/ρhsp indicates a ratio of the two parameters. “()”
indicate that the model was not investigated.

Reductions of 11 Parameter Model

Model Gravel Sand Silt Clay Mud

10 αhsp = 0 αhsp = 0 αhsp = 0 chsp = 106 α1 = 0

9 chsp = 106 chsp = 106 chsp = 106 αhsp = 0 αhsp = 0

8 ρhsp = 101;

ρ2/ρhsp

ρhsp = 101;

ρ2/ρhsp

ρhsp = 101;

ρ2/ρhsp

ρhsp = 101;

ρ2/ρhsp

chsp = 106

7 () () () () α2 = 0

6 () () () () ρ2 = 0

5 () () () () ρhsp = 0

A likelihood profile for a harder environment, sand, is shown in Figure 3.1. In-

teresting results to note are that compared to the local analysis, αhsp generally drops

first for global and local analysis, except for the softer environments of clay and mud.

The removal of the parameters for gravel, sand, and silt occurred in the same order.

Clay switched the order of removing chsp before αhsp, though examination of the like-

lihood profile and contour plot show that their cost plateaus are very close to each

other. Mud behaved quite differently, on the other hand. The sloppiest parameter,

α1, did not appear in local analysis or as a sloppy parameter in the other seabed

environments. See Figure 3.2. According to Dr. Neilsen, this behavior in mud can
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be expected since the sound absorption of mud is smaller.

The reduction of the mud model was the most difficult since the order of plateaus

for the likelihoods changed for each parameter removal. Notably, the magnitude of the

cost plateaus is much higher than the harder environment counterparts. Therefore,

the reductions of the mud model are not as reliable.

With the exception of the mud environment, analysis of the contour plots of

parameters ρhsp and ρ2 showed that these parameters correlated as a ratio. Therefore,

we removed them by fixing ρhsp at a high trial-and-error found value that did not

saturate the numerical approximation. We then set ρ2 as a ratio of this value in the

model calculation. The behavior of the parameters that led us to determine that it

was a ratio can be seen in Figure 2.5.

The contour plots in general agreed with the trends of the parameter values. For

an example, see Figure 3.3. Cases such as the contour plot of ρ2 vs ρhsp (see Figure

2.5), where the optimized parameter values diverge, are suspected to occur since we

are working with a 2-dimensional cross section of an 11-dimensional problem. An-

other parameter could be causing the divergence here, or other minor divergences in

other plots. Dr. Transtrum determined that the divergence in the above mentioned

case was still an acceptable result which did not interfere with the analysis we con-

ducted. We attempted to find the parameter causing the divergence by plotting the

optimized parameter value in a given model one-on-one against the remaining param-

eter values. However, we were unsuccessful in identifying the parameter responsible

for the divergence.

Some parameter values on contour plots appeared to move strangely, but that

occurred in cases where the cost plateau was so flat that the optimization algorithm

appears to be trying to explore to find the best fit.

When comparing the global and local analysis result, it is clear that although the
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Figure 3.3 Contour plot of the cost values for shifting the values of ρhsp and
chsp in the 11 parameter sand transmission loss model. The dots represent
the values of the parameter calculated by the likelihood profile calculation
as it optimized the model. The parameters generally agree with the contour
shape. Note that the lowest contour cost value appears for higher values of
chsp. This agrees with our likelihood profiles, which indicate that chsp must
be taken to higher parameter values in order to reduce the model.

local analysis could predict the majority of the sloppy parameters, we still needed to

do a global analysis to confirm the order that they get removed in. The discrepancy

in the order of removing parameters from both methods is likely due to (1) our local

Jacobians sampled the frequency over a range, and therefore, there are some modes

and frequencies at which a parameter becomes sloppy before others. (2) Our global

analysis sampled a specific frequency, and so if we tested other frequencies, it is

possible that the order of removing parameters would change.

The results of reducing our our model shown in a table in Appendix C. Dr.

Transtrum and Dr. Neilsen determined that a threshold of cost 10−3 for the com-

parisons would determine if the reduced model was acceptable. Gravel, sand, and

silt seabed reduced models were well within this threshold. Clay reduced models,

however, had a cost magnitude of 10−1. Mud reduced models had a much greater

disparity for reduced versions, ranging from cost magnitudes of 101 to 104. In con-
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sideration of the high costs of the likelihood profiles and the absence of identified

dropped parameters from the Jacobians, this is to be expected.

3.2 Conclusions

Based on what we found, we were able to identify four parameters that consistently

were sloppy for all of the seabed models, except for mud. Harder seabeds like gravel,

sand, and silt had lower costs for removing parameters. Therefore, if a machine

learning system is using a reduced model, the approximations will work better for

harder seabed environments.

3.3 Future Work

For future work, we would extend our test model for different frequencies, range of

noise source, sediment layer thickness, and number of sediment layers. This would

be done in order to see how the model manifold changes, as well the model’s corre-

sponding sloppy parameters. By extending our test model, we could create a larger

catalog of sloppy parameter values. These values can be used to inform a machine

learning system about which parameters for transmission loss data are identifiable

for a given seabed, frequency, range, etc. The informed machine learning system can

then produce results that are more reliable, as well as calculate good approximations

relating to transmission loss data in a faster manner than a full-model calculation.

Additionally, the order of dropped parameters can be used to further identify the

structure of the model manifold for different seabed models. The different manifolds

can be compared and contrasted to discover more about the transmission loss model

in general.
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Appendix A

Parameter and Values for Seabed

Environments

The parameters values for each seabed environment are listed in the table below. Be-

fore we used these values to calculate the Jacobians and optimizations, the values were

scaled and made into dimensionless quantities so that they could be compared against

each other. The conversion was calculated by Dr. Transtrum and Dr. Neilsen. It

occurs in the Environments.py package found in the code repository link in Appendix

E.

The written out parameter names, in order of appearance on the table, are: height

of the water layer, height of the sediment layer, sound speed at the top of the sediment

layer, sound speed at the bottom of the sediment layer, density at the top of the

sediment layer, density at the bottom of the sediment layer, sound attenuation at

the top of the sediment layer, sound attenuation at the bottom of the sediment layer,

sound speed in the half-space layer, density of the half-space layer, sound attenuation

of the half-space layer.
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Table A.1

Parameter Values for Seabed Transmission Loss Models

Parameter Gravel Sand Silt Clay Mud

hw 75 m 75 m 75 m 75 m 75 m

h1 35 m 35 m 35 m 35 m 35 m

c1 1800 m/s 1650 m/s 1575 m/s 1500 m/s 1470 m/s

c2 1830 m/s 1680 m/s 1611 m/s 1536 m/s 1506 m/s

ρ1 2.0 g/cm3 1.9 g/cm3 1.7 g/cm3 1.5 g/cm3 1.6 g/cm3

ρ2 2.0 g/cm3 1.9 g/cm3 1.7 g/cm3 1.5 g/cm3 1.6 g/cm3

α1 0.6

dB/m/kHz

0.8

dB/m/kHz

1.0

dB/m/kHz

0.2

dB/m/kHz

0.035

dB/m/kHz

α2 0.6

dB/m/kHz

0.8

dB/m/kHz

1.0

dB/m/kHz

0.2

dB/m/kHz

0.035

dB/m/kHz

chsp 2000 m/s 2000 m/s 2000 m/s 2000 m/s 2000 m/s

ρhsp 2.2 g/cm3 2.2 g/cm3 2.2 g/cm3 2.2 g/cm3 2.2 g/cm3

αhsp 0.25

dB/m/kHz

0.25

dB/m/kHz

0.25

dB/m/kHz

0.25

dB/m/kHz

0.25

dB/m/kHz



Appendix B

Local Analysis Identified Sloppy

Parameters

Remaining tables of sloppy parameters not reported in results section.

Table B.1 Gravel Sloppy Parameters listed

Gravel Sloppy Parameters

αhsp 113.6365 Hz

ρhsp 165.8502 Hz

ρ2 180.3867 Hz

chsp 185.5100 Hz
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Table B.2 Silt Sloppy Parameters listed

Silt Sloppy Parameters

αhsp 89.5690 Hz

chsp 152.4852 Hz

ρ2 154.6354 Hz

ρhsp 163.5440 Hz

Table B.3 Mud Sloppy Parameters listed

Mud Sloppy Parameters

() ()



Appendix C

Cost Results of Model Reduction

Table containing the results of the costs of the models reduced from the original 11

parameter model.
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Table C.1 Costs of reduced models

Cost of Model Reduction

Seabed Parameters Cost

Gravel 10 1.52E-06

Gravel 9 7.67E-06

Gravel 8 1.04E-05

Sand 10 1.48E-09

Sand 9 1.21E-07

Sand 8 2.70E-07

Silt 10 5.23E-10

Silt 9 8.79E-09

Silt 8 4.67E-08

Clay 10 1.03E-01

Clay 9 1.07E-01

Clay 8 2.62E-01

Mud 10 2.56E01

Mud 9 4.95E+02

Mud 8 1.63E+04

Mud 7 1.76E+04

Mud 6 1.41E+04

Mud 5 1.83E+04



Appendix D

Workflow Diagram and

Explanation of the Code

Figure D.1 contains a descriptive work flow diagram that shows the steps taken to

analyze and reduce the models. Each seabed transmission loss model went through

this process. The code corresponding to each step is contained in the code repository

referenced in Appendix E. The script title and order of appearance is indicative of

what step in the analysis the respective code corresponds to.
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Figure D.1 Descriptive work flow diagram of the steps that take place to
reduce the model.



Appendix E

Code Link

The main scripts of code referenced in this paper can be found on the following web

page: https://byui-physics.github.io/main/theses.html.

Note: representative code scripts are the “AnalyzeLikelihood.py” and “Environ-

ments.py”. The former script has different variations based off of it, depending on

the plot I needed. “Environments.py” was adapted for each reduced model. Since

there are multiple versions of these files, the basic script versions are given here.
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