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ABSTRACT 

Modeling Nb3Sn Superconductor Using Ginzburg-Landau Equations 

Braedon Jones 

Department of Physics and Astronomy 

Bachelor of Science 

Superconducting resonance cavities are used in particle accelerators to accelerate beams of 

charged particles to near light speed. The fundamental limit to performance in these cavities is 

the maximum induced magnetic field that the superconductors can expel due to the Meissner 

effect. Traditionally, cavities have been made from Niobium; however, current technology has 

nearly reached the theoretical limit of performance for Niobium-based cavities. To overcome 

these limitations, Nb3Sn is being explored as a potential next-generation material. In actual 

development of Nb3Sn cavities, material defects arise that may limit performance. Time-

dependent Ginzburg-Landau simulate deficiencies to explore if they cause detrimental effects to 

cavity performance. This research focuses on small ‘island’ regions containing deficits of Sn. 

These islands have been observed below the surface in real Nb3Sn cavities after fabrication. This 

research shows that these islands may affect performance if they are near the surface but become 

irrelevant when they are located more than a penetration depth below the interface.  
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1 Introduction 

1.1 Motivation 

Frequently, particle accelerators work through the application of high electromagnetic 

fields. To conserve energy and promote resonance, these fields are maintained in 

superconducting resonance cavities (SRF cavities). This is because superconductors completely 

repel magnetic fields. However, superconducting materials require extremely low temperatures 

to remain in their superconducting state. At temperatures above their critical temperature, 

superconductors act as regular metals, and their utility is lost. Commonly, physicists use 

expensive cryogenic refrigerators to maintain cavities at low temperatures of around two kelvins. 

These factors serve as barriers to the proliferation of particle accelerators around the world and 

the increased study of particles in industry or university environments. Physicists have identified 

Nb3Sn as a potential alternate material of which to construct SRF cavities because of its higher 

critical temperature and other properties. This would reduce costs of particle accelerators; 

however, Nb3Sn is inhomogeneous when made and requires further probing to determine if it is 

a viable replacement candidate.  

1.2 Background 

1.2.1 Meissner Effect 

Superconductors are unique because of the Meissner effect. This is a phenomenon where 

all the magnetic fields are expelled from the superconductor. Sometimes when a material cools, 

not all of the magnetic fields are expulsed, and some fields (vortices) become trapped within the 
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material. When a magnetic field is imposed on a material, surface currents form that act to 

prevent the magnetic field from entering the material.  Another incredibly useful characteristic of 

superconductors is that they have zero resistance. Because of this, the surface currents can 

perpetually exist to expulse all magnetic fields. When a magnetic field is imposed, it 

exponentially decays because of the surface currents. The point where the magnetic field has 

decayed to 1 e⁄  of its original value characterizes the London penetration depth (λ). This 

parameter varies depending on the superconducting material [1]. Some values for λ can be found 

in Table 1. 

Material Hc (tesla) λ (nm) ζ (nm) κ Tc (K) 

Nb .82 50 22 2.27 9.76 

Nb3Sn 30 111 4.2 26.4 18.3 

Sn .003 5.0 240 .021 3.72 

MgB2 74 185 4.9 37.76 37 

Table 2 List of parameters for selected materials. 

1.2.2 Type I/Type II Superconductors: 

When exposed to a high enough magnetic field, the surface currents are not strong 

enough to fully repulse the field, and th exterior magnetic field enters. This leads to the material 

losing its superconducting qualities. Depending on the material, different phenomenon can occur. 

In general, once the material experiences a magnetic field that surpasses the critical field the 

material behaves as a normal metal. For materials characterized as Type I superconductors, any 

penetration of the magnetic field leads to the whole material to immediately behave as a normal 

metal, and this occurs at the superheating field Hsh. For Type II superconductors, a different 

phenomenon occurs. When the applied field is equivalent or above Hsh, the material enters a 
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mixed state where pockets, or vortices, of magnetic field enter. Only in these pockets of 

magnetic field does the material not behave as a superconductor.  The material is said to have 

quenched when a vortex of magnetic field enters the material. When a Type II superconductor 

experiences a field greater than Hc2, the material leaves the mixed state for the normal state, and 

all the material behaves as a normal metal. Figure 1 displays the various states a material can be 

in depending on the applied magnetic field and the value κ. 

What distinguishes Type I superconductors from Type II is the parameter κ, see Table 1, 

which is the ratio of λ and ζ, with ζ representing the Coherence length. The Coherence length 

shows how quickly the order parameter in the Ginzburg-Landau equations vary. A material with 

a κ value below 1 √2⁄  is a Type I superconductor while a material with a value greater than 

1 √2⁄  is a Type II superconductor.  

 In both Type I and Type II there exists a meta-stable state, and this occurs when the 

applied field level surpasses Hc for Type I superconductors and Hc1 for Type II superconductors. 

This is where the material should begin to leave the superconducting state for a normal state but 

does not because of other factors. A metastable state is comparable to when water is heated to 

temperature above the boiling point yet does not boil because of the surface tension of the water. 

[4]. A disturbance is necessary to break the tension and cause the water to boil. For 

superconductors it is favorable for magnetic field to penetrate the material, but the material still 

maintains the magnetic field outside. Some type of disturbance or a higher applied field is 

necessary for the material to enter the normal state. 

Our area of interest is the boundary between the meta-stable state and the mixed state. 

Nb3Sn is a Type II superconductor and experiences the mixed state. Particle accelerators, to 
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maximize performance, operate with fields just below Hsh so that the superconductor remains in 

the meta-stable state. Nb3Sn because of its inhomogeneities could have lower values of Hsh then 

initially thought and this could alter if it is chosen over Nb as the material for SRF cavities.  

1.2.3 Alternate Materials:  

Niobium has been a common material used to produce SRF cavities; however, it has 

reached its theoretical limits in application. Niobium itself is a Type II superconductor. Nb3Sn is 

a Type II super conductor yet has a larger κ value than Niobium. This combined with the fact 

that Nb3Sn has twice as high of a critical temperature as does Niobium, as can be seen in Table 

1, has caused it to be the subject of further study as a potential replacement for Niobium. 

Figure 1 Graph representation of the change in state of a superconducting material depending on 

𝜅 and magnetic field. To specify, 𝜅 is the ratio of penetration depth and coherence length. Type-I 

superconductors occur below a  𝜅 of 1 √2⁄ , and Type-2 occur above 1 √2⁄  [2]. 
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Complications occur because fabricating layers of Nb3Sn on a SRF cavity does not produce 

purely homogenous Nb3Sn. In the process, defects such as grain boundaries and tin deficiencies 

are found within the material. Take note in Figure 2 of how inhomogeneous Nb3Sn is in 

comparison with the Nb substrate.  In determining if Nb3Sn is a viable candidate as a 

replacement, it must be concluded whether these inhomogeneities have a detrimental effect on 

superconducting performance of the whole material. This research particularly investigates how 

Tin island deficiencies effect results. 

Figure 2 Example of a SRF Nb cavity with a layer of Nb3Sn. Notice the grain boundary 

in the red rectangle and the two islands in the red circle [3]. 
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1.3 Previous Research at BYU 

Research consisted of the formulation of the Ginzburg-Landau equations into code through 

a FEM method by FEniCS. After coding, tests were run to ensure the validity of the simulations 

[5]. Parameters and complex geometries were added to help replicate computationally 

superconductors as they occur naturally in SRF cavities [6]. Some research investigated grain 

boundaries [4]. This project studies Sn island deficiencies.  

1.4 Overview 

Particle accelerators utilize electromagnetic fields to accelerate particles. They require SRF 

cavities to contain these fields, and these cavities are made with superconducting materials. 

Niobium is commonly used to construct the cavity, but it has reached its theoretical limit as a 

mateial of the particle accelerator. This, in addition to the super low temperature requirement, 

has caused scientist to look for potential alternatives. Nb3Sn can serve as a great replacement, 

but this needs to be verified, especially since during fabrication islands and grain boundaries 

form. These defects could potentially diminish the performance of the superconductor. To test 

this, the Ginzburg-Landau equations are written into code to simulation performance. These 

simulations will help find the maximum magnetic field level, known as the critical field, where 

Nb3Sn will continue to behave as a superconductor. 
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2 Methods 

Nb3Sn is a potential alternative for Nb in SRF cavities, but during the development of the 

cavity, material inhomogeneities occur, including Sn deficient islands. Previously performed 

quantum calculations determined the superconducting properties of a material, such as the 

London penetration depth and Coherence length. We then combine the material parameters with 

the Ginzburg-Landau model of superconductivity to infer cavity performance. The model is 

implemented computationally on a supercomputer to find the superheating field of a system with 

a given distribution of material parameters. 

2.1 Ginzburg-Landau Equations: 

The Ginzburg-Lambda equations are a phenomenological model of superconductivity. 

They accurately describe a superconductor near its critical temperature Tc. These equations 

originate from a Taylor approximation of the free energy. The equations minimize the free 

energy of the material by taking its variational derivative and equating it to zero. The derivation 

of the equations is better explained in “Introduction to Superconductivity” by Michael Tinkham 

[6]. The primary equation is the following expression for the free energy: 

f =  fn0 + α|ψ|2 +
β

2
|ψ|4 +

1

2m
|(

 ℏ  

i
∇ −

e

c
A) ψ|

2

+
|h|2

8 π
  (1) 

The symbol ψ represents the Order Parameter. When ψ goes to one, it represents when a 

material behaves as a superconductor, but when ψ decreases to zero, this characterizes when the 

material behaves as a normal metal. The mass of the particle is represented by m, the charge by 
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e, and the speed of light by c. The value fn is the free energy when the material acts as a normal 

metal.  The equations also incorporate the total magnetic field h and the magnetic potential A. 

A new form of the equation is found by performing a functional derivative and assuming 

spatial inhomogeneities in material parameters. 

0 =  αψ + β|ψ|2ψ +
1

2m
(

h

i
∇ −

e

c
A)

2

(2) 

Of note here are the material parameters of α and β. For purposes here β is constant since it does 

not vary significantly spatially. The variables α and β play roles in showcasing the 

superconducting material properties of the material. Tinkham has equations to formulate α and 

β:   

α ∝
1 − t2

1 + t2
≈ (1 −

T

Tc
) (3) 

β ∝
1

(1 + t2)2
≈ constant (4) 

The value T is the temperature of the environment and Tc is the critical temperature where the 

material loses its superconducting properties. When T = Tc, α is 0.  Inhomogeneities cause a 

lower Tc and α converges to zero at a lower temperature then does pure substances. Therefore, 

the Sn-deficiency islands have lower values for α. 

For simplicity, α was chosen based off of pure Nb3Sn having higher superconducting 

properties than Sn-deficient Nb3Sn.  This decision will give inexact results but will still produce 

expected patterns for the inhomogeneities. To further the discussion, a set of simulations varied 

the levels of α as will be explained further in chapter 3. 
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2.2 Finite Element Mesh: 

The Ginzburg-Landau Equation equations have no closed-form solutions. We use Python 

to solve these equations computationally on the supercomputer. The code incorporates a Finite 

Element Method (FEM), that discretizes the domain and solves the equations for each point. We 

implement this method in an open-source solver called FEniCs. It has a Python interface to a 

C++ library. This simplifies manual coding while still maintaing faster computations.   

2.3 Alpha Islands: 

As discussed, the scope of this project investigates how defects of the material effect 

performance of superconducting cavities. In these simulations, we consider a region of higher 

material superconductivity surrounded by an area of lower superconductivity. The parameter α 

distinguished the materials from one another. An α value of one characterizes the bulk material 

Nb3Sn. For Sn deficient regions, α is set to a value less than one. Thus, the islands lacking in Sn 

are forced to have an α value less than one, since they have lesser superconducting properties. 

By varying α spatially, we created the island geometry as seen in in figure 1. An ellipse of lower 

α levels is surrounded by a material of pure superconducting properties.  
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Figure 3 This representation shows the varying levels of α- the parameter which determines the 

superconducting behavior of the material. At α=1, the material is purely superconducting, while 

an α of -1 distinguishes behavior of a regular metal.  

2.4 Saddle Node Bifurcation to Locate Hsh: 

With the program in hand, we can solve for the Ginzburg-Landau equations 

computationally. The solver identifies when a material leaves its superconducting state, but the 

purpose of this research is to identify the value of the superheating field (Hsh). Hsh depends on 

the material, as characterized by α. We use saddle node bifurcation theory to determine the Hsh 

of a material. See Alden Pack’s master’s thesis [5] for more details. In steady state, the 

simulation has reached a minimization of the free energy. We then perturb it with a bit of 
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magnetic field and analyze the decay of the perturbation back to a steady state. We infer the 

time-of-decay to equilibrium, τ. The applied field where τ equals zero is the super heating field 

of the material. An extrapolation of the relation of τ and the applied field estimates Hsh. A 

representation of this can be seen in figure 4.

 

Figure 4 This shows a generic case of different simulations ran at different applied magnetic 

fields. The value of Hsh is found when the extrapolation of the orange line crosses the blue line 

held at zero. The extrapolation only uses points that appear linear, which appear closer to zero 

[11]. 

 

For this series of tests, the applied fields that reached a steady state ran from about .65 to .72. For 

simulations greater than .722, the material quenched and reached a mixed state. The saddle node 
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bifurcation method was not used for cases that reached the mixed state. For the cases where it did 

not quench, the method determines the decay rate as the applied field increased. As can be seen, 

τ decreased until it almost reaches zero. Near Hsh, the decay is linear, so by extrapolating the 

linear points we find the value of Hsh, represented by the red star in the graph. 

2.5 Overview 

With this computational development, we can solve the Ginzburg-Landau equations. We 

used a supercomputer because the methods for solving the equations are computationally 

expensive. By varying α, we can distinguish the inhomogeneities of Nb3Sn. Upon reaching a 

steady state, the system is perturbed, and the decay is analyzed to determine at what value of the 

applied field that the decay rate is zero. At this value of the applied field, we can infer this to be 

the value of Hsh. 

3 Results and Conclusions 

With the computational setup, several simulations were made. All the tests consisted of a tin 

deficiency island in the center of a field of Nb3Sn. The tests incrementally varied the magnetic 

field from around zero to past where the expected super heating field would occur. The expected 

super heating fields were calculated by hand, based on the Ginzburg-Landau equations and the 

material parameters. At each level of magnetic field, the island distance from the boundary also 

varied. At each distance and magnetic field level where the material did not quench, a 

perturbation was enforced to distinguish how quickly it would reach a steady state once again. 

This secondary test determines where the theoretical super heating field should be, as influenced 

by the distance of the island from the boundary. Unique situations were then tested. 
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3.1 Results  

3.1.1 Island Size Variations: 

Tin island inhomegenties can come in varying sizes, and shapes, and densities. Initial 

tests consisted of modifying the size of the island in comparison with the rest of the mesh. 

Obviously, a larger island size corresponds to a larger real-life defect. For these tests, the 

comparable island size relies on the values of λ. By knowing the value λ, the life-like values can 

be obtained. Figure 5 shows the data. 

 

Figure 5 A plot of the distance of the island and the Superheating field (Hsh) for different island 

size. On the x-axis, is the distance of the island to the boundary in terms of λ, and the y-axis 

shows the expected super heating field. Notice that for far distances, all the points converge to a 

value around .72. 

 

The plot has distance on the x-axis and the super heating field (Hsh) on the y-axis. The 

distance is determined by how far the top edge of the defect is from the top of the grain boundary 
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measured in units of λ for the specific material. In some cases, part of the defect would be 

exposed and cut off since the deficient island area is outside the superconductor. The negative 

distances in the graph appear since the ‘top’ of the defect is above the boundary. The smallest 

value of the distance is where half of the island ellipse is cut off. In this case, only a shape of half 

of an ellipse has a differing α value from the rest of the mesh. That is why distance starts off with 

negative values. The first island tested would be a half island and would be at a distance of -2. 

(again in terms of λ), since 2 is half of the ellipse’s vertical diameter. The 2x4 island has data 

beginning at a distance of -1, and the 1x2 has data at an initial distance of -1/2. For these 

simultations, the λ of Niobium (50 nm) was used as the basis for units of measurment.  

Hsh is where the superconducting phase shift is found to occur. By previous calculations, 

with a κ of 4, pure superconducting materials are expected to reach a mixed state at a Hsh value 

of about .72. As seen, this is the value that all the tests converged to when far away from the 

boundary, regardless of the size of the island. At greater distances, the size of the island proves 

irrelevant since the material behaves as if no defects were present. At closer lengths, the value of 

Hsh linearly declines, most likely because of the greater amount of island defects in the material, 

but when the defect is no longer exposed (at distances that are greater than the island’s vertical 

radius), it becomes more and more difficult for the magnetic field to enter the material. At longer 

distances, the material continues to behave as a superconductor under higher magnetic fields 

until the Meissner state is compromised. The distance where, in all three island sizes, Hsh begins 

to converge occurs a little below a distance length of two. This point determines where the 

closest island defects can be without loss of performance in the superconductor. When fabricated 

in real life, island defects have yet to be found in ranges lower than the found minimum distance. 
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3.1.2 Alpha Size Variations: 

After performing tests varying the size of the island, simulations were made with changes 

in the parameter α. Refer back to equation 3 of section 2.1 to remember how α specficies the 

superconducting property of the material. When there are greater Tin deficiencies in Nb3Sn, α 

drops further. Simulations were ran with α having values of .75, .5, .25, and 0. Similar ranges of 

distance were used as before, with a consistant island size, 1x2, utilized for all the simulations.

 

Figure 6 Plots of Distances versus Super Heating Field with α differing from 0 to .75. 

 

The same type of behavior as the previous result from the island size variations occurs 

again. At each α level, Hsh diminishes linearly until there is some material between the defect 

and the spatial boundary. At this point, Hsh values begin to curve higher until Hsh once again 

converges to values close to .72. Independent of the parameter α, all data sets clearly converge to 

the same value. As should be noted, lower α values of the island cause poorer superconducting 
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performance at closer distances, where the defect can more easily influence performance. 

Distances further away are unaffected by islands and their α levels. At an α of 0 the simulations 

broke, and results could not be obtained at lower distance levels. When the code ran smoothly 

again at larger distances, the partial data set fit perfectly into the established converging pattern, 

even initially being at lower superheating field values than all the other α values. 

3.1.3 Boundary Condition Variations: 

With the previous results in hand, further tests were employed to confirm expectations. In this 

situation, a parameter called the boundary slope was modified. Boundary slope distinguishes          

how fast a material morphs into the other. Computationally, this is how quickly α changes from 

one value to another. Looking at Figure 7, the boundary slope of 1 shifts more gradually from 

one value to another. The boundary slope of 10 more quickly morphs from one α value to the 

other. Figure 3 also displays a similar island geometry, but this one has a boundary slope of 10

Figure 7 Plots of two different islands, with more gradual variations of α in the left image and more sharp 

in the image on the right. 
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 Testing boundary slopes is important because the script for solving the Ginzburg-Landau 

equations runs into errors or breaks, unless a gradual shift of α is used. This possibly deviates 

from how the materials evolve in real life. Some expeirmentalists have stated that a sudden shift 

is possible, while others have discussed an exponential decay from one material to the next. 

Neither of these thoeries has been proven [8]. Either way, we can still determine if a more 

gradual shift or a steep decline can pose any consequence to SRF cavity performance. 

Furthermore, boundary slope testing will help determine if more efficeint computational methods 

can be used without determinetal effects to the results.  

To introduce a gradual change in α, an error function was utilized, with the high and low 

ends of the function being held at the α levels of the two varying materials.  A smaller boundary 

slope is equal to a gradually slopped error function, while a larger boundary slope has a higher 

rate of change.  

 

Figure 8 Distance vs Hsh with altering Boundary Slope values. At larger distances, the points 

overlap to appear as only one point. 
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As seen in Figure 8, the boundary slope does not play a significant role in influencing the 

value of the super heating field. At higher distances, the results overlap and are difficult to 

distinguish. At smaller distances there is a difference in Hsh between the boundary slope of 1 

and the rest of the values. Based on the results, the optimal boundary slope for running the 

simulations could potentially be 10 or 100 because these values produce the most similar results, 

while still minimizing computational pitfalls.  

3.2 Conclusion 

The goal of this research sought to determine Nb3Sn as a suitable replacement for 

Niobium. Three separate sets of simulations were ran targeting certain variations in experimental 

design. By running tests of changing island size we concluded that the Sn-deficiency defects do 

not pose any threat on performance, as long as the island remains at a sufficient distance. Tests 

altering the superconducting properties (α) of the defecting material were also performed. These 

tests verified that percentage of Tin deficiency plays no role in the performance of the 

superconducting cavity. Furthermore, additional tests were ran to check the validity of the 

boundary slope approach as a solution to potential computational complications with the setup of 

the mesh. 

The graphs of super heating field all contained the same basic pattern, confirming the 

reliability of the methods used to identify the superconducting performance. The convergence of 

Hsh at .72 also served as a great indication of the validity of the used methods. It is encouraging 

to note that islands at longer distances did not cause any detrimental effects on how well the 

material expulsed magnetic fields.  As of now, no islands have been found below distances 
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where Hsh converges. It would be advisable for experimentalists to verify that no islands 

actually exist at distances below the convergence point. 

3.3 Future Work 

There are still many tests and variations of these simulations that still must be solved to 

verify Nb3Sn as an alternate material for Nb. The paramters α and β were used. It would be 

highly beneficial to simulate these results with more accurate material variables that are based on 

physical phenomenon, instead of these more simple values. Some parameters to include as input 

to characterize the material are coherence length, penetration depth, critical temperature, and the 

critical magnetic field. The Ginzburg-Landau equations can be modified to incorporate these 

variables into code. Some progress has been made in our research group in constructing more 

descriptive forms of these equations. 

Likewise, other geometries other than ellipses should be analyzed. Especially those that 

naturally occur by fabrication. One of these geometries could be a layer of Nb3Sn on top of a 

layer of Nb. If proved beneficial towards performance, the layers could provide a more cost-

effective method for fabrication. Also, simulations were performed only in two dimensions. To 

better mimic natural behavior, 3D simulations could prove beneficial for understanding the 

superconducting material. 

Many further studies can be done. Effective mass can be analyzed, as well as variations 

in the temperature gradient. Analyzing even more complex geometries is a future area of study, 

as well as looking at different directions of the external magnetic field. All of these cases aid in 

concluding the utility of Nb3Sn as the next superconducting material to form SRF cavities. 
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