Thermal Measurements Lab: Heating and Cooling of the Cryostat Assembly

1.0 Expected Learning Outcomes

- Design and fabricate a heating coil for use with the aluminum heater block from the machine shop exercises.
- Build and calibrate a practical temperature sensor system to monitor the aluminum heater block.
- Understand and account for systematic errors in experimental measurements.
- Acquire thermal data using a computer-based data acquisition system.
- Develop a simple model for a thermal system.
- Use the acquired data and the model to determine the constants of the thermal system (heat capacity, rate and routes of heat loss, equilibrium temperature).
- Write a technical report describing the thermal measurements and the results of the analysis.

2.0 Lab notebooks

This is the first exercise in Physics 240 that requires the use of a lab notebook. It is strongly recommended that you review the materials in “Your Lab Notebook” (Learning Suite, Content ⇒ Your Lab Notebook). The lab notebook is a significant portion of your final grade since it is a critical part of physics research.

3.0 Introduction

The goal of this experiment is to measure and model the thermal behavior of your cryostat assembly (heater block, cooling rod, and cap) as it is heated and cooled.

There are several steps required to prepare the heater block and the necessary hardware and software before you can begin taking measurements. These steps include building a heater coil on your heater block, developing a method of measuring the
temperature of the heater block, and developing a method of recording the temperature of the block as a function of time using the computer. It is then necessary to analyze those measurements to compare them with a simple model of the thermal behavior of the heater block assembly and determine the thermal constants for that system.

Finally, you will write a report describing your experiment and the results.

In preparation for this exercise, you should read Section 8.1 (THE MEASUREMENT OF TEMPERATURE) in the text. Pay particular attention to Section 8.1.4 (Semiconductor Thermometers).

If you do not have access to the text you can read the short comparison of thermometers found in “A Brief Introduction to Temperature Transducers” (Learning Suite, Content ⇒ Thermal Measurements Lab ⇒ Using a Diode as a Thermometer).

4.0 Equipment

Each group should have one complete cryostat (heater block, cap, cooling rod).

In the storage cabinet in the lab:

- Fluke or Cen-Tech digital thermometer
- thermocouples for thermometers
- plastic storage box (one/group)
- Cen-Tech multimeters
- cardboard toolkit boxes (one/group)
 - needle-nose pliers
 - diagonal cutters
 - wire strippers
- two small screwdrivers
- desoldering pump
- two teasing needles
- scissors
- cardboard boxes of connection wires
 (shared)
- various wire and cables
- soldering iron (one/group)
- various electronic components

In the lab:

- 5 L LN2 (as needed)
- Styrofoam insulating containers:
 - octagonal and rectangular
 - hot plate
- stainless steel cup
- gray/dark brown Tenma or GW Laboratory DC Power Supply, (0-20 V, 0-3 A for 4-lead measurements)

At each station:
5.0 Your report on the experiment

After you complete your measurements and analysis, you will turn in a typed, double-spaced description of the temperature measurement experiment. It is unlikely that you will be able to write an adequate report that isn’t at least two pages long.

Please remember: Most writing assignments are done individually - there is only 1 group writing assignment and this one is not it.

This report is based on a simplified technical report of the type usually used for internal communications or communication with a contractor. It is often not intended for general public consumption, so it is possible to make some assumptions regarding your audience. In the case of this report, you can assume that the reader has some acquaintance with the overall project but not with your specific measurements.

Most descriptions of technical report contents and formats are for the engineering disciplines, but they apply equally well to such reports in the physical sciences. You can search for descriptions of technical reports (search term “Technical Report”). Some potentially useful descriptions would include

- How to Write a Technical Report by Alan Smithee (http://www.physics.byu.edu/faculty/petersonb/Phys240/HowToWriteATechnicalReport-AlanSmithee.pdf) (9 January 2017). Note: I’m not sure where this came from. It is found on many websites and I haven’t found one with any attribution.
- Boris Korsunsky, “The Results Were the Results of Errors, Promoting Good Writing by Bad Example,” The Physics Teacher, vol. 48, pp. 10-11, http://dx.doi.org/10.1119/1.3274349.

We are simplifying this report somewhat by not requiring an Abstract, Executive Summary, Table of Contents, List of Figures, or List of Tables. The report does need to be complete and divided into the following sections as appropriate for your content.

1. **Title Page** (The title of your report and who you are)
2. **Introduction** (What is this measurement about?)
3. Experimental Methods (What did you use to make the measurement? How did you make the measurement?)

4. Experimental Results (This is your data and a description of your data.)

5. Analysis and Discussion (This is a determination of what your data means.)

Some important additional reminders:

- Use units with all data (we really can’t say this too often – it is very important). There are two online documents that are very valuable regarding the use of SI units. The NIST Guide for the use of the International System of Units (https://www.nist.gov/physical-measurement-laboratory/special-publication-811) and Writing with Metric Units (https://www.nist.gov/pml/weights-and-measures/writing-metric-units)
- Use labels for graph axes. These labels should include both what is represented by the axis and the associated units if applicable. Use arrows and describe what is significant on the graphs. A graph (or any other figure) should always include a complete, standalone caption describing the figure or graph.
- Describe any analysis models and approximations completely.
- Indicate uncertainty in your data and subsequent results as accurately as possible.
- Answer all questions that are found in this handout. It is not expected that the answers be given explicitly (i.e., “the answer to question xxx is yyyy.”). It is expected that the answers will at least show up somewhere in the discussion.

6.0 Grading

The grading for this portion of the class will be as follows:

- Heating coil built and characterized – 10 pts.
- Build constant current source for diode temperature measurements – 10 pts.
- LabVIEW VI built to measure temperature and diode correctly calibrated – 10 pts.
- Measure heating and cooling curves, determine C, γ, T_{eq} – 20 pts.
- Lab notebook – 40 pts.
- Report on results – 20 pts. broken out as follows
 - Report format followed – 3 pts.
 - Report clearly written (flow, grammar, spelling, etc.) – 8 pts.
 - Content, questions in the handout answered reasonably – 9 pts.
7.0 Building Models in Experimental Physics

Anytime you interact with the physical world you are building mental models of what you observe. These models help you to analyze and understand those observations. The models can also help to identify underlying assumptions or limitations in your understanding of the observations.

As you progress through measurement and analysis of a system or experiment, it is often necessary to go back and tweak your models as you learn more about the system. You may also find that your models will guide you in revising either the measurement system or the physical apparatus to improve your results. This is a common activity in any experimental project.

You will find that this is also true in both computational and theoretical projects. It is often necessary to go back and modify computer codes or assumptions in your theory (both of which can be described as models) to achieve the desired results.

7.1 Modeling the Measurement Tools

In physics, mental models are often inadequate for a complete understanding. For example, if we wish to make a measurement using a computer and some transducer, we have to understand how the transducer responds to the phenomenon of interest as well as the way the computer interface and acquisition system respond to the signals from the transponder.

In this lab exercise, we will use a transducer to measure the temperature of the heater block and record it in a file so that the results can be further analyzed. We will develop a model describing how the output of the transducer is related to the temperature of the block. We may also have to include the behavior of the transducer if the supply voltage or current varies.

For example, using a silicon diode to measure the temperature requires some understanding of how the diode responds to varying temperature. The development of a model for the temperature dependence of a diode’s characteristics is described in the handout “Using a Semiconductor Diode As a Temperature Sensing Device”, also found under Content ⇒ Thermal Measurements Lab ⇒ Using a Diode as a Thermometer in Learning Suite, This handout also includes some information on estimating the uncertainty in the measured temperature that you will probably find useful.

To complete the model, you will need to follow the instructions in “Calibrating a Semiconductor Diode for Use as a Temperature Sensing Device” (Content ⇒ Thermal Measurements Lab ⇒ Using a Diode as a Thermometer in Learning Suite). This
will allow you to quantify the model for the diode so that you can use the voltage across the diode as determine the temperature of the heater block.

We also have to consider how our data acquisition hardware affects the measurements. Considerations may include sample rates, input range, resolution (minimum resolvable voltage change), intrinsic errors in the electronics, presence of electronic noise, and filtering (both intentional and unintentional). Some of these can be easily quantified and should be. Some will remain uncertain and difficult to characterize, but it is important to identify their effect on your results as carefully as possible.

7.2 Modeling the Physical Apparatus

It is also necessary to model the physical apparatus with which you are working. This will allow you to relate the measured parameters to any outside influences or to fundamental characteristics of the apparatus. These outside influences may be intentional, such as driving an oscillator, or out of your control, such as air currents due to building ventilation or vibrations from external forces. In any case, the more complete your model, the better you will be able to understand the measurements.

In the case of our experiment, we need to have a model for the way the temperature of the heater block/heater coil/cooling rod/ice water/brass cap system changes when we change the power in the heating coil. We will develop a simple model for this system on page 12 (Section 11.2) later in this handout.

It is important to look carefully at this model, so you understand the limitations in its application to our system.

8.0 Summary of steps to carry out

1. Build a heater coil on your aluminum heater block (page 7).
2. Read the description of how to use a silicon diode to measure temperature (page 8).
3. Build a 100 µA constant current source to provide the current for a temperature measurement diode (page 8).
4. Create a VI to acquire the voltage across the temperature measurement diode and to accumulate those voltages in a data file for analysis (page 8).
5. Use ice water, boiling water, and boiling liquid nitrogen to determine a calibration equation to convert the diode voltage to temperature (page 8).
6. Record the temperature as a function of time as the block is heated to about 120 °C and then cooled for about 20 minutes (page 11).
• Use the Kepco ATE-36-8M power supply to provide current to your heater coil.
• Set the supply to provide about 70-90 W to the coil so that it takes about 2 minutes to reach the designated temperature.

7. Fit the equation from the model for the cryostat assembly to the temperature vs. time data. Determine the values of C (heat capacity), γ (heat loss coefficient), and T_{eq} (the equilibrium temperature) (page 13).

8. Write the technical report describing your measurements (page 3).

9.0 Constructing a heater coil on your aluminum heater block

The first step in carrying out this lab is to build and characterize a heating coil on your heater block. The instructions for building the coil are in “Heater Construction Handout” (also found on Learning Suite in Content ⇒ Thermal Measurements Lab).

To characterize the heater coil, you need to know (and record in your lab notebook) the final dimensions and resistance of your coil. It usually doesn’t work very well to measure the resistance of your coil with an ohmmeter. You should read “Four-Lead Measurement of Resistance” (and in Content ⇒ Thermal Measurements Lab ⇒ Making a 4-Lead Resistance Measurement on Learning Suite) for the proper way to accurately determine the resistance. It is often necessary to use the Four-Lead technique for measuring resistance if you have a very small resistance (like your heater coil) or if the connections to the device being measured are resistive (“poor connections”).

Do NOT use the beige/black +15/−15/+5 V supply to provide the current for the four-lead measurement – these supplies really dislike being attached to a low-resistance load. It is best to use a supply that can be adjusted to provide a constant current. A supply with a current control knob will be available in the lab for this purpose.

Note that you are measuring the resistance of a heater. Running a current through it is supposed to change the temperature. Changing the temperature of the material can change the resistivity of that material.

10.0 Measuring the temperature of the heater block

You should review Section 8.1.4 (Semiconductor Thermometers) in the text. Pay particular attention to the relative advantages of semiconductor devices for temperature measurement in terms of sensitivity and linearity.
Because of the relatively low cost, simplicity, and easy availability of a 1N4148 silicon diode, we will be using this diode for our temperature measurements. The small off-center hole in the aluminum heater block is specifically provided to hold a diode for recording the temperature of the block.

- Consult the handout “Using a Semiconductor Diode As a Temperature Sensing Device”, also found under Content ⇒ Thermal Measurements Lab ⇒ Using a Diode as a Thermometer in Learning Suite, to understand why a diode thermometer works and some of the limitations of that device. This handout also includes some information on estimating the uncertainty in the measured temperature that you will probably find useful.
- For the diode to reliably measure the temperature, it is necessary to drive it with a constant current. This current should be near 100 µA (in the range of roughly 90 µA to 110 µA) for the range of temperatures in which we are interested. The instructions for building a reliable constant current supply for operation in this range are given in “Building a Constant Current Source” (in Learning Suite under Content ⇒ Thermal Measurements Lab ⇒ Building a Constant Current Source).
- For detailed instructions on calibrating your diode to make reasonably accurate temperature measurements see “Calibrating a Semiconductor Diode for Use as a Temperature Sensing Device” (Content ⇒ Thermal Measurements Lab ⇒ Using a Diode as a Thermometer in Learning Suite).

11.0 Data collection using LabVIEW

Most of the data for this experiment will be collected using LabVIEW so you can more easily analyze the results. You will need to build a data acquisition VI for this purpose using (at a minimum) an input VI, a “while loop,” a time delay, a chart to display the voltage measurements, and a function to save the results to a file.

- Considerations for your analog input VI:

1. The analog input devices that we use can only directly measure voltages. When you configure your DAQ Assistant Express VI it will give you the option of measuring several different types of signals including current, resistance, and temperature.

If you have configured it to measure anything but voltage, it will be necessary to further configure the series resistance (for current measurement), the current (for resistance measurement), or the calibration equation (for temperature measurement). **If you select anything but voltage measurement, it will be necessary to verify every day that the configuration is the same as you used in previous measurements.**
2. Determine the input range you need for your analog input VI to accurately measure the signals you are going to acquire. For DC signals, a voltmeter is quite adequate to determine the range. For AC signals, you may need to set the range to some large value (like ±10 V), acquire the signal under several conditions, and determine the appropriate range from those measurements.

3. Right-click on the VI to get the configuration panel (if you don’t do this in the initial configuration) and set the input limits to something that is appropriate for the data you will be acquiring.

If you choose a range that is too small, it will clip your data. If you choose a range that is too large, it will usually lead to poor results due to digitization noise.

4. The connectors on the USB-6221-BNC and the PCI-6040E with the BNC-2120 are configured for differential mode only. Your analog input VI must also be configured for differential mode. You should verify that the Terminal Configuration option in the lower-right of the DAQ Assistant Express VI configuration panel is set to differential.

Please note the terminology here. You are writing a VI that may include a sub-VI that is called the “DAQ Assistant.” This phrase refers to a software driver that simplifies the connection between the computer and the external hardware to allow you to easily acquire signals from the external hardware. The specialized piece of external hardware that connects between the computer and whatever signals you wish to acquire is known as a data acquisition module or data acquisition board. The abbreviation for this object may be a DAQ module or a DAQ board. The DAQ board has a model name/number. When you are describing your experiment in a paper, you should refer to it by model name/number, not as just “the DAQ board” and especially not as the “DAQ Assistant” (remember that the “DAQ Assistant” is the sub-VI).

5. If you don’t need to read rapid changes in T, you can average over many points (maybe for a second or so depending on the rate your temperature is changing) before displaying T. Averaging many samples is especially useful when calibrating the temperature sensor to reduce the noise in your readings (when you are calibrating the temperature should no longer be changing). Set the Acquisition Mode to “N Samples” and the Number of Samples and Sample Rate to appropriate values for your experiment.

• Since one of the items included in the instructions for the paper is to include estimated uncertainties in your results, it would be wise to use the Std Deviation and Variance VI to get both the mean value and the standard deviation of the acquired voltages. For help on properly handling the uncertainties and propagating them through any calculations, you should see “Measurements and Errors” (Content ⇒ LabVIEW Basics Course ⇒ Measurements, Uncertainties, and Noise in Learning Suite).

• If you wish to wait for a specified time between temperature readings you have
a couple of options. One is the Wait Until Next ms Multiple VI that waits the
specified number of milliseconds. Another is the Time Delay express VI for
which you specify the number of seconds to wait. In both cases, you just add
the timing VI inside your while loop. The VI does not need to connect to any
other VI in the loop. The loop will not continue until all code contained within
the loop is completed; you will wait at least the specified time per iteration of
the loop (you may wait longer if the other code in the loop takes longer to finish
than the timing VI).

• Add a Write Delimited Spreadsheet VI to save your data in a file. To
properly set up this VI

1. Increase the number of significant figures for data written from three to
five by right-clicking on the format terminal (on the top of the VI) and
create a constant with the value “%.6f” (fixed-point notation with six
digits to the right of the decimal) or “%.6e” (scientific notation with six
significant digits – this one is preferred). This is critical when you are
taking small signal data as you eventually will do in the superconductivity
measurements later.
2. The default column delimiter is a tab character. If you wish to use a
different delimiter you can change it with the “delimiter” input along the
bottom of the VI.
3. If you do not include an output file name (upper left-hand corner), you
will be prompted for a file name every time the spreadsheet VI is called.
If you put this VI inside a while loop you will need to provide it with a file
name or it will prompt for a name on every iteration of the loop.
4. You will also need to set the “append to file” input to an appropriate value.
If this is set to false, the VI will create a new file every time it is called. If
your spreadsheet VI is inside a loop you need to set this input to true.
5. The files are most usable if the data are in column format. The transpose
input on the bottom of the VI will allow you to change the file format if
the data are not in the desired column format.

• Since you are recording data as a function of time, it is useful to record the
elapsed time in one column of your spreadsheet file. You do this by combining
the time and temperature into an array using the Build Array VI. You can
expand the Build Array VI to have more inputs if you wish to include the
standard deviation of the value.

11.1 Diode calibration: analysis questions and requests

1. How much does the constant \(b \) differ from \(\frac{E_g}{q} \)? \(E_g \) is the band-gap energy
of the silicon used in the diode. It is approximately 1.19eV. \(q \) is the charge
on the electron. The constant \(b \) is from the model equation \(V = mT + b \)
with T in Kelvins. (Refer to Section 1 of the handout Using a semiconductor
diode as a temperature sensing device found on Learning Suite in Content
⇒ Thermal Measurements Lab ⇒ Using a Diode as a Thermometer for
the derivation of this equation.) If your equation is in a different form
or uses different units, you will have to rearrange your equation in this form
to determine b from your fitting constants.

2. How far off is the calibrated diode temperature measurement
at each of the three
 calibration points? Give your response in degrees. This is found by looking at
the temperature predicted by your calibration from the measured voltages
and comparing them to the corresponding measured temperatures.

3. Is this error consistent with the estimated uncertainty of your calibration
constants? (see the temperature uncertainty section of the “Using a Semiconductor
Diode As a Temperature Sensing Device” (Content ⇒ Thermal Measurements
Lab ⇒ Using a Diode as a Thermometer in Learning Suite). You may
also want to look at the Mathematica notebook SuperconductorParametersAndUncertainty.nb
in Content ⇒ Superconductivity Measurements Lab
on Learning Suite or at https://www.physics.byu.edu/faculty/petersonb/
Phys240/SuperconductorParametersAndUncertainty.nb. for help in finding
the uncertainty in your temperature measurements (look at the second section
“Calculate the uncertainty in a temperature determined from a diode”; you
will need to enter appropriate values for the parameters and data if you use this
notebook).

4. How would you improve your calibration?

5. Include a plot of your calibration data and fit – including the calibration con-
stants – in your notebook and in your report.

12.0 Measuring the thermal parameters of the cryostat assembly

12.1 Determining the heating and cooling rate of the cryo-
stat assembly

You should have already constructed a heater on your heater block, built a VI to
record the temperature of the block as a function of time, and calibrated a 1N4148
diode for temperature measurements.

Eventually, you will be asked to design and build a temperature controller for your
cryostat assembly using LabVIEW. To design a controller, it is usually advisable to
know how the heater block assembly behaves in cooling and heating. Since every
assembly is different, it is necessary to measure the behavior of the block assembly
you wish to use in the controller experiments.
• Support the heating block with the cooling rod in ice water in an insulated container. Be careful that the diode and its leads are not immersed in the water as that will modify the apparent temperature of the block by allowing some of the current to flow through the water instead of flowing through the diode.

• Connect your heater to the large Kepco ATE36-8 power supply. Determine the settings for voltage or current that will apply a known power to the heater.

Your goal is to heat the cryostat to about 120°C. The applied power should be low enough to take several minutes for the cryostat to reach this temperature. We have found that 70-90 W is about right.

• While recording the temperature of the aluminum heater block vs. time (take at least one temperature reading every 3 seconds), connect your heater to the large Kepco ATE36-8 power supply and apply a known power (in other words, a power that you have set and recorded) to heat the heater block assembly (do not use your analog output on the analog I/O module to drive the heater - it can’t deliver the current needed).

You will want to set the current low enough that it will take several minutes for the cryostat to heat up and high enough that it will get to 120°C. Simultaneously measure the current and voltage to calculate the power. Do not trust the meters on a power supply until you have verified that they are accurate. A power in the range of 70-90 W is usually about right. Take heating data until you reach about 120°C. Turn off the supply and take about 20 minutes of cooling data.

• Save your heating and cooling data to disk and print plots of $T(t)$ for heating and cooling (these will be useful items to put in your lab notebook).

12.2 A model for analyzing the heating/cooling data

As noted above, we are interested in estimating the heat capacity and the cooling coefficient for the heater block assembly. To do so we need a mathematical model that will relate the measured behavior of the heater block to the desired parameters.

The basic ideas you will use to model the assembly are Newton’s law of cooling and the concept of heat capacity. For simplicity, we will assume this is a one-dimensional system. Since our system is a rather complex three-dimensional one, this is a rather dubious assumption but a full model is beyond the scope of this class.

Newton’s law of cooling: The flow of heat out of or into a body is given by

$$\frac{dQ}{dt} = -\gamma(T - T_{eq}).$$

Q is energy flow or heat. γ, the cooling coefficient, is a constant related to the cross-sectional area, the thickness, and the thermal conductivity of the material between
the hot and cold regions. T is the temperature of the body and T_{eq} is the temperature when the body is in equilibrium with the surroundings (ideally after an infinite period for equilibration to occur).

Heating and cooling: If you are also providing heat to the body, which you will do with your heater, you will need to add that term to the equation and the above equation becomes

$$\frac{dQ}{dt} = P - \gamma(T - T_{3q})$$

where P is the power being put into the body. Note that T_{eq} is the equilibrium temperature when $P = 0$ so it would have the same value irrespective of the value of P.

The definition of heat capacity, C:

$$dQ = C \, dT.$$

Recall that the heat capacity depends on the mass of the object and the specific heat(s) of the material(s) of which it is made.

Combining these equations you get

$$C \frac{dT}{dt} = P - \gamma(T - T_{eq}).$$

Using your data from heating and cooling the cryostat you can fit the solution of this differential equation to your data and determine the constants C, γ, and T_{eq}. Note that you have to have both the heating and the cooling data to be able to uniquely determine C and γ.

12.3 Fitting a theoretical model to your experimental results

The ultimate goal of the measurement portion of this lab is to arrive at the constants C, γ, and T_{eq} for your heater block assembly. These will be determined by fitting the model from the previous section to the measured behavior of the heater block.

A warning regarding the process of fitting parameters: if you have parameters that show up only in simple algebraic relationships involving only those parameters and constants, the fitting process can choose any value(s) that result in the same result from the algebraic relationship.
For instance, you will find the ratio γ/C with no other occurrence of either of the parameters γ or C in one of the model equations. The fitting process can arrive at any values of γ and C as long as the ratio has the correct value. You can not get any information about the individual parameters in this case.

Instructions for fitting your data to the model equation are given in the Content ⇒ Thermal Measurements Lab ⇒ Fitting Curves to Experimental Data section in Learning Suite or on the class web page. There are instructions for using four different software packages that provide nonlinear fitting capabilities (the model equation is very definitely nonlinear). Logger Pro, Mathematica, and Matlab all provide reasonable capabilities for nonlinear equations and for estimating the uncertainties in the fitting parameters. Excel can model the cooling curve but will not be able to model the heating curve without significant manual help. In addition Excel does not provide estimated uncertainties in the fitting parameters.

12.4 Thermal parameters: analysis questions and requests

1. What is the solution to the equation that governs $T(t)$ with both the heating and the cooling terms present?

2. What are the values you obtained for C, γ, and T_{eq} for the curves? What are the estimated uncertainties in each of these values?

3. Do the constants agree well for the heating and cooling curves? Is that expected?

4. How good are the fits and how should you quantify the goodness of the fits? (Strong Hint: a reasonable way to at least subjectively show the quality of your fit is to have a graph of the equation for the fit on the same plot as the experimental data so that it is obvious if the line does or does not pass through the data in a reasonable way.)

5. From your data, try to estimate the thermal conductivity (represented by either κ or k) of the copper rod, from $\gamma = \kappa A/L$ where A is the cross-sectional area of the rod and L is roughly the length of the rod between the bottom of the heater block and the surface of the water. If needed, review an introductory physics text or the hyperphysics website http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html on heat conduction (Heat and Thermodynamics ⇒ Conduction).

6. How does κ compare with values of some materials in the accompanying table?
<table>
<thead>
<tr>
<th>Material</th>
<th>Typical thermal conductivity (W/(m⋅°C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>401</td>
</tr>
<tr>
<td>Aluminum</td>
<td>237</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>50</td>
</tr>
<tr>
<td>Steel (common)</td>
<td>20</td>
</tr>
<tr>
<td>Glass</td>
<td>0.8</td>
</tr>
<tr>
<td>Fiberglass batt</td>
<td>0.04</td>
</tr>
<tr>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>Styrofoam</td>
<td>0.03</td>
</tr>
</tbody>
</table>

[Modified: February 17, 2017]