NI 6040E Family Specifications

This document lists the I/O terminal summary and specifications for the devices that make up the NI 6040E family of devices. This family includes the following devices:

- NI PCI-MIO-16E-4 (NI 6040E)
- NI PXI-6040E

I/O Terminal Summary

Note: With NI-DAQmx, National Instruments revised its terminal names so they are easier to understand and more consistent among NI hardware and software products. The revised terminal names used in this document are usually similar to the names they replace. For a complete list of Traditional NI-DAQ (Legacy) terminal names and their NI-DAQmx equivalents, refer to Terminal Name Equivalents of the E Series Help.

Table 1. I/O Terminals

<table>
<thead>
<tr>
<th>Terminal Name</th>
<th>Terminal Type and Direction</th>
<th>Impedance Input/Output</th>
<th>Protection (V) On/Off</th>
<th>Source (mA at V)</th>
<th>Sink (mA at V)</th>
<th>Rise Time (ns)</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI <0..15></td>
<td>AI</td>
<td>100 GΩ in parallel with 100 pF</td>
<td>25/15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±200 pA</td>
</tr>
<tr>
<td>AI SENSE</td>
<td>AI</td>
<td>100 GΩ in parallel with 100 pF</td>
<td>25/15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±200 pA</td>
</tr>
<tr>
<td>AI GND</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AO 0</td>
<td>AO</td>
<td>0.1 Ω</td>
<td>Short-circuit to ground</td>
<td>5 at 10</td>
<td>5 at –10</td>
<td>20 V/µs</td>
<td>—</td>
</tr>
<tr>
<td>AO 1</td>
<td>AO</td>
<td>0.1 Ω</td>
<td>Short-circuit to ground</td>
<td>5 at 10</td>
<td>5 at –10</td>
<td>20 V/µs</td>
<td>—</td>
</tr>
<tr>
<td>AO EXT REF</td>
<td>AI</td>
<td>10 kΩ</td>
<td>25/15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AO GND</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D GND</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>+5 V</td>
<td>—</td>
<td>0.1 Ω</td>
<td>Short-circuit to ground</td>
<td>1 A</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P0.<0..7></td>
<td>DIO</td>
<td>—</td>
<td>V_{CC} + 0.5</td>
<td>13 at (V_{CC} – 0.4)</td>
<td>24 at 0.4</td>
<td>1.1</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>Terminal Name</td>
<td>Type and Direction</td>
<td>Impedance (V)</td>
<td>Protection (V) On/Off</td>
<td>Source (mA at V)</td>
<td>Sink (mA at V)</td>
<td>Rise Time (ns)</td>
<td>Bias</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>AI HOLD COMP</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>EXT STROBE*</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 0/ (AI START TRIG)</td>
<td>AI/DIO</td>
<td>10 kΩ</td>
<td>VCC + 0.5 ±35</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>9 kΩ pu, 10 kΩ pd</td>
</tr>
<tr>
<td>PFI 1/ (AI REF TRIG)</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 2/ (AI CONV CLK)*</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 3/ CTR 1 SOURCE</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 4/CTR 1 GATE</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>CTR 1 OUT</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 5/ (AO SAMP CLK)*</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 6/ (AO START TRIG)</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 7/ (AI SAMP CLK)</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 8/ CTR 0 SOURCE</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI 9/CTR 0 GATE</td>
<td>DIO</td>
<td>—</td>
<td>VCC + 0.5</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>CTR 0 OUT</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>FREQ OUT</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (VCC – 0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
</tbody>
</table>

* Indicates active low.

AI = Analog Input
AO = Analog Output
DIO = Digital Input/Output
pd = pull-down
pu = pull-up
AI/DIO = Analog Input/Digital Input/Output

Note: The tolerance on the 50 kΩ pull-up and pull-down resistors is large. Actual value might range between 17 kΩ and 100 kΩ.
Specifications

The following specifications are typical at 25 °C unless otherwise noted.

Analog Input

Input Characteristics

Number of channels 16 single-ended
or 8 differential
(software-selectable per channel)

Type of A/D converter (ADC) Successive approximation

Resolution .. 12 bits, 1 in 4,096

Maximum sampling rate
- Single-channel scanning 500 kS/s
- Multiple-channel scanning 250 kS/s

Input signal ranges

<table>
<thead>
<tr>
<th>Range (Software-Selectable)</th>
<th>Input Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bipolar</td>
</tr>
<tr>
<td>20 V</td>
<td>±10 V</td>
</tr>
<tr>
<td>10 V</td>
<td>±5 V</td>
</tr>
<tr>
<td>5 V</td>
<td>±2.5 V</td>
</tr>
<tr>
<td>2 V</td>
<td>±1 V</td>
</tr>
<tr>
<td>1 V</td>
<td>±500 mV</td>
</tr>
<tr>
<td>500 mV</td>
<td>±250 mV</td>
</tr>
<tr>
<td>200 mV</td>
<td>±100 mV</td>
</tr>
<tr>
<td>100 mV</td>
<td>±50 mV</td>
</tr>
</tbody>
</table>

Input coupling DC

Maximum working voltage
(signal and common-mode) Each input should remain within ±11 V of ground

Overvoltage protection
- Powered on ±25 V
- Powered off ±15 V

Inputs protected AI <0..15>, AI SENSE

FIFO buffer size 512 samples (S)

DMA

Channels.. 3
Data sources/destinations Analog input, analog output, counter/timer 0, or counter/timer 1
Data transfers Direct memory access (DMA), interrupts, programmed I/O
DMA modes Scatter-gather (single-transfer, demand-transfer)

Configuration memory size 512 words
(1 word = 8 bits)
Accuracy Information

<table>
<thead>
<tr>
<th>Nominal Range (V)</th>
<th>% of Reading</th>
<th>Absolute Accuracy</th>
<th>Relative Accuracy Resolution (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 Hours</td>
<td>1 Year</td>
<td>Noise + Quantization (mV)</td>
</tr>
<tr>
<td>±10</td>
<td>0.0672</td>
<td>0.0714</td>
<td>7.38</td>
</tr>
<tr>
<td>±5</td>
<td>0.0272</td>
<td>0.0314</td>
<td>3.70</td>
</tr>
<tr>
<td>±2.5</td>
<td>0.0672</td>
<td>0.0714</td>
<td>1.86</td>
</tr>
<tr>
<td>±1</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.757</td>
</tr>
<tr>
<td>±0.5</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.389</td>
</tr>
<tr>
<td>±0.25</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.205</td>
</tr>
<tr>
<td>±0.1</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.095</td>
</tr>
<tr>
<td>±0.05</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.058</td>
</tr>
<tr>
<td>0 to 10</td>
<td>0.0272</td>
<td>0.0314</td>
<td>3.70</td>
</tr>
<tr>
<td>0 to 5</td>
<td>0.0672</td>
<td>0.0714</td>
<td>1.86</td>
</tr>
<tr>
<td>0 to 2</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.757</td>
</tr>
<tr>
<td>0 to 1</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.389</td>
</tr>
<tr>
<td>0 to 0.5</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.205</td>
</tr>
<tr>
<td>0 to 0.2</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.095</td>
</tr>
<tr>
<td>0 to 0.1</td>
<td>0.0672</td>
<td>0.0714</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Note: Accuracies are valid for measurements following an internal E Series calibration. Averaged numbers assume dithering and averaging of 100 single-channel readings. Measurement accuracies are listed for operational temperatures within ±1 °C of internal calibration temperature and ±10 °C of external or factory-calibration temperature. NI recommends a one-year calibration interval. The Absolute Accuracy at Full Scale calculations were performed for a maximum range input voltage (for example, 10 V for the ±10 V range) after one year, assuming 100 points of averaged data. Go to ni.com/info and enter info code rdspec for example calculations.
Transfer Characteristics

Relative accuracy
- Dithered: ±0.5 least significant bits (LSB) typ
- Undithered: ±1.5 LSB max

Differential nonlinearity (DNL): ±0.5 LSB typ, ±1 LSB max

No missing codes: 12 bits, guaranteed

Offset error
- Pregain error after calibration: ±16 µV max
- Pregain error before calibration: ±4.0 mV max
- Postgain error after calibration: ±0.8 mV max
- Postgain error before calibration: ±200 mV max

Gain error (relative to calibration reference)
- After calibration (gain = 1): ±0.02% of reading max
- Before calibration: ±2.5% of reading max
- Gain ≠ 1 with gain error adjusted to 0 at gain = 1: ±0.02% of reading max

Amplifier Characteristics

Input impedance
- Normal powered on: 100 GΩ in parallel with 100 pF
- Powered off: 820 Ω min
- Overload: 820 Ω min

Input bias current: ±200 pA

Input offset current: ±100 pA

CMRR, all input ranges, DC to 60 Hz

<table>
<thead>
<tr>
<th>Range</th>
<th>CMRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 20 V</td>
<td>85 dB</td>
</tr>
<tr>
<td>5 V</td>
<td>95 dB</td>
</tr>
<tr>
<td>100 mV to 2 V</td>
<td>100 dB</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

Bandwidth
- Small signal (-3 dB): 600 kHz
- Large signal (1% THD): 350 kHz

Settling time to full-scale step

<table>
<thead>
<tr>
<th>Range</th>
<th>±0.012% (±0.5 LSB)</th>
<th>±0.024% (±1 LSB)</th>
<th>±0.098% (±4 LSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>4 µS typ, 8 µS max</td>
<td>4 µS max, 8 µS max</td>
<td>4 µS max</td>
</tr>
</tbody>
</table>

* Accuracy values are valid for source impedances <1 kΩ. Refer to *Multichannel Scanning Considerations of the E Series Help* for more information.

System noise (LSB_rms, not including quantization)

<table>
<thead>
<tr>
<th>Range</th>
<th>Dither Off</th>
<th>Dither On</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 20 V</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>500 mV</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>200 mV</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>100 mV</td>
<td>0.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Crosstalk (DC to 100 kHz)
- Adjacent channels: -75 dB
- All other channels: -90 dB

Stability

Offset temperature coefficient
- Pregain: ±5 µV/°C
- Postgain: ±240 µV/°C

Gain temperature coefficient: ±20 ppm/°C
Analog Output

Output Characteristics
Number of channels..........................2 voltage
Resolution......................................12 bits, 1 in 4,096

Max update rate (waveform generation)

<table>
<thead>
<tr>
<th>FIFO Mode</th>
<th>Non-FIFO Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internally</td>
<td>Externally</td>
</tr>
<tr>
<td>Timed</td>
<td>Timed</td>
</tr>
<tr>
<td>1 MS/s</td>
<td>950 kS/s</td>
</tr>
<tr>
<td>800 kS/s,</td>
<td>400 kS/s,</td>
</tr>
<tr>
<td>system-dependent</td>
<td>system-dependent</td>
</tr>
</tbody>
</table>

Type of D/A converter (DAC)Double-buffered, multiplying

FIFO buffer size512 Samples (S)
Data transfers......................DMA, interrupts, programmed I/O
DMA modesScatter-gather
(single-transfer, demand-transfer)

Accuracy Information

<table>
<thead>
<tr>
<th>Nominal Range (V)</th>
<th>Absolute Accuracy</th>
<th>Absolute Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Negative</td>
<td>% of Reading</td>
</tr>
<tr>
<td>Full Scale</td>
<td>Full Scale</td>
<td>24 Hours</td>
</tr>
<tr>
<td>10</td>
<td>–10</td>
<td>0.0177</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.0177</td>
</tr>
</tbody>
</table>

Note: Accuracies are valid for measurements following an internal E Series calibration. Averaged numbers assume dithering and averaging of 100 single-channel readings. Measurement accuracies are listed for operational temperatures within ±1 °C of internal calibration temperature and ±10 °C of external or factory-calibration temperature. NI recommends a one-year calibration interval. The Absolute Accuracy at Full Scale calculations were performed for a maximum range input voltage (for example, 10 V for the ±10 V range) after one year, assuming 100 points of averaged data. Go to ni.com/info and enter info code rdspec for example calculations.

Transfer Characteristics

Relative accuracy, or integral nonlinearity (INL)
After calibration±0.3 LSB typ, ±0.5 LSB max
Before calibration±4 LSB max

DNL
After calibration±0.3 LSB typ, ±1.0 LSB max
Before calibration±3 LSB max

Monotonicity...........................12 bits, guaranteed after calibration
Offset error
After calibration±1.0 mV max
Before calibration±200 mV max

NI 6040E Family Specifications 6 ni.com
Gain error (relative to internal reference)
 After calibration ±0.01% of output max
 Before calibration ±0.5% of output max
Gain error (relative to external reference)...... 0 to 0.67% of output max, not adjustable

Voltage Output
Ranges... ±10 V, 0 to 10 V, ±AO EXT REF, 0 to AO EXT REF (software-selectable)
Output coupling DC
Output impedance 0.1 Ω max
Current drive ±5 mA max
Protection Short-circuit to ground
Power-on state 0 V (±200 mV)
External reference input
 Range... ±11 V
 Overvoltage protection
 Powered on ±25 V
 Powered off ±15 V
 Input impedance 10 kΩ
 Bandwidth (–3 dB) 1 MHz

Dynamic Characteristics
Settling time for full-scale step...... 3 μs to ±0.5 LSB accuracy
Slew rate 20 V/μs
Noise ... 200 μVrms, DC to 1 MHz
Glitch energy (at mid-scale transition)
 Reglitching disabled.................... ±20 mV
 Reglitching enabled ±4 mV
 Duration 1.5 μs

Stability
Offset temperature coefficient ±50 μV/°C
Gain temperature coefficient
 Internal reference ±25 ppm/°C
 External reference ±25 ppm/°C

Digital I/O
Number of channels 8 input/output
Compatibility 5 V TTL
Digital logic levels on P0.<0..7>

<table>
<thead>
<tr>
<th>Level</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input low voltage</td>
<td>0 V</td>
<td>0.8 V</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>2.0 V</td>
<td>5.0 V</td>
</tr>
<tr>
<td>Input low current (V in = 0 V)</td>
<td>—</td>
<td>–320 μA</td>
</tr>
<tr>
<td>Input high current (V in = 5 V)</td>
<td>—</td>
<td>10 μA</td>
</tr>
<tr>
<td>Output low voltage (IOL = 24 mA)</td>
<td>—</td>
<td>0.4 V</td>
</tr>
<tr>
<td>Output high voltage (IOL = –13 mA)</td>
<td>4.35 V</td>
<td>—</td>
</tr>
</tbody>
</table>

Power-on state Input (high-impedance)
Data transfers Programmed I/O
Transfer rate (1 word = 8 bits)
Maximum with NI-DAQ, system-dependent 50 kwords/s
Constant sustainable rate 1 to 10 kwords/s, typ

Timing I/O
Number of channels 2 up/down counter/timers, 1 frequency scaler
Resolution
 Counter/timers 24 bits
 Frequency scaler 4 bits
Compatibility 5 V TTL/CMOS
Base clocks available
 Counter/timers 20 MHz, 100 kHz
 Frequency scaler 10 MHz, 100 kHz
Base clock accuracy ±0.01%
Max source frequency up/down counter/timers 20 MHz
Min source pulse duration 10 ns
Min gate pulse duration 10 ns, edge-detect mode
Data transfers DMA, interrupts, programmed I/O
Data transfers..........................DMA, interrupts, programmed I/O
DMA modes..........................Scatter-gather
(single-transfer, demand-transfer)

Triggers

Analog Trigger
Source..................................AI <0..15>, external trigger (PFI 0/AI START TRIG)
Purpose
Analog inputStart, reference, and pause trigger, sample clock
Analog outputStart and pause trigger, sample clock
Counter/timersSource, gate
Level
Internal.............................±Full-scale
External............................±10 V
Slope.................................Positive or negative (software-selectable)
Resolution..........................8 bits, 1 in 256
Hysteresis..........................Programmable
Bandwidth (~3 dB).............650 kHz, internal; 3 MHz, external
External input (PFI 0/AI START TRIG)
Impedance..........................10 kΩ
Coupling............................DC
Protection
When configured as a digital signal−0.5 to VCC + 0.5 V
When configured as an analog trigger signal or disabled±35 V
Powered off±35 V

Digital Trigger
Purpose
Analog inputStart, reference, and pause trigger, sample clock
Analog outputStart and pause trigger, sample clock
Counter/timersSource, gate
External sourcesPFI <0..9>, RTSI <0..6>
Compatibility5 V TTL
ResponseRising or falling edge
Pulse width10 ns min

RTSI Bus (PCI Only)
Trigger lines.....................7

PXI Trigger Bus (PXI Only)
Trigger lines.....................6
Star trigger1

Calibration
Recommended warm-up time15 minutes
Calibration interval1 year
External calibration reference>6 and <10 V
Onboard calibration reference
DC level............................5.000 V (±3.5 mV), over full operating temperature, actual value stored in EEPROM
Temperature coefficient±5 ppm/°C max
Long-term stability±15 ppm/√1,000 h

Bus Interface
TypeMaster, slave

Power

Bus Requirement
+5 VDC (±5%)1.0 A

Excludes power consumed through +5 V available at the I/O connector.

I/O Connector Power
Power available at I/O connector+4.65 to +5.25 VDC at 1 A

Physical
Dimensions (not including connectors)
NI PXI-6040E16 cm × 10 cm
(6.3 in. × 3.9 in.)
NI PCI-MIO-16E-417.5 cm × 10.7 cm
(6.9 in. × 4.2 in.)

Weight
NI PXI-6040E218 g (7.7 oz)
NI PCI-MIO-16E-4116 g (4.1 oz)

I/O connector68-pin male 0.050 D-type
Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

- Channel-to-earth .. 11 V,
 Installation Category I
- Channel-to-channel 11 V,
 Installation Category I

Environmental

- Operating temperature 0 to 55 °C
- Storage temperature –20 to 70 °C
- Relative humidity 10 to 90%,
 noncondensing
- Maximum altitude 2,000 m
- Pollution Degree
 (indoor use only) 2

Safety

The NI 6040E devices meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1
- CAN/CSA-C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label, or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Electromagnetic Compatibility

- Emissions EN 55011 Class A at 10 m
 FCC Part 15A above
 1 GHz
- Immunity EN 61326:1997
 A2:2001, Table 1

CE, C-Tick, and FCC Part 15 (Class A) Compliant

Note For EMC compliance, operate this device with shielded cabling.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

- Low-Voltage Directive (safety) 73/23/EEC
- Electromagnetic Compatibility
 Directive (EMC) 89/336/EEC

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>AI 0</td>
</tr>
<tr>
<td>33</td>
<td>AI 1</td>
</tr>
<tr>
<td>32</td>
<td>AI GND</td>
</tr>
<tr>
<td>31</td>
<td>AI 10</td>
</tr>
<tr>
<td>30</td>
<td>AI 3</td>
</tr>
<tr>
<td>29</td>
<td>AI GND</td>
</tr>
<tr>
<td>28</td>
<td>AI 4</td>
</tr>
<tr>
<td>27</td>
<td>AI GND</td>
</tr>
<tr>
<td>26</td>
<td>AI 13</td>
</tr>
<tr>
<td>25</td>
<td>AI 6</td>
</tr>
<tr>
<td>24</td>
<td>AI GND</td>
</tr>
<tr>
<td>23</td>
<td>AI 15</td>
</tr>
<tr>
<td>22</td>
<td>AO 0</td>
</tr>
<tr>
<td>21</td>
<td>AO 1</td>
</tr>
<tr>
<td>20</td>
<td>AO EXT REF</td>
</tr>
<tr>
<td>19</td>
<td>P0.4</td>
</tr>
<tr>
<td>18</td>
<td>D GND</td>
</tr>
<tr>
<td>17</td>
<td>P0.1</td>
</tr>
<tr>
<td>16</td>
<td>P0.6</td>
</tr>
<tr>
<td>15</td>
<td>D GND</td>
</tr>
<tr>
<td>14</td>
<td>+5 V</td>
</tr>
<tr>
<td>13</td>
<td>D GND</td>
</tr>
<tr>
<td>12</td>
<td>PFI 0/AI START TRIG</td>
</tr>
<tr>
<td>11</td>
<td>PFI 1/AI REF TRIG</td>
</tr>
<tr>
<td>10</td>
<td>D GND</td>
</tr>
<tr>
<td>9</td>
<td>+5 V</td>
</tr>
<tr>
<td>8</td>
<td>D GND</td>
</tr>
<tr>
<td>7</td>
<td>PFI 5/AO SAMP CLK</td>
</tr>
<tr>
<td>6</td>
<td>PFI 6/AO START TRIG</td>
</tr>
<tr>
<td>5</td>
<td>D GND</td>
</tr>
<tr>
<td>4</td>
<td>PFI 9/CTR 0 GATE</td>
</tr>
<tr>
<td>3</td>
<td>CTR 0 OUT</td>
</tr>
<tr>
<td>2</td>
<td>FREQ OUT</td>
</tr>
</tbody>
</table>

Figure 1. NI PXI-6040E/PCI-MIO-16E-4 Pinout