Announcements

1. Start thinking about Exam 4
 a. Covers chapters 9-12
 b. Starts Dec 7, a week from tomorrow!

2. Instructor/course evaluations before Dec 13
 http://studentratings.byu.edu

Review of Last Lecture

- **Work on gas** = area under curve in P-V diagram

 \[W_{\text{on gas}} = \text{area under curve in P-V diagram} \]

 (\(= -P\Delta V \) for constant pressure process)

- **Internal energy** \(U \) depends only on \(T \); often it’s strictly proportional

 \(U = \frac{3}{2} nRT \) for monatomic ideal gas

- Visualizing isothermal contours in P-V diagrams helps understand changes in temperature—and hence \(U \)

 1st Law: \(\Delta U = Q_{\text{added}} + W_{\text{on system}} \)

 Engines: transform heat to work

 2nd Law: \(Q_h = |W_{\text{net}}| + Q_c \)

 Efficiency: \(\eta = \frac{|W_{\text{net}}|}{Q_h} \)

 Carnot Theorem:

 \[\eta = \frac{T_c}{T_h} \]

 Song:

 http://www.uky.edu/~holler/CHE107/media/first_second_law.mp3

 The end of Exam 4 material!

Simple harmonic motion → **Sinusoidal vibrations**

- **Demo:** weight on spring

 Occurs if the force on a mass is spring-like:

 \(F = -kx \) displacement

 Displacement \(x = A \cos(\omega t) \) or \(x = A \sin(\omega t) \) or \(x = A \cos(\omega t + \phi) \)

 Example:

 - Amplitude \(A = \) __________, (from 0 to max)
 - Period \(T = \) __________ sec
 - Frequency \(f = \) __________ cycles/sec (Hz)
 - Angular frequency \(\omega = \) __________ rad/sec

 \[f = \frac{\omega}{2\pi} \]

 Demo: Circular motion/SHM analogy

Kinetic and potential energy vs time?

Mass and spring

- **Pendulum**

 Frequency, period:

 Demo: pendulum

 Does period depend on amplitude?
Simple Problem: The position of a mass vibrating on a spring is
\[x(t) = 4\text{cm} \cos(8t). \]
What’s the amplitude and frequency \((f)\) of oscillation?

Q4. What’s the period of oscillation in the graph below?

![Graph of oscillation]

a. 1 s
 b. 2 s
 c. 3 s
 d. 4 s

Q5. What’s the correct equation for the above oscillation?

a. \(x(t) = 6 \cos(t)\)
 b. \(x(t) = 3 \sin(2t)\)
 c. \(x(t) = 6 \sin(2t)\)
 d. \(x(t) = 3 \sin(\pi t)\)
 e. \(x(t) = 3 \cos(\pi t)\)

Colton Lecture 21, Thurs 11/29/07 - pg 6

Worked Problem: A 70 kg trapeze artist swings on a long trapeze and takes 5 seconds to return to his starting spot.

How long will it take a woman of mass 50kg to make the same swing? _______ sec

How long will it take for the 70 kg man to swing from his starting place to when he first reaches the bottom? _______ sec

How long is the rope? __________ m

Colton Lecture 21, Thurs 11/29/07 - pg 7

Types of Waves

Transverse—The disturbance is \(\perp\) to the direction of the wave

Longitudinal—The disturbance is along the direction of the wave

Web Link: http://www.gmi.edu/~drussell/Demos/waves/wavemotion.html

The medium of the wave:

- slinky
 Demo: slinky
- rope
- sound
 gas
 solid
 earthquake P & S waves
 Mnemonic: “S” for “shear”
- light
- water

What’s “moving” locally as a wave goes by?

Demo: Shive wave machine
Demo: Sinewave animation: http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

What gets transported by the wave?

Speed, wavelength and frequency

\[v = f \lambda \]

Colton Lecture 21, Thurs 11/29/07 - pg 8

Worked Problem: One of my favorite radio stations is AM 1320, 1320 kHz (Go Jazz!). Radio waves travel at the speed of light, \(3 \times 10^8\) m/s. What is the wavelength of these radio waves? What is the period?
Why do some waves go faster than others?

Wave speed on string, rope or cable: \(v = \sqrt{\frac{T}{\mu}} \)

Demo: surgical tubing

Q6. Two guitar strings of the same length have the same tension, but one has four times the mass of the other. The speed of a wave on the heavier guitar string is __________ that of the lighter string.

- a. \(\frac{1}{4} \)
- b. \(\frac{1}{2} \)
- c. the same as
- d. \(2 \times \)
- e. \(4 \times \)

Q7. A boy shakes a rope, moving his hand up and down. He sends a wave crest out every 0.5 seconds. He sees the wave crests move away with a distance between them of 25 cm. How fast is the wave moving?

- a. 0-10 cm/s
- b. 10-20 cm/s
- c. 20-30 cm/s
- d. 30-40 cm/s
- e. more than 40 cm/s

Reflection

- What happens when a pulse hits the end and turns around? Does it return on the same side of the rope or does it invert?

heavy and light ropes.

light, sound

Superposition

- What happens if two pulses, one from each end, meet in the middle? Do they pass through or reflect back when they meet?

Web Link:
http://www.kettering.edu/~drussell/Demos/superposition/superposition.html