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We discuss the use of wave plates with arbitrary retardances, in conjunction with a linear polarizer, to split linearly
polarized light into two linearly polarized beams with an arbitrary splitting fraction. We show that for non-ideal
wave plates, a much broader range of splitting ratios is typically possible when a pair of wave plates, rather than a
single wave plate, is used. We discuss the maximum range of splitting fractions possible with one or two wave
plates as a function of the wave plate retardances, and how to align the wave plates to achieve the maximum
splitting range possible when simply rotating one of the wave plates while keeping the other one fixed. We also
briefly discuss an alignment-free polarization rotator constructed from a pair of half-wave plates. © 2017 Optical

Society of America

OCIS codes: (230.1360) Beam splitters; (230.5440) Polarization-selective devices; (260.5430) Polarization; (260.1440)

Birefringence.
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1. INTRODUCTION

A common method for splitting a polarized laser beam into two
parts is to use a half-wave plate to rotate the polarization to an
arbitrary direction, and then pass the light through a polarizing
beamsplitter, as shown in Fig. 1. If the half-wave plate generates a
perfect 180 deg of retardance, the fraction of power exiting either
port of the beamsplitter can be smoothly changed to any value
from 0% to 100% of the light by simply rotating the wave plate.

The retardance of a wave plate is wavelength dependent. In a
lab where lasers at multiple wavelengths are used, often one will
not have a half-wave plate designed for a particular wavelength
readily available, but may have access to half-wave plates de-
signed for a different wavelength, or two quarter-wave plates
made for that or another wavelength. In student labs and in
optics demonstrations, often inexpensive polymer wave plates
[1] with much looser tolerances are employed. Generally, unless
a wave plate is manufactured to produce a precise half-wave
shift at the specific wavelength to be used, an incorrect retard-
ance will limit the range of splitting fractions (the fraction of
light exiting a particular port of the beamsplitter) that can be
achieved in this scheme.

Manymethods have been devised to diminish thewavelength
dependence of wave plates. Using zero-order wave plates [2] re-
duces, but does not eliminate, wavelength dependence. Similar
to the way in which chromatic aberration is reduced in lenses, by
combining different birefringent materials with different wave-
length dependence, achromatic wave plates can be constructed
[2–6]. Combinations of retarders made of the same material can

also be used to reduce chromatic effects [7–10]. Other ways
of realizing phase retarders with less chromatic dependence
have also been developed [11,12]. However, achromatic
phase retarders are typically more expensive, and sometimes
introduce other side effects such as beam deflection.

In this paper we briefly discuss limitations caused by devia-
tions from an ideal half-wave retardance in the single wave plate
beamsplitting method described above. We then consider the
advantages of using a pair of wave plates in place of a single half-
wave plate, as shown in Fig. 2. We show that by using a pair of
non-ideal wave plates together, a much greater range of splitting
fractions can typically be achieved.

In addition to examining what is possible by rotating both
wave plates arbitrarily, we also consider when it is possible to
smoothly adjust the power in either beam from 0% to 100% by
rotating only one of the two wave plates, keeping the other one
fixed. When possible, this makes the beamsplitter easier to use.
We determine what the angle of the fixed wave plate should be
for a given pair of retardances, and how to practically align the
fixed wave plate in such a configuration. We discuss the range
of possible splitting fractions for an arbitrary pair of wave plates
used in this manner, and we also consider what is possible when
the two wave plates are rigidly fixed to each other and the pair is
rotated together.

2. JONES ALGEBRA

To calculate the fraction of light in either beam exiting the po-
larizing beamsplitter, we will make use of Jones algebra [13].
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The polarization state of the light can be written as a Jones
vector,

J �
�
a
b

�
; (1)

where a and b are complex numbers that represent the magni-
tude and phase of the component of the light’s oscillating elec-
tric field in the x and y directions, respectively. We will choose
our coordinate system such that the light before passing
through the first wave plate is represented by the Jones vector

J �
�
1
0

�
: (2)

The polarization of the light after passing through an optical
element can be described by the multiplication of the Jones
vector by a Jones matrix, J 0 � MJ . The Jones matrix that de-
scribes a wave plate with a retardance δ whose slow axis makes
an angle of θ relative to the x axis is given (to within an arbitrary
overall phase factor) by

M�θ; δ� �
�

eiδ cos2 θ� sin2 θ �eiδ − 1� cos θ sin θ
�eiδ − 1� cos θ sin θ cos2 θ� eiδ sin2 θ

�
:

(3)

3. SPLITTING WITH A SINGLE WAVE PLATE

We will first consider the performance of a beamsplitter that
utilizes a single wave plate, as shown in Fig. 1. To the extent
that the beamsplitter approximates an ideal polarizer, light
missing from the x polarization will exactly equal the power
in the y polarization. As such, we only need to consider the
splitting fraction for one of the polarizations. We have arbitrar-
ily chosen to consider the fraction of light transferred to the
y polarization.

After x-polarized light passes through a wave plate, the frac-
tion of light power in the y polarization ranges from zero (when
either the fast or slow axis is exactly aligned with the incoming
polarization) to a maximum value that can be determined by
considering the Jones vector of the light exiting the wave plate:

J 0 � M�θ; δ�
�
1
0

�
: (4)

Utilizing the equations above, it can be shown that the frac-
tion of power in the y direction is

Py � sin2
�
δ

2

�
sin2�2θ�: (5)

From this expression, it is clear that as the wave plate is ro-
tated, the maximum fraction of light that can be moved to the y
direction is sin2�δ∕2�. Only for the case of an ideal half-wave
plate with a retardance of δ � π (or 3π, 5π, etc.) radians can the
full range of splitting fractions be achieved.

As a side note, by measuring the maximum amount of light
that can be transferred to the orthogonal polarization by rotat-
ing the wave plate in the single wave plate setup, the retardance
of a particular wave plate can be determined. If we maximize
Eq. (5) by setting θ to 45 deg and solve for δ, we get

δ � 2 arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffi
Py max

q �
: (6)

Of course, arcsin is a multi-valued function, such that for any
solution δ, δ� 2nπ or 2nπ − δ, where n is an integer, are also
solutions. The fact that we get new solutions by adding factors
of 2π to δ simply illustrates that offsets by integer multiples of
2π do not affect the polarization of light passing through a wave
plate. In fact, that is precisely the idea behind multiple-order
wave plates.

The 2nπ − δ solutions can be explained by noting that
M�θ� 90°; −δ� � e−iδM�θ; δ�. As such, other than an overall
phase factor, a wave plate with a retardance of 2nπ − δ behaves
equivalently to a wave plate with a retardance of 2nπ � δ, ex-
cept that the angle at which it needs to be placed is offset
by 90 deg.

Another thing to consider is what effect you get if the
incoming light polarization is not aligned with one of the axes
of the linear polarizer. If the light is polarized such that
J � �cos�ϕ�; sin�ϕ��, it turns out that the range of splittings
is still just sin �δ∕2�2. However, rather than going from no
power exiting the y-polarization port of the polarizer to a frac-
tion of sin �δ∕2�2, the amount of light in the y-polarized beam
goes as

f � f 0 −
1

2
cos�2ϕ − 4θ� sin

�
δ

2

�
2

; (7)

Fig. 1. Beamsplitting using an ideal half-wave plate and a polarizing
beamsplitter. The beam entering on the left is horizontally polarized.
After the polarization is rotated by the wave plate, a polarizing beam-
splitter separates the horizontal and vertical components.

Fig. 2. Beamsplitting using two non-ideal wave plates. The beam
entering on the left is horizontally polarized. After the polarization
is modified by passing through a pair of wave plates, most generally
resulting in an elliptical polarization state, a polarizing beamsplitter
separates the horizontal and vertical components.
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where

f 0 �
1

2
−
1

2
cos

�
δ

2

�
2

cos�2ϕ�: (8)

4. MATCHED AND ANTI-MATCHED WAVE
PLATES

We will now consider the use of two wave plates, as shown in
Fig. 2. First we will discuss what happens when two “matched”
wave plates with the same retardance δ (or, equivalently, two
“anti-matched” wave plates with retardances of δ and 2π − δ)
are used together to change the light polarization before the
polarizing beamsplitter.

This case is relevant because often one is in possession of
multiple wave plates with similar characteristics, perhaps pur-
chased at the same time. We consider this case before the more
general case because it is mathematically simpler and more
intuitive than the treatment of two wave plates with arbitrary
retardances.

We will denote the angle of the wave plate slow axis relative
to the x axis as θ1 and θ2 for the first and second plates that the
light goes through, respectively. We will assume that we start
with light that is linearly polarized along the x axis before pass-
ing through the two wave plates.

We want to know under what conditions we will be able to
smoothly shift all of the light from the x to the y polarization by
rotating only one wave plate, keeping the other plate fixed. This
makes for a much simpler arrangement than if both wave plates
must be adjusted, and a two-dimensional parameter space must
be explored to realize the desired splitting ratio. Also, when this
is not possible, we want to determine what range of splitting
fractions is possible with any arbitrary pair of matched wave
plates when only one plate is allowed to rotate.

To determine what fraction of the light remains in the x
polarization, or, conversely, what fraction is shifted to the ver-
tical polarization, we can first find the Jones vector to describe
the polarization of the light after passing through the two wave
plates. This can be easily calculated as

J 0 � M�θ2; δ�M �θ1; δ�
�
1
0

�
: (9)

When we do this we find that, except for certain cases,
the phases of the two polarization components are not the
same—the exiting light will not be linearly polarized. But
for the application of splitting a beam, these phases are not
important—only the magnitude of the two components matters.

To find the amount of light that will end up in either of the
beams after the polarizing beamsplitter, we simply calculate the
squared magnitude of one of the elements of the Jones vector.
When we do this, we find that the fraction of power transfered
to the y polarization is given by

Py � 2�1 − cos�δ��cos2�θ1 − θ2��cos2�θ2�sin2�θ1�
� 2 cos�δ� cos�θ1� cos�θ2� sin�θ1� sin�θ2�
� cos2�θ1�sin2�θ2��: (10)

This is a fairly complicated expression, but it is clearly
symmetric—it does not matter whether it is the first or

second wave plate that is fixed while the other one
rotates.

For any pair of matched plates, and with one wave plate
fixed at any angle, it is possible to rotate the other wave plate
such that the outgoing light is entirely polarized in the x direc-
tion. One simply has to place them with their slow axes at
90 deg to each other, such that they cancel each other out.
This means that it is always possible with matched or anti-
matched plates to make Eq. (10) zero, so that the splitting range
is just determined by the largest value we can obtain from
Eq. (10) for a given δ. This can be determined more easily
by transforming Eq. (10) to the coordinates θsum � θ1 � θ2
and θdif � θ1 − θ2. When we do this, the above can be
written as

Py � sin2�δ∕2�cos2�θdif ��2� �cos�δ� − 1� cos�2θdif �
− 2 cos2�δ∕2� cos�2θsum��: (11)

In this form, the parameter θsum only appears once. So it is
clear that the maximum is obtained when cos�2θsum� � −1.
We can set θsum � π∕2 without placing any limit on θdif ,
so we will do so. Then it is simply a matter of finding what
value of θdif maximizes the expression

cos2�θdif ��2� �cos�δ� − 1� cos�2θdif � � 2 cos2�δ∕2��: (12)

This is maximized when θdif � arccos�1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos�δ�

p
�, if this

value turns out to be real. This occurs as long as
π∕2 ≤ δ ≤ 3π∕2. In this case, the maximum value of Py is
1, meaning that by rotating a single wave plate, the entire range
of splitting fractions is possible.

The lower limit intuitively makes sense. A retardance of less
than 1/4 wave is insufficient to make an equal superposition of
both linear polarizations. If the fixed wave plate cannot make an
equal superposition, the other wave plate will not be able to
complete the process of moving the light entirely to the y
polarization. The upper limit makes sense when we consider
again that a wave plate with a retardance of 3π∕2, or 3/4 waves,
behaves just like a quarter-wave plate that is rotated an addi-
tional 90 deg.

Furthermore, following the reasoning above, if the retard-
ance of the plates is between π∕2 and 3π∕2 radians, and if
the first plate is placed at an angle such that light initially
polarized in the x direction ends up in an equal superposition
of x and y, it makes sense that by rotating the second wave plate
it is possible to smoothly change the light from being entirely in
the x direction to being entirely in the y direction.

The appropriate angle for the fixed wave plate is the one that
yields θsum � π∕2 when θdif is equal to the value given above.
This means that the fixed wave plate should be set to the angle

θEQ � 1

4

"
π � 2 arccos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − cos�δ�

s !#
: (13)

For a wave plate with a retardance in the range of
π∕2 ≤ δ ≤ 3π∕2, this angle is, coincidentally, the angle that
will change x-polarized light into an equal superposition of
x and y. This makes sense in light of the arguments given above;
if the first wave plate creates an equal superposition, the second
wave plate can undo the effects of the first plate, or double
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them, bringing all of the light power into the y polarization
component.

For retardances outside of the range π∕2 ≤ δ ≤ 3π∕2, the
optimum occurs when θdif � 0, such that the angle of the fixed
wave plate is π∕4 radians. This results in a maximum splitting
fraction range of sin2�δ�. For a wave plate with a retardance less
than π∕2 or greater than 3π∕2, it is impossible to move half
of the light power into the y polarization direction. An angle
of π∕4 radians, or 45 deg, is the angle that will move the maxi-
mum possible amount of light power into the y polarization
direction.

In general, aligning the angle of the first wave plate is simple
in practice. To set up a system with matched wave plates, one
first places one wave plate into the system, and adjusts it such
that as close as possible to half of the light exits the polarizing
beamsplitter with the opposite polarization as the incoming
light. The second wave plate is then placed either before or
after the first wave plate. This wave plate can then be rotated
to produce the desired splitting fraction. If you can get exactly
half of the light into the other polarization using just the first
wave plate, you will be able to explore the full range of splitting
fractions smoothly by rotating the second plate. If not, the
maximum fraction of light you will be able to transfer to
the orthogonal polarization will be sin2�δ�.

As discussed above, a wave plate with a retardance of 2π − δ
should perform equivalently to a wave plate with a retardance of
δ for this application, provided that the angle of the plate is

rotated by an additional 90 deg. As such, the results and proce-
dures for a pair of anti-matched plates (one having a retardance
of δ, and the other having a retardance of 2π − δ ) are identical
to those of a pair of wave plates with matched retardance.

Experimentally measured splitting fractions for several
matched wave plates, along with theoretical curves, are shown
in Fig. 3.

5. ARBITRARY RETARDANCES

In the more general case, where the retardances of the two
plates could be different, an analytical solution is more difficult.
In addition to involving an additional parameter, it is no longer
enough to consider just the maximum amount of light trans-
ferred to the y polarization, because you can no longer guaran-
tee that, for any given angle for the fixed wave plate, it is
possible to return all of the light to the x polarization simply
by rotating the other wave plate. Instead, to determine the
maximum range of splitting fractions possible by rotating a
single wave plate, one must consider what both the maximum
and minimum of the y component of polarization will be as the
moving plate is rotated, as a function of the angle of the fixed
plate, and then find the angle for the fixed plate that produces
the largest difference between maximum and minimum.

Because the analytical treatment is complicated and non-
intuitive, we instead performed a numerical study. The results
of the study are shown in Figs. 4 and 5. For matched or

Fig. 3. Theory and experimental data for matched wave plates.
The dots are experimentally measured data. The lines represent the
theoretical splitting fraction as a function of the second wave plate’s
rotation angle given in Eq. (10), assuming that the first wave plate is
fixed at the ideal angle for matched wave plates discussed in the text.
The measured retardance for each plate is indicated on each plot. In
the topmost plot, two half-wave plates designed to be used at 408 nm
were used at 408 nm. In the middle plot, the same two wave plates
were used, but the laser used was a 633 nm HeNe laser. The lower plot
was taken using two quarter-wave plates designed for 408 nm and a
HeNe laser at 633 nm.

Fig. 4. Range of splitting possible using an arbitrary pair of wave
plates. The plot shows the maximum range of splittings (the highest
fraction transferred to the y polarization minus the minimum fraction)
possible by holding one wave plate fixed and rotating the other, as a
function of the retardances of the two wave plates. The contour lines
are drawn at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, and 0.999,
with the center of the plot having a value of 1, and the corners having a
value of zero. Inside the diamond outlined by a solid line is the region
of parameter space in which it is possible to achieve the entire range of
splitting by rotating both wave plates. The dotted line indicates the
region where a splitting range greater than 50% can be obtained
by rotating both plates.
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anti-matched wave plates, the results of the numerical study are
in agreement with the equations in the previous section. The
results displayed in Fig. 4 show that for a fairly wide range of
retardances, the range of splitting fractions possible while hold-
ing one plate fixed is quite large.

It can be shown analytically that, as with the matched case,
the order of the wave plates (whether the light passes through
the fixed or rotatable plate first) does not matter. However,
from Fig. 4 it is clear that, when the plates are not matched
or anti-matched, the largest range of splitting fractions occurs
when the fixed plate is the one with a retardance that most dif-
fers from a half-wave, and the rotating plate is the one that has a
retardance closest to a half-wave.

We also numerically tested whether the range of splitting
fractions could be increased if the final polarizing beamsplitter
is not aligned to the polarization direction of the incoming light
before passing through the wave plates. We found that some
improvement was possible for most wave plate retardances,
but the improvement was small—a fraction of a percent for
most wave plate combinations, and never larger than a few
percent.

6. ROTATING BOTH WAVE PLATES

If, rather than fixing one wave plate, we allow both wave plates
to be moved, we gain greater flexibility at the expense of in-
creased experimental complexity. As we will see, we can get
large ranges of splitting fractions with a wider range of retar-
dances with this method. But instead of a smoothly changing
splitting fraction as a function of one parameter, with this

method two plates will have to be adjusted such that realizing
a particular splitting fraction involves searching a two-
dimensional parameter space.

Allowing both plates to move affords a simplification in our
analysis. No matter what the retardances of the two plates may
be, we can always align them such that either the fast or the
slow axis of each plate is in the x direction, such that no power
is transferred out of the x polarization. Thus the range of split-
ting fractions is simply the maximum fraction that can be
moved to the y polarization by a combined rotation of the
two wave plates.

Performing another numerical calculation, we found that a
full range of splitting fractions is possible as long as π ≤ δ1 �
δ2 ≤ 3π and jδ1 − δ2j < π, where δ1 and δ2 are the retardances
of the two wave plates. This is indicated by the region enclosed
by the black diamond in Fig. 4. Otherwise, the maximum
range of splitting fractions is just sin2��δ1 � δ2�∕2�, where
the upper sign is used if both retardances are less than or greater
than π, the lower being used when one is greater and one less
than π.

7. CO-ROTATING WAVE PLATES

Another approach would be to mount two wave plates rigidly
together, their slow axes fixed at a relative angle ϕ such that the
angles of the two wave plates track each other as the pair is
rotated: θ2 � θ1 � ϕ. An obvious example of this would be
mounting two ideal quarter-wave plates (δ � π∕2) with their
slow axes in the same direction (ϕ � 0) to effectively make one
ideal half-wave plate.

Again, for simplicity, we will first consider the case of two
matched or anti-matched plates. The amount of light in the y
polarization after passing through a pair of matched wave plates
is given again by Eq. (11) if we let θsum � θ1 � θ2 � 2θ1 � ϕ
and let θdif � −ϕ. For a given retardance δ and relative angle ϕ,
the range of possible splitting fractions (the maximum Py mi-
nus the minimum Py) as theta is rotated is just cos2�ϕ� sin2�δ�.
For anti-matched wave plates, the range of splitting fractions is
just sin2�ϕ� sin2�δ�.

From this, we see that the best relative angle for this
beamsplitting application, for any retardance, is ϕ � 0 (or
ϕ � 90 deg for anti-matched wave plates). The best you can
do in this configuration is add the retardance of the wave plates,
and it is clear that the example of using two ideal quarter-wave
plates (or, equivalently, two 3/4-wave plates or one 1/4- and
one 3/4-wave plate) is the only case where two matched wave
plates can be rotated together to get the maximum range of
splitting fractions.

The more general case of two co-rotating wave plates with
arbitrary retardances is more complicated. We numerically
verified that the best that can be done is to combine the wave
plates, with the slow axes either aligned or at 90 deg to each
other, to add or subtract retardance to get as close as possible to
a perfect half-wave plate. As such, we can treat the combina-
tion like a single wave plate, as discussed in Section 3, and it is
clear that the full range of splitting values is only possible
when the two retardances of the plates add up to or differ by
a half-wave.

Fig. 5. Optimum angle for the fixed wave plate. This shows the
optimum angle for the fixed wave plate in order to achieve the largest
range of splitting fractions by rotating the rotatable wave plate. The
contour lines are drawn every 2 deg from 2 to 44 deg. The value at the
center of the plot is 0 deg, and the value at the corners is 45 deg. These
values were found numerically, and used to calculate the maximum
range shown in Fig. 4.
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8. ALIGNMENT-FREE POLARIZATION ROTATOR

A pair of perfect half-wave plates co-rotating with a fixed rel-
ative angle ϕ produces a range of possible splitting fractions of
zero; when δ � π, the θsum term drops out of the equation, and
the amount of power in the y polarization does not change as
the pair of wave plates rotates. It turns out that the phases of the
two polarization components are unchanged as well, with the
full Jones vector simplifying down to

M�θ1 � ϕ; π�M �θ1; π�
�
1
0

�
�
�
cos�2ϕ�
sin�2ϕ�

�
: (14)

In this special case, linearly polarized light will be rotated by
an angle of 2ϕ, regardless of how the pair of wave plates is rotated
relative to the direction of the polarization of the incident light.
As such, this combination could be useful to create a device that
could be dropped into place to rotate light polarization by a fixed
angle without the need for careful alignment (other than the
alignment done to lock the wave plates together to create the
device), similar to an optically active polarization rotator.

9. COMPARING TECHNIQUES

We can use Fig. 4 to compare the use of two wave plates to
the single wave plate scheme by noting that the single wave
plate setup is equivalent to a two wave plate setup for which
the fixed wave plate has zero retardance. Looking at the figure,
we see that for a given rotating wave plate retardance, increasing
the retardance of the fixed plate from zero can drastically
increase the range of splitting fractions. The improvement is
greatest when the retardance of the rotating wave plate is
not too close to an ideal half-wave (which makes sense, because
with an ideal half-wave plate the full range of splitting is pos-
sible with a single wave plate)—and when the fixed plate has a
retardance close to a quarter-wave.

By integrating the area inside a given contour in Fig. 4 and
comparing that to the total area of the figure, we can quanti-
tatively determine what the odds would be to achieve at least
a given range of splitting fractions if two wave plates with
arbitrary retardances were chosen randomly with an even dis-
tribution from zero to a full wave of retardance. This gives us
another way to compare the different beamsplitting methods
discussed in this paper. The results are shown in Fig. 6.

From Fig. 6(a) we see that, for a random selection of wave
plates, using a two wave plate scheme typically increases the
range of possible splitting fractions significantly. For example,
when a single wave plate with a random retardance is used,
there is only a 50% chance that a range of splitting ratios as
large as 0.5 or larger will be achieved. For a pair of random
wave plates, there is an 88% chance of a ratio as large as or
larger than 0.5. Furthermore, except for the very highest ranges
of splitting ratios, a setup with one fixed and one rotatable plate
has probabilities comparable to a setup in which both plates are
moved to change the splitting ratio.

The probability of randomly selecting plates that will allow a
full range of splitting ratios from 0 to 1 goes to zero for the
single plate scheme, as it requires the selection of an ideal
half-wave plate from an infinite range of possibilities. The prob-
ability similarly goes to zero for the two-plate scheme in which
only one plate is rotated, as a full range of splitting ratios

requires the random selection of two plates with precisely
matched or anti-matched retardance. The probability for a
full range of splitting ratios goes to 0.5 for a pair of randomly
selected wave plates if both plates are rotated.

Because one often purchases multiple wave plates at the
same time, it is not unlikely to have a pair of matched wave
plates available to use in this scheme. In Fig. 6(b) we see
the same curves plotted in Fig. 6(a) except with the assumption
that both wave plates are matched. For much of the curve,
the scheme in which one wave plate is fixed is lower than in
Fig. 6(a). This is because there is only one chance of selecting a
plate near to an ideal half-wave plate. But it is higher at high
splitting ratio ranges, with a 50% chance of a full range of
splitting ratios for both two-plate schemes.

(a)

(b)

(c) (d) (e)

Fig. 6. Probability of having at least a given range of splitting frac-
tions. In each plot the horizontal axis represents the range of possible
splitting fractions, and the vertical axis is the probability that, when
selecting wave plates with a random retardance, a given setup will be
able to be adjusted over a range of splitting fractions that is as large as
or larger than the value on the horizontal axis. The solid line represents
a single wave plate used to change the light polarization. The dotted
line represents two randomly selected wave plates such that the one
with a retardance closest to a half-wave is rotated while the other is
fixed at the optimum angle discussed in Section 5. The dashed
line is for two randomly selected wave plates that are both allowed
to rotate. The data plotted in (a) were calculated assuming that
any retardance was possible for the randomly selected wave plates.
Plot (b) assumed that the wave plates in the two wave plate schemes
are matched. Plots (c) and (d) do not assume matched wave plates, but
assume the wave plates have retardances that are within 10% of an
ideal (c) half-wave or (d) quarter-wave. Plot (e) does not assume
matched wave plates, but assumes that the fixed wave plate has a re-
tardance within 10% of an ideal quarter-wave, and the rotatable plate
has a retardance within 10% of an ideal half-wave shift.
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In Figs. 6(c)–6(e) we consider the case in which wave plates
are being used at a wavelength that does not significantly differ
from the design wavelength. In these plots we show the prob-
ability of getting at least a given range of splitting ratios for wave
plates with retardances randomly selected to be within 10% of
an ideal half- or quarter-wave. Note that the horizontal axis on
these plots is zoomed in to show the range of 0.965 to the full
range of splitting fractions.

In Fig. 6(c), since the plates are assumed to have a retardance
near to an ideal half-wave, even with a single wave plate a split-
ting range of at least 0.976 is guaranteed. Still, by using two
plates, a nearly perfect range of splitting ratios is guaranteed.
For a retardance near to a quarter of a wave, as is shown in
Fig. 6(d), a single plate cannot generate a range of splitting
ratios much higher than 0.5. For a pair of plates, however, very
high ranges are possible. Figure 6(e) shows improvements
when a wave plate with a retardance near to a quarter-wave
is added to a setup using a single plate with a retardance near
to a half-wave.

10. CONCLUSION

We considered the performance of an adjustable beamsplitter
in which a linearly polarized beam of light passes through one
or two wave plates followed by a polarizing beamsplitter. We
calculated the range over which we could change the amount of
light exiting each port of the beamsplitter by rotating the wave
plates, as a function of the wave plate retardances, subject to
different limitations on how the wave plates are rotated.

For a single wave plate, we found that the range of possible
splitting fractions was sin �δ∕2�2, such that the fraction of light
exiting one port of the beamsplitter could go from 0 up to
sin �δ∕2�2 while the fraction in the other port went from 1
to 1 − sin �δ∕2�2.

For a pair of identical wave plates (or, equivalently, a pair
of anti-matched wave plates), we found that the entire range
of splitting could be achieved by simply rotating one wave
plate while keeping the other fixed as long as the retardance
of the plates was between π∕2 and 3π∕2. Otherwise, the range
of splitting fractions was limited to sin �δ�2. For any pair of
matched or anti-matched wave plates, the largest range of split-
ting fractions is obtained when the fixed wave plate is rotated to
produce as close as possible to an equal amount of light in both
polarization directions. If the two wave plates do not have
matched or anti-matched retardances, it is impossible to get
a full splitting range unless one of the wave plates is an ideal
half-wave plate. However, it is typically possible to get much
larger splitting ranges than one would get with a single,
non-ideal wave plate.

If both wave plates are rotated, a full splitting range can be
achieved as long as the two retardances have a sum between π
and 3π radians and differ by less than π radians. Otherwise, the
range of splitting fractions is sin ��δ1 � δ2�∕2�2.

If two wave plates are rigidly fixed to one another and
rotated together, we found that the best that can be done is
to align the plates such that their slow axes are either parallel
or perpendicular, such that together they act as a single wave
plate whose retardance is the sum or difference of the individual
retardances, in the manner that produces a net retardance as
close as possible to a half-wave. As such, unless δ1 � δ2 � π
or jδ1 − δ2j � π, the full range of splitting fractions cannot
be achieved with this method.

Finally, we showed that two ideal half-wave plates, with their
slow axes fixed at a relative angle of ϕ, will rotate an incoming
linear polarization by 2ϕ, regardless of how the pair of wave
plates is rotated, creating an alignment-free polarization rotator.
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