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ABSTRACT 

Automating the Data Reduction Process for Geosynchronous Satellite Spectra 

Katrina Pedersen 

Department of Physics and Astronomy, BYU 

Bachelor of Science 

 

Identifying the chemical composition of unknown satellites is of great interest for defense 

applications.  A developing method of accomplishing this takes low-resolution spectra of 

satellites and deconvolves them using known material reflection and absorption properties. Using 

a suitable diffraction grating in the filter wheel slot, test spectra have been obtained over a 

variety of sun angles for various geostationary satellites using the ROVOR 16’’ RC Optical 

telescope.  The data are encouraging but the analysis is cumbersome and time-intensive.  We are 

developing a data analysis package based on the commercial image-processing software package 

Mira, to help automate the data reduction process.  Using the Mira scripting language and its file 

event scripting capabilities, data can be automatically processed with limited user interaction. 

We report on progress to date.  
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Chapter 1 

 

Introduction 

 

1.1 Importance of satellite identification 
 

Over the past couple decades, various groups have begun analyzing satellites through myriad 

photometric techniques.  There are two predominant motivations for this research.  First, we 

want to identify unknown satellites and space debris to improve our Space Object Identification 

(SOI).  This will aid in detecting possible threats in Low Earth Orbits (LEOs).  Second, we want 

to improve our Space Situational Awareness (SSA).  That includes our ability to analyze solar 

panel offsets to gain information about the possible purpose of a satellite, and to monitor the 

health of known geostationary satellites (GEOS).  Better SSA also allows us to monitor the space 

in which GEOS orbit to try to prevent collisions and the creation of more space debris. (Payne et 

al. 2006; Tucker 2015) 

 

1.2 General definitions 
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Before delving into our research, we will review prior work to improve our identification and 

understanding of GEOS.  Chapter 1 will provide the background necessary to understand the 

significance of our research and progress.  Reflectance spectroscopy is not the only method used 

for analyzing GEOS, but it is one of the most promising techniques for analyzing space debris 

(Schildknecht 2009), so it is likely that it is also invaluable to the GEOS identification process.  

Reflectance spectroscopy allows us to measure changes in the magnitude of reflected light for 

specific wavelengths.  It allows us to learn about satellite composition and size (Bédard 2012).   

 To avoid any confusion, here is a list of potentially useful definitions: 

1.) Active attitude control system (or active ACS): some form of software or hardware that 

can change or control the orientation of the satellite.  

2.) Body reference frame: the reference frame of the body, or bus, of a GEOS.  In this frame, 

the perpendicular direction would be perpendicular to the main bus of the satellite. 

3.) Glint: the sudden increase in reflected light that occurs when the phase angle (PA) 

bisector is approximately parallel to the normal vector to the solar panels.  This is similar 

to a glint caused by reflectance from a mirror when the PA bisector is parallel to the 

normal of the mirror’s surface.    

4.) Inertial reference frame: the reference frame of the solar panels of a GEOS.  In this 

frame, zero degrees would be perpendicular to the panels.  (The inertial and body 

reference frames are generally not identical.) 

5.) Normal: unless otherwise specified, the normal vector to the solar panels. 

6.) Phase angle (PA): the angle between the Sun, GEO, and sensor.  It ranges from 0° to 

180° generally, but some conventions also use -90° to 90°.  At 0°, the Sun, satellite, and 

sensor are all in the same plane and the sensor and satellite are both on the far side from 
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the Sun (similar to a full moon).  At 180°, they are all in the same plane, but the satellite 

is on the opposite side of the Earth as the sensor (similar to a new moon).    

7.) Solar panel pointing offset: the degree by which solar panels are offset from the sun.  

8.) Sun-object-sensor (SOS) geometry: refers to the angles created by sunlight reflecting off 

various parts of the satellite toward the telescope.  This often just refers to the angle 

created by the sun-solar panel-sensor geometry.     

 

1.3 Satellite identification classes 
 

In a study done by Payne et. al in 2006, a survey of 36 GEOS was taken and their photometric 

signatures were analyzed over a wide range of PAs.  They discovered that all satellites had PA 

offsets between ±10°, but most were centered near 0°.  In addition, all satellites fell into one of 

five classes, but 78% of these satellites fell into one of two classes (the Canonical and the A2100 

Class).  These classes help give preliminary information about satellite shape and can be 

described as follows: 

1.) Canonical Class: photometric peak around 0° PA, and no other major peaks.  Satellites of 

this type have solar panels that pivot about the major axis of the satellite.  The normal 

points directly at us at 0° PA, and we see the satellite edge-on at 90° PA.   

2.) A2100 Class (named after the A2100 bus type): local minimum at 0° PA.  There is a 

smooth increase in brightness from 0° to approximately ±40° followed by a smooth 

decrease at higher PAs.   

3.) Telstar Class: underlying Canonical signature with secondary peaks around ±40° PA. 
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4.) BSS702C Class: underlying Canonical signature with secondary peaks around ±60° PA.  

These secondary peaks are brighter and broader than those of the Telstar Class and are 

attributed to solar panel concentrators.  

5.) Peculiar Class: characterized by a lack of symmetry or sudden changes in brightness or 

both. 

It is clear why many satellites would have 0° PA offsets- to provide maximum energy 

production from the panels.  Payne et. al (2006) also provided possible reasons for the solar 

panel offsets.  Younger satellites may be purposefully offset, so that they do not produce too 

much electricity early on.  Solar panel offsets may also be an attempt at stabilizing the satellite 

by re-directing radiation pressure forces.  Lastly, they suggest that if sensors that control the 

ACS degrade unevenly, balancing voltages on the panels will naturally lead to offsets.   

The most practical result of their work is that only three brightness measurements are 

required to differentiate the Canonical from the A2100 Class.  Small variations in PA brightness 

may also provide information about details of the bus or panels, or possible malfunctions in the 

ACS.  The classification system is still a work in progress, but measuring PA dependence can be 

a fast way to determine the general shape and health of a satellite. (Payne et. al 2006)

 

1.4 Glint observations 
 

Glint observations are extremely useful because they can give insight into the size, segmentation, 

alignment, and energy generation and consumption capabilities of GEOS.  Often, satellites also 

produce secondary glints that likely come from elements of the bus.  In a study done by Hall et. 

al, glints were found to shift by five minutes over a 14-day period.  They found that if they tried 

graphing the glints with respect to the inertial reference frame, they did not line up.  However, 
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when they plotted the glints verses the body-reference frame, they did line up.  This suggests that 

the glints they measured were actually due to a component of the body, rather than the solar 

panels.  This may not be true in all cases, but for their measurements, this appears to be the case.  

One must first know information about the stabilization method used on the bus to be able to 

switch to the body reference frame.  Even if that information is not available, this adds support to 

the theory that smaller glints may be caused by elements of the bus.  With further research and 

data, it may be possible to use glints to determine solar panel offsets and bus type. (Hall et. al 

2013)  

 Another study performed by Vrba et. al (2009) used photometric and interferometric data 

to analyze glints.  Although interferometric findings were inconclusive, the authors did provide 

useful data regarding glints.  Many glints are not visible because SOS angles of about ±8.5° are 

blocked by Earth’s shadow.  The eclipse season for GEOS lasts about 45 days and is centered on 

the vernal and autumnal equinoxes, making it difficult to obtain complete data from a glint.  The 

glint season is centered about three weeks after the autumnal equinox and three weeks before the 

vernal equinox (in the northern hemisphere).  Glints generally cover a circular area of about a 

320 km diameter, and take about two minutes to pass over that area.  This study found that glints 

tend to be dimmer and last longer than we expect (i.e., longer than two minutes), suggesting that 

glints are not caused by perfectly flat facets.  The glint of DTV9-S lasted about one hour, instead 

of two minutes.  Solar array sub-panels at angles of ±3.75° could have caused this, but the 

authors did not mention if DTV9-S is known to have sub-panels.  Either way, measuring the 

timing of glints can give insight into the structures responsible for the glint. (Vrba et. al 2009) 

 In a recent study conducted by the Air Force, it was found that during a glint, more light 

is absorbed in the red end of the spectrum.  Specifically, the peak of the spectra shifted from 
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~560-570 nm to about 515 nm during the glint.  This would support the argument that solar 

panels are the main cause of the glints because solar panels should absorb more red light than 

blue light.  They are designed to absorb sunlight, which is more towards the red end of the 

spectrum.  So, we should expect to see a glint appear more in the blue.  Although several groups 

have suggested that smaller glints and changes in spectrum brightness may help identify specific 

features of satellites, there are still a lot of steps that must be taken for us to reach that point. 

(Tucker 2015)

 

1.5 Determining shape 
 

Hall et. al (2007) tried to determine a theoretical approach for separating attitude and body 

parameters, so that we may either use parallel computing or independent formulas to determine 

the shape and attitude of satellites.  Using Mollweide projections of albedo-area product 

distributions, one can determine how many facets (or flat surfaces) are on the satellite.  The 

projections can also help determine the materials used in building the satellite and how they are 

aligned with respect to one another.  Unfortunately, this method does not work for concavities.  

However, Mollweide projections still yield useful results and can help us recognize structures 

that are convex. (Hall et. al 2007) 

As noted previously, photometric PA measurements can provide insight into shape and 

the satellite class (Payne et. al 2002).  In addition, glints give us information about the PA 

bisector, and therefore at least one facet normal.  PA brightness distributions can also be used to 

determine shape, independent of attitude measurements.  Every shape has a unique PA 

distribution, but it is difficult to model a GEO from its PA data.  It is easier to compare a GEO’s 

PA data to that of a hypothesized satellite to determine if there is a possible fit.  Although PA 
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measurements can help determine shape, they generally do not work as well for satellites with 

ACS. (Hall et. al 2007)

 

1.6 Determining attitude 
 

It has been suggested that by inverting observational data and using parallel computing, we may 

first find facet-area distributions, or the shape of the satellite.  Then, we could determine the 

attitude of the satellite.  However, Hall et. al (2007) propose that it is more efficient to only 

determine one parameter at a time.  To find attitude, independent of shape, they make a few 

suggestions.  The first suggestion is to measure variations in synodic brightness to find a sidereal 

spin rate and spin axis.  The periodicity in brightness only depends on spin rate and not shape, so 

we can find the attitude.  Then, it is possible to map out different albedo-areas to determine the 

shape of the satellite.  To use this method however, the satellite must not only be stable or slowly 

rotating, but it must also spin fast enough that the observation time is not shorter than one 

rotation period.  In addition, the satellite must travel fast enough that synodic and sidereal 

periods are fairly different. (Hall 2007)  

 The second method proposed to determine attitude independent of shape is glint analysis.  

As aforementioned, glints and the timing of glints can help determine the attitude of solar panels 

and other body elements.  Hall et. al also noted that brightening or dimming signatures of single-

facets can be used to aid in determining attitude.  The brightening or dimming of large facets 

occurs because of a gradual change in PA.  It is suggested that when building a model of attitude 

parameters, if there are times when the SOS geometry should be the same, brightness 

measurements should be taken at those times.  If those measurements are not very close, the 

attitude model is likely incorrect. (Hall et. al 2007)   
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1.7 Additional information 
 

There have been several additional insights regarding general observations of GEOS and their 

spectra.  Several groups of researchers have compared Earth-based spectral reflection 

measurements to those of satellites in orbit (Abercromby et. al 2006; Guyote et. al 2006).  In the 

lab, backscattering can be measured, but it is unknown whether those results will still be visible 

from space (Abercromby et. al 2006).  The spectral reflection measurements of GEOS in orbit 

are seen to be darker, and redder (Abercromby et. al 2006).  This reddening, or increase in 

reflectance for redder wavelengths (above 700 nm), is not seen before GEOS leave Earth or after 

they return.  So, reddening must be due to effects of the space environment.   Abercromby et. al 

(2006) found that this reddening is material dependent, but independent of orbit or age.  This 

reddening has still not been fully accounted for.   

 Another interesting observation is that red/blue ratios are different for each spacecraft 

(Bédard et. al 2012).  This is not altogether surprising since most satellites do not have the exact 

same shape, attitude, or composition.  However, Bédard et. al (2012) suggest that it could depend 

upon the operational age of the solar cells.   

 Lastly, some research has been done on three different methods of accounting for 

extinction.  In the first method, the extinction curve was derived from observations of solar 

analog stars.  That curve was used to correct the air mass of the calibration star to the same air 

mass as the object.  The target object was then divided by the calibration star’s new spectrum.  In 

the second method, the object and solar analog star were both corrected to zero air mass by using 

a standard extinction curve.  The target object was again divided by the solar analog.  In the third 

method, the difference in air mass between the object and solar analog star was small, so no 

additional calibration was performed before dividing the two.  Although the authors did not 
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compare these methods, they claimed that primary consistency results were promising. 

(Schildknecht et. al 2007) 
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Methods 

 

2.1 Telescope set-up 
 

All data for this project has been taken using the Remote Observatory for Variable Object 

Research (ROVOR), which is a 16’’ RC Optical telescope on a Paramount ME.  ROVOR is 

located 12 miles NW of Delta, Utah at 39° 27’ 17.1’’ N and 112° 43’ 01.0’’ W at an elevation of 

1396 m.  ROVOR uses a FLI Proline 1K 24 μ pixel SITe detector and a CFW-6-6 filter wheel- 

(see Moody et. al 2012).  The dome is a 10’ by 10’ Lifferth design, as can be seen in Fig. 2.1.  A 

Star Analyser 200 (SA-200) diffraction grating was placed in the filter wheel and aligned such 

that the satellite spectra and star trails are approximately parallel.  Because the telescope is 

tracking with the GEOS, rather than the stars, stars appear elongated.  Each image has an 

exposure time of six seconds and data is usually taken continuously through the night.  Data is 

only taken on photometric nights and seeing of 3’’ is usual.  ROVOR works with CCDSoft and 

TheSkyX to gather data, but Mira is used to reduce data. 
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Figure 2.1 The ROVOR observatory. 

                 Figure 2.2 The Star Analyser 200.         Figure 2.3 A sample image of three satellites. 
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Figure 2.4 A rectangle is placed around the spectrum. 

 

 

2.2 Process of analyzing data 
 

All data were extracted using the software package Mira, but then analyzed using MATLAB.  

Before using any Mira scripts however, all images are reduced using calibration frames (flats, 

zeros, and darks) in Mira.  Then, a rectangle is placed over the spectra and all counts are 

summed up in each column of the rectangle.  This rectangle can be clearly seen in Fig. 2.4.  The 

rectangle is over the 1st order spectrum, while the zeroth order spectrum is a little ways to its left.  

In order to know the wavelength values corresponding to each pixel, we first had to perform a 

calibration.  The company that produces the SA-200 also provides a grating to sensor calculator 

that provides the wavelength to pixel ratio.  The pixel to wavelength ratio can be described as: 

λ=5.187*P+51.431 (2.1) 



2.2  Process of analyzing data  13 

 

where wavelength is given in nanometers and P is the distance from the zeroth order in pixels.  

Data is only recorded from 398.96 to 995.465 nm, or pixels values 68 to 183 measured along the 

x-axis away from the zeroth order.   

 Next, rectangles of the same size are created 20 pixels below and 20 pixels above the 

spectra (as seen in Fig. 2.5 and 2.6 respectively), which will later be used to subtract the 

background values.  Again, values were summed up along every column.  After obtaining all of 

these values from Mira for all images over one night, I tried to get rid of bad data, particularly 

where stars passed through the spectrum or background rectangles.  To do this, I took the median 

of every 20 data points of a specific wavelength (or column value) moving forward in time.  Any 

data in that region of 20 values with a relative error (with respect to the median) greater than 

0.17, was thrown out and replaced by zero.  The relative error limits- both high and low- are easy 

to change in the program.  I generally found that filtering the background data with a relative 

error of 0.15 did a better job.    

Next, the mean and standard deviation were calculated at each column location from 

every 15 data points (moving forward in time).  Tapered values were used at the ends, such that 

the mean and standard deviation were calculated using 1, 3, 5, 7, 9, 11, 13, and then 15 data 

points at the beginning, and the reverse of that at the end.  All data points were replaced by their 

mean values.  Finally, background values at each x-pixel (or column) location were averaged 

from 15 values from the upper rectangle and 15 values from the lower rectangle all centered on 

the same x-pixel value and moving forwards in time.  Again, tapered endpoints were used.  

Background values were then subtracted from any corresponding spectrum values (except those 

that had already been removed).  Any values that would have been negative, are just set at zero, 

meaning there was no difference between the background and spectrum values at that location. 
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Following this process, all spectrum values are multiplied by their corresponding flux 

multipliers.  This accounts for the extinction of light using values obtained from a solar analog 

star.  Lastly, a bin value was selected for both wavelength and time.  Data was again averaged 

over these bin values to produce data that could be more easily plotted.  Generally, bin values of 

about five and 30 were used for wavelength and time respectively.  If the number of wavelength 

or time values was not an exact multiple of the bin values, the remainder would be averaged for 

the last data point.   

 

                    

Figure 2.5 The rectangle below the spectra.             Figure 2.6 The rectangle above the spectra. 

 

2.3 Programming in Mira 
 

Mira has built in scripting classes that are specific to image processing, and it primarily uses the 

Lua programming language.  The Mirametrics website provides a user’s manual for scripting, 

which explains all of the built-in classes provided.  Mira has capabilities for file event scripting, 

in which the user provides an initial text document and chooses an initial, intermediate, and final 

script.  The initial text document gives the program information about the initial location (in 

pixel values) of the zeroth order satellite.  It also tells the program what tracking radius should be 

allowed when tracking the zeroth order.  If for any reason the satellite moves farther than that 

tracking radius from one frame to the next, Mira will not be able to track the satellite.  The 
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location of all three rectangles (the spectrum, background above, and background below) is 

determined from the zeroth order location.   

 When the user starts file watching, the initial script is run.  Following that, the 

intermediate script will be run on any image added into the watch folder.  When the user stops 

file watching, the final script is run. In the initial script, any values that will be needed through 

the entire script are initialized.  The initial script also checks that the text file has enough entries 

and then initializes variables in the registry to hold values from the text file.  The initial script 

also initializes variables that will track how many images are skipped and keep a record of their 

file names.  There is also a registry value that holds the previous magnitude of the zeroth order 

(excluding any skipped images).   

 In the intermediate, or main, script, the image is processed.  If there is a file event, which 

generally consists of a file being added to a specific folder, then this script will run.  It creates an 

object to hold and manipulate the image, an object to do photometry on the image, and an object 

to calculate the centroid of the zeroth order.  Variables are set from the registry values and if the 

there are no other problems, the rest of the script runs.  If too many images have been skipped in 

a row, the program will quit because it probably lost track of the zeroth order.  The program will 

also quit if it fails to open an image.  An image will be skipped if the change in magnitude of the 

zeroth order is greater than two from one image to the next.  The filename of the skipped image 

is stored in a registry value.   

 If the image is not being skipped and the program should not quit, then the script will 

calculate the values of each column of the rectangle surrounding the spectra.  It will also do this 

for the rectangles above and below the spectra.  The program will then output the time at which 

the exposure started (in seconds since midnight in Greenwich Mean Time), and values 
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corresponding to each column of the spectra rectangle, then the rectangle above, and then the 

rectangle below.  The new centroid coordinates are set, the previous magnitude is updated, and 

the number and list of skipped images is updated.  The image and any unnecessary objects are 

also closed to free up memory.   

 The final script is very short, but it does print out the list of skipped images.  When file 

event scripting is stopped, the script messages window contains a time, spectra values, and 

background values from above and below for each image followed by the skipped images list at 

the end.  It is very easy to copy that data to an excel file, such that every image corresponds to 

one column.  After that point, the data can be analyzed using a MATLAB function.

 

2.4 Programming in MATLAB 
 

Once the data is in Excel, it just needs to be separated into three sheets.  There are two empty 

rows between the spectrum and background values, and between the different types of 

background values.  So, it should be clear how to separate the data.  The background values from 

above need to be cut and pasted into the second sheet, and the background values from below 

need to be pasted into the third sheet.   

Then, the user needs to run a function from MATLAB, which requires several values, 

including the name of the file and whether or not it is daylight savings.  The MATLAB function 

analyzes the data according to the process described in Sec. 2.4.  It outputs the final values into a 

new Excel document with the same file name, except with “final” concatenated to the beginning.  

The user can easily create graphs from this file.  Times output from MATLAB are in seconds 

since noon Mountain Daylight Time, and wavelength values are in nanometers.   



2.5  Challenges in automating program 17 

 

2.5 Challenges in automating program 
 

One of the main difficulties in automating the Mira scripts is that we do not know if Mira’s 

tracking has failed to track the zeroth order satellite.  To fix this, a field was created to store the 

previous magnitude.  If that magnitude changes by two or more, it is likely that Mira lost track of 

the zeroth order.  We also did not want the program to stop right away just because there was one 

bad image.  So, the program will only stop if there are five or more tracking failures in a row.  

Also, it is easy for the user to check if the tracking will work.  The user can try to track the zeroth 

order satellite with the same centroid parameters that are given to the script.  If Mira doesn’t 

have any trouble with that track, then script should run without any problems.  That should take 

less than five minutes to check.  Also, to aid in any trouble shooting, the image path names of 

any skipped images are printed at the end.  If five images are skipped in a row.  It is easy to see 

where the problem happened.   

 Another difficulty has been getting rid of data corrupted by stars passing through the 

rectangles.  MATLAB should throw out most of those values by getting rid of any values that are 

greater than the mean added to the standard deviation.  We are still working on improving this 

process however.  We want to make sure we don’t throw away any valuable data that reflects the 

true behavior of the satellite while still removing artifacts from passing stars.   

 The last main challenge was the sheer volume of data.  From just one night, we can have 

about 2,200 frames.  Mira can take six hours or more processing this data if it tries to process it 

all at once.  We have found that Mira seems to work slower if you try to have it work on more 

than about 300 images at once.  I recommend only putting about 250 images into the watch 

folder at one time, and then leaving it for an hour before putting in the next 250 images.   
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Also, Mira does not always process images in the order one would expect.  However, if 

the user right clicks on the first image that should be processed when copying over the data, the 

script will process files in the expected order.  Otherwise, the last file will generally be processed 

first.  To be extra careful, the user should sort the data based on the time values in the first row 

after it is all in an Excel file.  The MATLAB code only takes about 10 minutes to run on the data 

from 2,200 images.  Although the process of extracting and analyzing the data still takes a lot of 

time, the user can start the program running and come back later.   

 In addition to these challenges, I found it difficult to debug code because there was so 

much data running through it.  It takes a lot of time to make sure that the code is running 

properly on every image in Mira and on every matrix of data in MATLAB.  I also tried to avoid 

using more memory than I needed in both Mira and MATLAB to avoid slowing the programs 

down.   

I have also done my best to make the code clear to anyone who may need to change it.  

Any parameter values that are hard coded based on what I found to work best, or what seemed 

most appropriate have a comment that says “HARD CODED” next to it.  For example, I chose to 

bin the wavelength in sets of five, and the time in sets of 15.  If the user would like to change 

that, they will need to change the MATLAB code.  I believe that is easier than requiring the user 

to provide all of these values every time they would like to call the function however.  Any hard 

coded values are only defined once, so they should be easy to change.  I hope that will help make 

this code more durable, but also flexible if changes need to be made.  
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Chapter 3 

 

Results 

 

3.1 Glint peaks 
 

When analyzing the glint seen on the night of July 26, 2015, we found that longer wavelengths 

peaked after shorter wavelengths.  In Fig 3.1 and Fig 3.2, it is clear that the longer wavelengths 

peak later.  The vertical black lines are approximately lined up with the peak from the longest 

wavelength shown in each graph.  The difference in timing is particularly clear from the 440-648 

nm graph.  Although we do not know why this incongruity in timing occurs, it is possible that it 

is due to a thin film in the surface of the facets.  The smaller secondary glints may also be 

suggestive of multiple reflective surfaces.  These may help give insight into the shape or attitude 

of the satellite, but results are inconclusive at this time.  More data is required from SES-1 and 

other GEOS to discover the complete interpretation of the data. 
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Figure 3.1 A plot of counts over time for wavelengths between 440.456-647.936 nm. 

 

Figure 3.2 A plot of counts over time for wavelengths between 673.871-933.221 nm.



 

21 
 

 
  

 

 

 

Chapter 4 

 

Conclusion 
 

 

4.1 Possible programming improvements 
 

Overall, the Mira scripts and MATLAB function are reliable.  There are still improvements to be 

made to remove stars from the spectra and background values, but the programs do a fairly good 

job.  In addition, they will not work well if the data given to them was not taken on a photometric 

night.  Mira will not be able to track the zeroth order if there are clouds coming in and out of the 

frame.  It is simple to test if the code will accurately track the satellites, however.  If Mira tracks 

the zeroth order, then the file event program will also.  This only takes a couple minutes to test, 

so it is worth the time.  I have done my best to find any errors that could come up, and stop them 

from happening, but that does not mean that other errors will not come up as the programs are 

tested more.  I hope that these errors will be easy to fix however because the code is well-

commented.  
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4.2 Future research 
 

Many of the methods being used for gathering information about GEOS are new and still being 

developed.  I think reflectance spectroscopy holds a promising future, but more data is needed to 

determine what the full capabilities of this method are.  Now that the process is mostly 

automated, it should be easier to analyze large amounts of data quickly.  In addition, it would be 

useful to observe some satellites with known properties, so that we can compare experimental 

results to physical properties to determine the level of correlation between the two.  This is an 

exciting field currently with many opportunities for research, creativity, and progression. 
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Appendix A 

 

Mira Code 

 
 

Initial Script: 
 
--//////////////////////////////////////////////////////////////////////// 

--//// This script is called once when the “File Event Scripting” is started. 

 

-- The text passed into the initial script is parsed into substrings- str[1], 

str[2], etc. 

-- These values can change photometry details, set the initial centroid, …. 

str  =  StrTok( GetScriptString() ) 

 

-- Create a Registry object to hold the values passed in through the text 

document. 

-- Also, quit the program if there are not enough initial values passed in. 

if #str < 9 then Exit( "Not enough parameter strings sent to Initial 

Script\n" ) end 

 

Reg = CRegistry:new( "Real-time-phot" ) –- create the Registry 

Reg:SetNum( "CoordX", tonumber(str[1]) ) -- initial x coordinate of satellite 

Reg:SetNum( "CoordY", tonumber(str[2]) ) -- initial y coordinate of satellite 

Reg:SetNum( "Ap1", tonumber(str[3]) ) –- inner aperture radius (in pixels) 

Reg:SetNum( "Ap2", tonumber(str[4]) ) –- inner sky sampling radius (in 

pixels) 

Reg:SetNum( "Ap3", tonumber(str[5]) ) –- outer aperture radius (in pixels) 

Reg:SetStr( "ApBg", str[6] ) –- aperture background mode (0 = median) 

Reg:SetNum( "CentRadiusX", tonumber(str[7]) ) -- Centroid calculation radius 

(in pixels) 

Reg:SetNum( "CentRadiusY", tonumber(str[8]) ) -- Centroid tracking radius (in 

pixels) 

Reg:SetNum( "ApZP", tonumber(str[9]) ) –- photometric zero point 

 

-- The following values are not set by the user in the text passed into this 

script. 
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Reg:SetNum( "PrevMag", 1 ) -- used to store satellite's previous magnitude, 

set to 1 initially 

Reg:SetNum( "NumSkipped", 0) -- gives the number of consecutively skipped 

images  

Reg:SetBool( "QuitNow", false) -- tells the program to quit 

Reg:SetStr( "Skipped", "Skipped Images: ") -- string that contains all 

skipped image file paths 

 

Reg:SetStr( "Status", "started" ) -- optional, just to keep a record of the 

processing 

  

-- end of script 

 

Event Script: 

--//////////////////////////////////////////////////////////////////////// 

--////  This script is called when a file event occurs- generally when a file 

--////  is added to the watch folder. 

 

 

-- A string is automatically passed to the script for every file event.  The 

string gives the file path, file event, .... 

 

str = StrTok( GetScriptString() ) –- Tokenize the input string. 

 

if str[2] ~= "Added" then Exit() end –- If a file was not added, then don’t 

run the script.   

 

strImageFileName = str[1] –- Save the file name.  

 

-- Open the selected file and then process it 

I = CImage:new()  -- Create a CImage object to hold the image.  

-- If the image will not open, create an error message and exit the script. 

if I:Open( strImageFileName ) == false then 

  sErrMsg = Sprintf( "Cannot open '%s' as an image.\n", strImageFileName ) 

  Exit( sErrMsg ) 

end 

 

A = CApphot:new() -- Create a CApphot object for doing the photometry. 

C = CCentroid:new() -- Create a CCentroid object for the centroid 

coordinates. 

 

-- Load aperture photometry parameters from the image (exptime, gain, etc.). 

A:GetImageParams( I ) 

 

-- Open the Registry for accessing stored parameters. 

Reg = CRegistry:new("Real-time-phot") 

 

-- Centroid x and y values: 

x = Reg:GetNum( "CoordX", 1 ) 

y = Reg:GetNum( "CoordY", 1 ) 

C:SetSample( Reg:GetNum( "CentRadiusX", 5 ), Reg:GetNum( "CentRadiusY", 5 ) ) 

-- Photometry parameters: 
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A.nRadius1 = Reg:GetNum( "Ap1", 5 ) -- inner aperture radius 

A.nRadius2 = Reg:GetNum( "Ap2", 10 ) -- inner sky sampling radius 

A.nRadius3 = Reg:GetNum( "Ap3", 15 ) -- outer aperture radius 

A:SetBgMethod( Reg:GetStr( "ApBg", "mode" ) ) –- set background method 

nZeroPt = Reg:GetNum( "ApZP", 22 ) –- set zero point 

prevMag = Reg:GetNum( "PrevMag", 1 ) -- gives the magnitude of the satellite 

in the previous image 

numSkipped = Reg:GetNum( "NumSkipped", 0) -- gives the number of skipped 

images 

quitNow = Reg:GetBool( "QuitNow", false) -- tells the program to quit if 

there are too many skipped images 

skipped = Reg:GetStr( "Skipped", "Skipped Images: ") -- saves file paths of 

skipped images 

 

 

-- Only runs the script if you don't want to quit 

if quitNow == false then 

  -- update the object coordinates using the centroid 

  bSuccess = C:Calc( I, x, y )  -- compute the centroid position 

   

  A:Measure( I, C.x, C.y )  -- does aperture photometry on satellite 0th order 

  futMag = A.nMag+nZeroPt -- gives the magnitude of the current image 

  -- Printf("Prev: %lg  Future: %lg\t", prevMag, futMag)  -- just for       

debugging purposes 

   

  -- preMag is set to 1 at beginning, so we can redefine it (there shouldn't 

be a tracking problem on the first image because the centroid coordinates 

should be set). 

  if prevMag == 1 then  

    bSuccess = true 

    prevMag = futMag 

  end 

   

  -- If the change in magnitude from one frame to the next is greater than 

1.5, then something went wrong probably. 

  -- Note: 1.5 is hard coded...it may need to be changed 

  -- HARD CODED 

  if math.abs(prevMag-futMag) > 1.5 then 

    bSuccess = false 

  end 

     

  -- Note: the rectangle position is hard coded based on the position of the 

satellite (centroid). 

  -- HARD CODED 

  xi = x + 67; xf = x + 182; -- setting x initial and x final  

  yi = y - 10; yf = y + 3; -- setting y initial and y final 

   

  if bSuccess == false then  -- if something went wrong, skip the image 

    numSkipped = numSkipped + 1 -- keeps a count of consecutively skipped 

images 

    skipped = skipped .. I:Path(30) .. "\n" -- keeps track of skipped images 

  end 

   

  if bSuccess == true and quitNow == false then -- if everything seems okay 

    numSkipped = 0 -- reset the number skipped 

    -- total = 0 -- counts the total number of counts in the rectangle- used 

previously to give counts at each wavelength as a percentage of the total. 
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    tab = {} -- initialize a table to hold the values of each column 

    tabU = {} -- initialize a table for the rectangle above 

    tabD = {} -- initialize a table for the rectangle below 

 

    -- run through each column and add up all of the counts in that column in 

the rectangle  

    for i = 1, (xf - xi + 1) 

    do 

      colSum = 0 

      colSumU = 0 

      colSumD = 0 

 

      for j = yi, yf 

      do 

        colSum = I:Val(i + xi - 1, j) + colSum 

        colSumU = I:Val(i + xi -1, j + 20) + colSumU 

        colSumD = I:Val(i + xi -1, j - 20) + colSumD 

      end 

   

      -- total = total + colSum – Not needed anymore. 

      tab[i] = colSum 

      tabU[i] = colSumU 

      tabD[i] = colSumD 

    end 

     

    time = I:Time() 

    time = HmsToHr(time) 

    Printf( "%lg \t", time) -- print the time when the exposure began (in a 

decimal number of hours since midnight GMT) 

     

    -- print all column values from the spectrum 

    for index, value in next, tab do 

      Printf("%lg \t",tab[index]) 

    end 

 

    -- print all column values from the rectangle above after leaving some 

blank space 

    Printf("\t\t") 

 

    for index, value in next, tabU do 

      Printf("%lg \t",tabU[index]) 

    end 

     

    -- print all column values from the rectangle below after leaving some 

blank space 

    Printf("\t\t") 

     

    for index, value in next, tabD do 

      Printf("%lg \t",tabD[index]) 

    end 

     

    Printf("\n") 

 

 

    -- Possibly useful values to print: 
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    -- Printf( "%-30.30s\tMag = %lg +/- %lg, BG = %lg (sdev=%lg), SNR 

= %lg\n", I:Path(30), A.nMag+nZeroPt, A.nMagErr, A.nBgValue, A.nBgValueErr, 

A.nSnRatio ) 

   

    -- update the object coordinates in the Registry for the next image 

    Reg:SetNum( "CoordX", C.x ) 

    Reg:SetNum( "CoordY", C.y ) 

    Reg:SetNum( "PrevMag", A.nMag+nZeroPt ) 

  end 

   

  -- If more than five images have been skipped, tell the user and quit. 

  -- HARD CODED 

  if numSkipped > 5 then 

    Printf("%lg consecutive images have been skipped, so the program has been 

terminated.  \n", numSkipped) 

    quitNow = true 

  end 

end 

 

-- Finish updating the registry    

Reg:SetNum( "NumSkipped", numSkipped) 

Reg:SetBool( "QuitNow", quitNow) 

Reg:SetStr( "Skipped", skipped) 

 

I:Close()  -- Close this image to free memory.  

-- Delete objects to free memory: 

A:delete()   

C:delete() 

Reg:delete() 

 

-- end of script 

 

Final Script: 

--//////////////////////////////////////////////////////////////////////// 

--////  Called once from the "File Event Scripting" task when the file              

--////  watching loop is terminated. 

 

-- Print out the list of skipped images and do any needed clean-up. 

 

Reg = CRegistry:new("Real-time-phot") 

skipped = Reg:GetStr( "Skipped", skipped) 

Printf("%s", skipped) 

Reg:SetStr( "Status", "completed" ) 

Reg:delete() 

 

-- end of script 
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Appendix B 

 

MATLAB Code: 
 

Function satCalc.m: 

function [] = satCalc(workbookFile, sheetNameAllData, sheetNameBackUp, 

sheetNameBackDown, rangeAll,rangeBg,dayLSavings) 

  
% Import data from a spreadsheet 
%% Input handling 

  
% If no sheet is specified, read the first, second, and third sheets 
if nargin < 7 || isempty(sheetNameAllData) || isempty(sheetNameBackUp) ... 
        || isempty(sheetNameBackDown) 
    sheetNameAllData = 1; 
    sheetNameBackUp = 2; 
    sheetNameBackDown = 3; 
end 

  
% If ranges are not specified, read all data 
if nargin < 7 || isempty(rangeAll) || isempty(rangeBg) 
    rangeAll = ''; 
    rangeBg = ''; 
end 
  

% If it is not specified in day light savings is on/off, assume it is off 
if nargin < 7 || isempty(dayLSavings) 
   dayLSavings = 'Off';  
end 

  
%% Import the data 
[~, ~, raw] = xlsread(workbookFile, sheetNameAllData, rangeAll); 
raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
[~, ~, raw2] = xlsread(workbookFile, sheetNameBackUp, rangeBg); 
raw2(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw2)) = {''}; 
[~, ~, raw3] = xlsread(workbookFile, sheetNameBackDown, rangeBg); 
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raw3(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw3)) = {''}; 

  
%% Replace non-numeric cells with 0 
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric 

cells 
raw(R) = {0}; % Replace non-numeric cells 
R2 = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw2);  
raw2(R2) = {0};  
R3 = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw3);  
raw3(R3) = {0};  

  
%% Create output variables 
I = cellfun(@(x) ischar(x), raw); 
raw(I) = {0}; 
data = reshape([raw{:}],size(raw)); 
I2 = cellfun(@(x) ischar(x), raw2); 
raw2(I2) = {0}; 
backUp = reshape([raw2{:}],size(raw2)); 
I3 = cellfun(@(x) ischar(x), raw3); 
raw3(I3) = {0}; 
backDown = reshape([raw3{:}],size(raw3)); 

  
%% This code should get rid of any obvious problems or stars for allData,  
%  backUp, and backDown.

 
% I'll try to do it in terms of percentage change ... that way it doesn't 
% matter if the input is in counts or counts/(total counts in rectangle),  

% etc. 
 

% Set the number of rows and columns and remove the time data.  
[numRows, numCols]=size(data); 
time=data(1,1:numCols); 
allData(1:numRows-1,1:numCols)=data(2:numRows,1:numCols); 
numRows=numRows-1; 

  
%% Getting rid of bad data: using medians and then percent error. 

  
numMed=20; % The number of values that we are taking the median of in a given 

row. 
med=zeros(numRows,ceil(numCols/numMed)); % Creating a matrix to hold the 

median values. 
medU=med; 
medD=med; 

 
% Finding and saving the median values:  
for j=1:numRows 
    for k=1:ceil(numCols/numMed) 
      if k~=ceil(numCols/numMed) 
        med(j,k)=median(allData(j,(k-1)*numMed+1:k*numMed)); 
        medU(j,k)=median(backUp(j,(k-1)*numMed+1:k*numMed)); 
        medD(j,k)=median(backDown(j,(k-1)*numMed+1:k*numMed)); 
      else 
        med(j,k)=median(allData(j,(k-1)*numMed+1:numCols)); 
        medU(j,k)=median(backUp(j,(k-1)*numMed+1:numCols)); 
        medD(j,k)=median(backDown(j,(k-1)*numMed+1:numCols)); 
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      end 
    end 
end 
 

% Setting the relative error values: 

% HARD CODED: 
errA=.17; 
errU=.15; 
errD=.15; 
  

% If the values are outside of the relative error compared to the median 

values, replace them with 0. 

for j=1:numRows 
    for k=1:numCols 
      if abs(med(j,ceil(k/numMed))-allData(j,k))/med(j,ceil(k/numMed))>errA 
         allData(j,k)=0; 
      end 
      if abs(medU(j,ceil(k/numMed))-backUp(j,k))/medU(j,ceil(k/numMed))>errU 
         backUp(j,k)=0; 
      end 
      if abs(medD(j,ceil(k/numMed))-

backDown(j,k))/medD(j,ceil(k/numMed))>errD 
         backDown(j,k)=0; 
      end 
    end 
end 

  
%% Taking the Standard Deviation and Mean in sets of 15.  Near the end, the  
%  standard deviation is taken for the last 14, 13, 12, 11, ... 1 data  

%  points.  The opposite is true at the beginning. 
  

% Initialize variables: 
stdvAll=zeros(numRows,numCols); 
stdvUp=stdvAll; 
stdvDown=stdvAll; 

  
meanAll=zeros(numRows,numCols); 
meanUp=meanAll; 
meanDown=meanAll; 

  
% Unfortunately, MATLAB will count the zeros when it takes the standard 
% deviation and mean, so we have to manually skip over those.  The following  

% code calculates the standard deviation and mean in sets of 15. 

  
for j=1:numRows 
   for k=1:numCols 
      if k <= numCols-7 && k >= 8 % If there are at least 7 values on either 

  % side of the current column. 
        vAll=allData(j,k-7:k+7); 
        vAll=vAll(vAll~=0); % Get rid of 0’s. 
        stdvAll(j,k)=std(vAll); % Calculate the standard deviation. 
        meanAll(j,k)=mean(vAll); % Calculate the mean. 

         
        vUp=backUp(j,k-7:k+7); 
        vUp=vUp(vUp~=0); 
        stdvUp(j,k)=std(vUp); 
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        meanUp(j,k)=mean(vUp); 

         
        vDown=backDown(j,k-7:k+7); 
        vDown=vDown(vDown~=0); 
        stdvDown(j,k)=std(vDown); 
        meanDown(j,k)=mean(vDown); 
      elseif k < 8 % Run for first seven columns. 
        vAll=allData(j,1:2*k-1); 
        vAll=vAll(vAll~=0); 
        stdvAll(j,k)=std(vAll); 
        meanAll(j,k)=mean(vAll); 

         
        vUp=backUp(j,1:2*k-1); 
        vUp=vUp(vUp~=0); 
        stdvUp(j,k)=std(vUp); 
        meanUp(j,k)=mean(vUp); 

         
        vDown=backDown(j,1:2*k-1); 
        vDown=vDown(vDown~=0); 
        stdvDown(j,k)=std(vDown); 
        meanDown(j,k)=mean(vDown); 
      else % Run for the last seven columns. 
        vAll=allData(j,2*k-numCols:numCols); 
        vAll=vAll(vAll~=0); 
        stdvAll(j,k)=std(vAll); 
        meanAll(j,k)=mean(vAll); 

         
        vUp=backUp(j,2*k-numCols:numCols); 
        vUp=vUp(vUp~=0); 
        stdvUp(j,k)=std(vUp); 
        meanUp(j,k)=mean(vUp); 

         
        vDown=backDown(j,2*k-numCols:numCols); 
        vDown=vDown(vDown~=0); 
        stdvDown(j,k)=std(vDown); 
        meanDown(j,k)=mean(vDown); 
      end 
   end 
end

 
%% Getting the total background values by averaging backUp and backDown. 
%  Also, subtracting them from all data points in meanAll. 

  
background=zeros(numRows,numCols); 
  

% Average 15 values from backUp and the corresponding values from backDown.  
for j=1:numRows 
   for k=1:numCols 
      if k <= numCols-7 && k >= 8 % Run for values in the middle. 
        vBd=zeros(15,1); % Initialize values. 
        vBu=vBd; % Initialize values. 
        vBd(1:15,1)=meanDown(j,k-7:k+7)'; % Get the values from meanDown. 
        vBd=vBd(vBd~=0); % Remove 0’s. 
        vBu(1:15,1)=meanUp(j,k-7:k+7)'; % Get the values from meanUp. 
        vBu=vBu(vBu~=0); % Remove 0’s. 
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        vBg=[vBd;vBu]; 
        background(j,k)=mean(vBg); 
      elseif k < 8 % Run for values at the beginning. 
        vBd=zeros(2*k-1,1); 
        vBu=vBd; 
        vBd(1:2*k-1,1)=meanDown(j,1:2*k-1)'; 
        vBd=vBd(vBd~=0); 
        vBu(1:2*k-1,1)=meanUp(j,1:2*k-1)'; 
        vBu=vBu(vBu~=0); 
        vBg=[vBd;vBu]; 
        background(j,k)=mean(vBg);  
      else % Run for values at the end. 
        vBd=zeros(2*numCols-2*k+1,1); 
        vBu=vBd; 
        vBd(1:2*numCols-2*k+1,1)=meanDown(j,2*k-numCols:numCols)'; 
        vBd=vBd(vBd~=0); 
        vBu(1:2*numCols-2*k+1,1)=meanUp(j,2*k-numCols:numCols)'; 
        vBu=vBu(vBu~=0); 
        vBg=[vBd;vBu]; 
        background(j,k)=mean(vBg); 
      end 
      if meanAll(j,k) - background(j,k) > 0  
          meanAll(j,k) = meanAll(j,k)-background(j,k); 
      else % If meanAll was going to be negative, replace it with 0. 
          meanAll(j,k) = 0; 
      end 
   end 
end 

  
%% Setting the time to be in the form of seconds since noon in MDT. 

  
if strcmp(dayLSavings,'On')== 1 
   time(1,1:numCols)=time(1,1:numCols)-3600*6; 
else 
    time(1,1:numCols)=time(1,1:numCols)-3600*7; 
end 

  
time(1,1:numCols)=time(1,1:numCols)+12*3600; 

  
%% Flux Multipliers 
  

% HARD CODED 
fluxMult=[6.85,7.28,6.72,5.53,4.90,4.39,2.53,4.00,3.95,3.55,3.35,2.38, ... 
    2.02,1.57,1.42,1.25,1.27,1.02,1.15,1.25,1.16,1.18,1.14,0.97,0.98, ... 
    0.91,0.82,0.80,0.83,0.78,0.80,0.80,0.90,0.93,1.01,1.03,0.96,0.87, ... 
    0.79,0.68,0.70,0.68,0.65,0.67,0.74,0.85,0.97,1.05,1.05,1.00,0.91, ... 
    0.83,0.81,0.75,0.76,0.76,0.78,0.82,0.90,1.05,1.12,1.19,1.12,1.10, ... 
    1.09,1.05,1.02,1.01,1.02,1.06,1.11,1.25,1.51,1.82,1.79,1.61,1.40, ... 
    1.39,1.41,1.38,1.37,1.42,1.53,1.64,1.79,1.98,2.16,1.98,2.25,2.56, ... 
    2.24,2.64,2.62,2.63,2.59,2.60,2.69,2.83,3.11,3.24,3.30,3.76,4.32, ... 
    4.76,5.44,5.86,6.54,6.73,7.09,7.26,7.01,7.25,7.76,8.56,9.35,9.90]; 

  
% I only want 68-183 (in pixel values). Create a vector of wavelength values. 
lambda=zeros(numRows,1); 

% HARD CODED 
lambdaMin=398.96; h=5.187; lambdaMax=995.465; 
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lambda(1:numRows,1)=lambdaMin:h:lambdaMax; 
  

% Multiply by the corresponding flux multipliers. 
for j=1:numRows 
    meanAll(j,1:numCols)=meanAll(j,1:numCols)*fluxMult(j); 
end 

  
% These bin values are HARD CODED- you can change them if you want... 
wlBinVal=5; 
timeBinVal=30; 

  
wlavg=zeros(wlBinVal,1); % holds data values until they need to be averaged 

in wavelength 
timeavg=zeros(timeBinVal,1); % holds data values until they need to be 

averaged in time 
wlBinAvg=wlavg; % holds wavelength values until they need to be averaged 
timeBinAvg=timeavg; % holds time values until they need to be averaged 
wlBin=zeros(ceil(numRows/wlBinVal),1); % holds all final wavelength values 
timeBin=zeros(1,ceil(numCols/timeBinVal)); % holds all final time values 
  

% I’ll do the wavelength binning first, and then in time. 
binValuesIn=zeros(ceil(length(lambda)/wlBinVal),numCols); % stores values 

from first binning the wavelength 
binValuesFin=zeros(ceil(length(lambda)/wlBinVal),ceil(length(time)/timeBinVal

)); % stores values from final binning of time 
for k=1:numCols 
   for j=1:numRows 
       if mod(j,wlBinVal)==0 || j==numRows % only run if we need to set a 

value in binValuesIn 
         wlavg(length(wlavg)+1,1)=meanAll(j,k); 
         wlavg=mean(wlavg(wlavg~=0)); % average all values, taking out 0’s 
         binValuesIn(ceil(j/wlBinVal),k)=wlavg; % set the new binned value 
         wlavg=zeros(wlBinVal,1); % reinitialize the vector 
          

    % the following code does the same process for actual wavelengths: 
         wlBinAvg(length(wlBinAvg)+1,1)=lambda(j,1); 
         wlBinAvg=mean(wlBinAvg(wlBinAvg~=0)); 
         wlBin(ceil(j/wlBinVal),1)=wlBinAvg; 
         wlBinAvg=wlavg; 
       else % if we aren’t done gathering data, add values to be averaged 
         wlavg(mod(j,wlBinVal),1)=meanAll(j,k); 
         wlBinAvg(mod(j,wlBinVal),1)=lambda(j,1); 
       end 
   end 
end

  
% the following loop should now bin the binValuesIn in time: 
for j=1:ceil(numRows/wlBinVal) 
   for k=1:numCols 
       if mod(k,timeBinVal)==0 || k==numCols % only run if we need to set a 

value in binValuesFin 
         timeavg(length(timeavg)+1,1)=binValuesIn(j,k);   
         timeavg=mean(timeavg(timeavg~=0)); % average values, taking out 0’s 
         binValuesFin(j,ceil(k/timeBinVal))=timeavg; 
         timeavg=zeros(timeBinVal,1); 
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         timeBinAvg(length(timeBinAvg)+1,1)=time(1,k); 
         timeBinAvg=mean(timeBinAvg(timeBinAvg~=0)); 
         timeBin(1,ceil(k/timeBinVal))=timeBinAvg; 
         timeBinAvg=timeavg; 
       else % if we aren’t done gathering data, add values to be averaged 
         timeavg(mod(k,timeBinVal),1)=binValuesIn(j,k); 
         timeBinAvg(mod(k,timeBinVal),1)=time(1,k); 
       end 
   end 
end 

  
[binR, binC]=size(binValuesFin); % set the new row and column sizes 
timePlots=zeros(binR+1,binC+1); % initialize a matrix for all final values 
timePlots(2:binR+1,2:binC+1)=binValuesFin(1:binR,1:binC); % put the final 

binned values in the matrix 
timePlots(2:binR+1,1)=wlBin(1:binR,1); % put the wavelengths along the left 

side 
timePlots(1,2:binC+1)=timeBin(1,1:binC); % put the times along the top 

  

  
%% Export the data to a new Excel file with the same name, except with 

“final” before it. 

  
filename = strcat('final',workbookFile); 
xlswrite(filename,timePlots,1) 
 

% end of script 

 
Additional Possibly Useful Code: 
 

%% 

% Loops to get rid of any value that has a relative change of 20% or 
% higher.  That value can be changed, by altering the "relCh" variable. 
% This also relies on all of the values in the first column being "good" 
% values.  The problem with this code is that if values jump up by 19% and  

% then down by 21% and stay there or slowly get lower, the program will  

% continue to skip over those values (because the relative change was greater  

% than 20%), even though they are probably okay.  Basically, relying on just  

% the previous data point is not good enough. 

  
% relCh IS HARD CODED- you can change it... 
relCh=.2; % the allowed relative change up 
relChD=.25; % the allowed relative change down 
minCountCh=40; % the minimum change in counts required to get rid of data 

  
for j=1:numRows-1 
    numSkippedAll=0; % initialize values to hold the number of consecutively 

skipped values- for debugging purposes 
    numSkippedUp=0; 
    numSkippedDown=0; 

     
    errA=0; % initialize values to hold errors 
    errU=0; 
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    errD=0; 
for k=1:numCols-1 

   % set the relative difference of the spectrum data  
       diffA=abs(allData(j,k+1)-allData(j,k-numSkippedAll)); 
       relA=diffA/allData(j,k-numSkippedAll); 

  % I tried using a bunch of conditions to avoid throwing out good data,  

 % but ultimately failed.  I won’t enumerate the conditions because  

 % they are fairly straightforward.  If the conditions are met, replace  

 % the value by 0 and increase the number skipped by 1.   
       if relA>relCh && (allData(j,k+1)>allData(j,k-numSkippedAll) ||  

       allData(j,k+1)==0 || ... 
       (allData(j,k+1)<allData(j,k-numSkippedAll) && ... 
       relA>relChD)) && diffA>minCountCh && (allData(j,k+1)>150 ... 
       || allData(j,k+1)==0) && ((allData(j,k+1)<320 && diffA>100) ||  

 allData(j,k+1)>320)  

           allData(j,k+1)=0; 
           numSkippedAll = numSkippedAll + 1; 
       else  
           numSkippedAll = 0; 
       end 
        

  % Run through the same process for the values above the spectrum. 

 diffU=abs(backUp(j,k+1)-backUp(j,k-numSkippedUp)); 
       relU=diffU/backUp(j,k-numSkippedUp); 
       if relU>relCh && (backUp(j,k+1)>backUp(j,k-numSkippedUp) ||  

 backUp(j,k+1)==0 || ... 
       (backUp(j,k+1)<backUp(j,k-numSkippedUp) && relU>relChD)) ... 
       && diffU>minCountCh && (backUp(j,k+1)>150 || backUp(j,k+1)==0) ... 
       && ((backUp(j,k+1)<320 && diffU>100) || backUp(j,k+1)>320) 
           backUp(j,k+1)=0; 
           numSkippedUp = numSkippedUp + 1; 
       else  
           numSkippedUp = 0; 
       end

 

  % Run through the same process for the values above the spectrum. 

       diffD=abs(backDown(j,k+1)-backDown(j,k-numSkippedDown)); 
       relD=diffD/backDown(j,k-numSkippedDown); 
       if relD>relCh && (backDown(j,k+1)>backDown(j,k-numSkippedDown) ||  

 backDown(j,k+1)==0 || ... 
       (backDown(j,k+1)<backDown(j,k-numSkippedDown) ... 
       && relD>relChD)) && diffD>=minCountCh && (backDown(j,k+1)>150 ... 

 || backDown(j,k+1)==0) && ((backDown(j,k+1)<320 && diffD>100) ||     

 backDown(j,k+1)>320) 
           backDown(j,k+1)=0; 
           numSkippedDown = numSkippedDown + 1; 
       else  
           numSkippedDown = 0; 
       end 
        

  % Create an error message if more than 8 values are consecutively 

skipped. 

 if numSkippedAll>8 
           errA=1; 
       end 
       if numSkippedUp>8 
           errU=1; 
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       end 
       if numSkippedDown>8 
           errD=1; 
       end 

end 

 

    if errA==1 
        fprintf('Possible error in allData row %g',j) 
    end 
    if errU==1 
        fprintf('Possible error in backUp row %g',j) 
    end 
    if errD==1 
        fprintf('Possible error in backDown row %g',j) 
    end 
end 

 
Additional Possibly Useful Code: 
 
%% Trying to remove bad data.  Data is replaced by the mean if the value from  
% allData is greater than the value from the mean + mult * stdev or less than  

% the value from mean – mult * stdev.  Otherwise, it becomes the value from  

% the mean.  The problem with this code is similar to that of the previous  

% section.  In short, it just didn’t work and would throw out too much good  

% data and not get rid of all of the bad data, particularly when values were  

% extremely close to the acceptable threshold. Considering how simple it is,  

% it did a decent job sometimes.    

  
% HARD CODED-Multiplier by stdv 
mult=2; % changes the amount of variance you will allow 
for j=1:numRows 
   for k=1:numCols 

 % If the data point is outside of the acceptable range, replace it by 

0.  Otherwise, replace the data value by the mean at that point. 
      if allData(j,k) > meanAll(j,k)+mult*stdvAll(j,k) || allData(j,k) <  

meanAll(j,k)-mult*stdvAll(j,k) 
          allData(j,k)=0; 
      else 
          allData(j,k)=meanAll(j,k); 
      end 
        

 % Do the same process for the rectangles above and below. 
      if backUp(j,k) > meanUp(j,k)+mult*stdvUp(j,k) || backUp(j,k) <  

meanUp(j,k)-mult*stdvUp(j,k) 
          backUp(j,k)=0; 
      else 
          backUp(j,k)=meanUp(j,k); 
      end 

       
      if backDown(j,k) > meanDown(j,k)+mult*stdvDown(j,k) || backDown(j,k) <  

meanDown(j,k)-mult*stdvDown(j,k) 
          backDown(j,k)=0; 
      else 
          backDown(j,k)=meanDown(j,k); 



  37 

 

      end  
   end 
end 

 
Additional Possibly Useful Code: 
 
%% The following code create and saves an animation of the wavelength values  

% as they progress in time.  You must first import an Excel file with the  

% data you want to animate.  It takes about 2 minutes to load the data if  

% there are about 2000 entries.

 

%% Import the data using the file path name (this happened to be the file I 

was using) 
 [~, ~, raw] = xlsread('\\physics\Shares\Users\klpdance\My 

Documents\MATLAB\SES 1 to 500.xlsx','Mean Data','J2:CFI187'); 

  
%% Replace non-numeric cells with 0.0 and create an output variable. 
R = cellfun(@(x) ~isnumeric(x) || isnan(x),raw); % Find non-numeric cells 
raw(R) = {0.0}; % Replace non-numeric cells 
data = cell2mat(raw); 

  
[numRows,n]=size(data); % Find how many rows and columns are in the data. 

  
% HARD CODED - change name of file 
writerObj = VideoWriter('peaksMean.avi'); % what you want to name the file 
open(writerObj);  
set(gca,'nextplot','replacechildren'); 
set(gcf,'Renderer','zbuffer'); 

  
total = zeros(numRows,1); 
% HARD CODED bin number 
binNum = 5; % how many columns you want to average before plotting 
switchVal = n - mod(n, binNum) + 1; % where the last set of averaging starts 
for i = 1:n 
    if n - i >= binNum && i < switchVal  % for most columns ... 
        total = data(:,i)./binNum + total; 
    else % for the last set ... 
        total = data(:,i)./(n - switchVal + 1) + total; 
    end 

     
    if mod(i, binNum) == 0 || i == n % only plot when total is ready 
      plot(1:numRows,total(:,1))  
      ylim([0 1100]) % sets the y axis - HARD CODED 
      % HARD CODED - speed 
      pause(.3) % determines speed of video - may want to change 
      frame = getframe; 
      writeVideo(writerObj,frame); 
      total = zeros(numRows,1); 
   end 
end 

  
%% Clear temporary variables 
clearvars data raw R columnIndices; 
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