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In music, consonance is the quality of sound sought after by musicians to create pure-

sounding, pleasant music. The governing laws of physics behind consonance dictate that a guitar 

cannot have perfect consonance across all chords. To make all chords reasonably consonant, the 

equal temperament scale is accepted as the standard tuning scheme today. Its downfall is that it 

does not provide the best possible consonance in any one song. Since a song is comprised of only 

a few chords, creating consonance across all chords is not necessary—only across the chords 

being used in a song. With physics, we can calculate the frequencies to which each of the strings 

on a guitar should be tuned in order to optimize consonance across any set of chords. This report 

discusses the calculation used to optimize consonance and the Android app that I’ve developed 

to perform that calculation. 
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Chapter 1. Introduction  

1.1 The Physics of Consonance  

Music is both the art and science of sound—it is a phenomena created by combining 

frequencies of sound waves in an aesthetically pleasing manner. At the foundation of music’s 

pleasant quality is intonation. Intonation describes the interactions between frequencies that are 

described as either dissonant (out of tune) or consonant (in tune). Throughout history, intonation 

schemes have been developed by scientists, philosophers, and musicians in an effort to improve 

the beauty and appeal of music. Musicians today still search for alternate tunings to better suit 

their instruments or musical pieces by improving consonance. This project seeks to serve 

guitarists by creating custom tuning frequencies for each guitar string that will optimize 

consonance across a custom set of chords. Musicians will be able to access this innovative 

intonation tool as a simple android app. 

 

1.1.1 Beating 

In order to understand how to better serve the modern musician by improving 

consonance, we must first understand the fundamental physics that governs music and 

consonance. The dominant underlying cause of human perception of intonation—and therefore 

consonance—is a phenomenon called “beating”: the interaction between sound waves that can be 

perceived by the human ear. The interacting frequencies that create music are the fundamental 

frequencies, also known as “notes” or “pitches” that are played on an instrument and the 

harmonics (discussed in Section 1.1.4) of a frequency. If we look at two pure sine waves 

representing two different frequencies, we can see a simple visual representation of beating in 

Figure 1. 

 



  

                                  

 

Figure 1. Two waves close in frequency interfering with each other. The interfering waves, shown as the dotted lines, result in a 
beat wave, shown as the solid line. 

When two sound waves interact, constructive and destructive interference occurs. As a 

peak of one wave lines up with the valley of the other wave, the amplitude of the resulting wave 

is diminished: the waves interfere destructively. As the peaks of both waves line up, the 

amplitude of the resulting wave increases: the waves interfere constructively. The resulting wave 

has beats, which gets louder and softer at the beat frequency. The frequency at which the beats 

occur in this resultant wave can be calculated as the difference between the two interacting 

frequencies. For example, if two notes of frequencies 440 Hz and 460 Hz are played together, the 

resulting beat frequency will be 20 Hz: 460 − 440 = 20 Hz. 

sin x

sin 0.86 x

sin x

sin x sin 0.86 x



 Beating occurs between any two frequencies, but for the purposes of consonance in music 

we narrow down the beating with which we are concerned to the beats whose frequencies are 

between 0 and 50 Hz (McMurtney, Fleming, & Steffensen, 2013). This is the range of beat 

frequencies that are processed by the human brain to result in dissonance. Outside of this range, 

beating is not consciously heard so it does not have a perceptible effect on intonation. This is 

because two frequencies that are relatively far from each other (enough that beats between them 

are not perceived as dissonance) can be heard as separate notes instead of as their blended result.  

 

1.1.2 Intervals 

When two frequencies are far enough apart that the beating between their fundamental 

frequencies is not processed as bad intonation, they are considered together to make up an 

“interval”. Intervals are pleasant when beats caused by the interaction of the involved notes are 

minimized—in other words, when they are consonant. We define intervals in music as the 

distance between two notes of the given musical scale that is in use to make it easier to discuss 

them. Any two notes can be considered an “interval” apart, but it is accepted in music that 

intervals are predefined as specific ratios of frequencies. Most combinations of notes as defined 

in various musical scales are related by the ratios of defined intervals.  

We can calculate the beating that occurs in an interval just as we calculated beating that 

occurs between any two random frequencies. Consider the combination of two frequencies 

whose interval relation is described as a “minor third,” or the difference in frequency between 

the tonic and the third note of a minor scale; the notes concert A at 440 Hz and C at 523.25 Hz 

make up a minor third (see Figure 7). The beating between these fundamental frequencies would 

be 83.25 Hz, a rate that wouldn’t result in audible dissonance between these two notes. On the 

other hand, the relatively close frequencies of 440 and 450 Hz—which do not form a predefined 

musical interval—would cause a beat frequency of 10 Hz. A beat rate of 10 Hz is within the 

intonation-affecting range, so the two notes played together would cause dissonance. 

 

1.1.3 Chords 

As a more complicated example, consider beating across multiple notes spaced at 

specific, predetermined intervals. In this example, we will look at beating within a “major triad”. 

A major triad is a simple chord comprised of a root note, its third, and its fifth. We can take the 



major third between 440 Hz (concert A) and 554.37 Hz (C♯) to use in this example. Adding a 

fifth interval in relation to A to build a full major triad will include the frequency 659.25 Hz (E). 

Considering only the fundamental frequencies that comprise the chord (excluding harmonics), 

we calculate the beating between each of the note combinations: 

 

Note 1 Note 2 Beating 

440 Hz (A) 554.37 Hz (C♯) 114.37 Hz 

440 Hz (A) 659.25 Hz (E) 219.25 Hz 

554.37 Hz (C♯) 659.25 Hz (E) 104.88 Hz 

Figure 2. Beat rates between notes making up an A minor chord. None of the beats outlined here will be heard as dissonance. 

One can see that there is no audible beating between the frequencies with the current 

considerations: none of the beat frequencies are within the intonation-affecting beat range of 0-

50 Hz. However, this situation is an idealized example of calculating beat rates within a chord to 

familiarize us with the concept of beating across multiple intervals. 

 

1.1.4 Harmonics 

More complicated than the examples of beating we just looked at are real musical notes, 

which are never “pure.” A note is comprised of many more frequencies than just its fundamental 

frequency; these frequencies are called harmonics. In an ideal, “pure” harmonic series, the 

harmonics are frequencies which are integer multiples of the fundamental frequency. In linear 

resonators like the strings of a guitar or the air column of a trumpet, the harmonics are 

approximately integer multiples of the fundamental frequency. We will consider the dispersion 

which occurs in the instruments to be negligible in our calculations since we can approximate 

our guitar strings as ideal strings—ideal strings are non-dispersive (Morin, Drafted 2009). 

Every harmonic present in music beats against every other frequency, just as fundamental 

frequencies do; this is why we made the distinction in the previous example that there is no 

audible beating within a chord excluding harmonics.   
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2nd Harmonic
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Figure 3. The shapes of the first five harmonics of a string.  

Indicates a node 



1.1.5 Harmonics on the Guitar 

Looking at Figure 3, we see the representation of a string’s first five harmonics. A string 

vibrates as a combination of the harmonic shapes represented, sounding a note. The ends of a 

string will always be fixed on a musical instrument, dictating that a node on each end of the 

string will be present in all harmonics. The two nodes present at the end of each guitar string are 

forced by the nut (or a fret) and the bridge of the guitar. The frequency of the first harmonic of a 

string—the one that only has the two forced nodes in its vibration—is known as the fundamental 

frequency of a note; vibrations that occur at this frequency on a string make up the dominant 

frequency that is heard in a note. One additional node on a vibrating string (as in the 2nd 

Harmonic) will result in a note two times the fundamental frequency; two extra nodes (as in the 

3rd Harmonic) will result in a note three times the fundamental frequency, and so on. Each of 

these frequencies has the same properties as the fundamental frequencies we have discussed in 

examples up to this point.  

Guitarists—and many other string musicians—change the note of a string by placing a 

finger on the string to shorten the string. This forces a node on the string, changing the 

frequencies of its vibration. Any note played on a guitar string will consist of a combination of 

the string’s harmonics. 

 

1.1.6 Beating across Harmonics 

Since harmonics are waves with the same properties as fundamental tones, they can also 

beat against one another and affect intonation—they do so in the exact way the simpler 

fundamental frequencies beat against one another. This complicates the beating that occurs 

within even a single interval; the increased number of frequencies that must be considered 

between any two random notes greatly increases the likelihood of dissonance between them. 

With our new knowledge of harmonics, we now consider the beating between the fundamental 

notes and their harmonics to find the beating that occurs. For example, let’s look at the 

harmonics for the fundamental frequencies 440 Hz (A) and 659.25 Hz (E)—outlined in Figure 4. 

 

Fundamental 

Frequency (Hz) 

2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic 

440 (Concert A) 880 1320 1760 2200 

659.25 (E) 1318.5 1977.75 2637 3296.25 



Figure 4. Harmonics of the equal temperament notes A and E. 

Most of the beats between the harmonics of these two notes are negligible since they 

don’t fall within the range relevant to intonation. However, the frequencies of the third harmonic 

of A and the second harmonic of E are very close: 1320 and 1318.5 Hz respectively. This will 

result in a beat frequency of 1.5 Hz and create audible dissonance when the notes are played 

together. 

 

1.1.7 Adjusting Frequencies to Minimize Beating 

To improve intonation between the two notes in our example, we can adjust the 

fundamental frequencies that are played by a small amount to improve the beating between the 

harmonics. If we adjust the frequency of E to make the note exactly 3/2 times the frequency of 

concert A, the second harmonic of E and the third harmonic of A will be at the exact same 

frequency (outlined in Figure 5):  

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 440 𝐻𝑧 ∗
2

3
, 

= 660 Hz . 

With this slight adjustment to the frequency of E, the beat frequency between the 

harmonics of concern has gone to zero and all the other beat frequencies remain negligible, seen 

in Figure 5. This type of interval relationship that improves intonation perfectly is called a “just” 

interval. Just intervals are relationships that can be represented as ratios of small integers, such as 

the 3/2 ratio that was used in this example (see Figure 7 for a complete list of just interval 

relationships). 

 

Fundamental 

Frequency (Hz) 

2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic 

440 (Concert A) 880 1320 1760 2200 

660 (adjusted E) 1320 1980 2640 3300 

659.25 (equal 

temperament E) 

1318.5 1977.75 2637 3296.25 

Figure 5. Harmonics of 440, 660, and 670  Hz. The second harmonic of 660 Hz will not beat with the third harmonic of 440 Hz. 

From this example, we see that we can adjust frequencies to minimize beating. As one 

can see from investigating the fundamental physics of consonance, beating can be minimized 

between two frequencies by manipulating tuning. However, physics also demonstrates that 



tuning an instrument to create perfect consonance in multiple chords across keys is impossible. 

Though some intervals can be adjusted to form just intervals, the consequence involves another 

interval being adjusted in the wrong direction and causes beating to worsen. For example, if you 

add to the previous example that you’d also like to play a second interval in relation to Concert A 

(as in a suspended chord), we would have included the frequency 493.88 Hz (B). The fourth 

harmonic of B is very close to the third harmonic of E (see Figure 6). Before the adjustment of E 

to optimize consonance with A, the beat rate between E and B would have been 2.23 Hz. After 

the adjustment of E, the beat rate between E and B is 4.48 Hz—much more pronounced beating 

than before.  

 

Fundamental 

Frequency (Hz) 

2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic 

440 (Concert A) 880 1320 1760 2200 

493.88 (B) 987.76 1481.64 1975.52 2469.40 

660 (adjusted E) 1320 1980 2640 3300 

659.25 (equal 

temperament E) 

1318.5  1977.75 2637 3296.25 

Figure 6. Consequences of adjusting a frequency. Adjustment to reduce beating in one interval results in worse beating for 
another. 

This impossibility of perfection in consonance across multiple intervals is what drives the 

need for musical scales. A musical scale attempts to create conditions such that any pair of notes and 

their harmonics has the least amount of unpleasant beats as possible. More realistically stated, the 

goal of a musical scale is to minimize unpleasant beating or to distribute the beating across all 

intervals within the scale in the most pleasing manner. 

 Scales have been developed throughout history by musicians, astronomers, and scientists in 

attempts to optimize consonance and clarity of music (Durfee & Colton, 2012) by distributing beats 

in various ways. The Ptolemaic scale, meantone scales, and compromise scales each prioritize 

beating differently: the Ptolemaic scale focuses on creating beat-free intervals in one key, particular 

meantone scales focus on minimizing beating in the major third intervals, and compromise scales do 

just as you would think: compromise intonation in one place to improve it in another. The most 

commonly used compromise scale today—the equal-temperament scale—is meant to provide equal 

intonation across all keys. This enables musicians to switch keys or play another song without having 

to retune or switch instruments. 



 In order to be a perfect compromise of intonation across all keys, the frequencies of the equal 

temperament scale must be equally separated in the way that we perceive pitch. Since we hear sound 

logarithmically, frequencies of the equal temperament scale are separated by a factor of 21/12. That 

gives twelve spacing of frequencies—known as “half steps”—between two notes that differ by an 

octave. For example, between two octave C’s, all of the existing Western notes are B♯/C, C♯/D♭, D, 

D♯/E♭, E/F♭, E♯/F, F♯/G♭, G, G♯/A♭, A, A♯/B♭, and B/C♭ respectively. Let’s take a moment to 

observe the relationships of notes in this chromatic scale and create a foundation for understanding 

the standard frequencies that can be played on a guitar. C and G form a fifth interval since G is the 

fifth note in a proper C major scale: (1) C, (2) D, (3) E, (4) F, and (5) G. The two notes are separated 

by 7 half steps as defined by the equal-temperament scale, so G’s frequency will be 27/12 times the 

frequency of C. Thus, if middle C’s frequency is 261.6 Hz (as it is on the standard piano), then the 

frequency of G—a fifth interval above middle C—will be 27/12 ∗  261.6 = 391.99  Hz. The 

frequency of every note in the equal temperament scale can be calculated based off of one chosen 

frequency, as seen in this example. Today the standard equal temperament scale is based around the 

frequency of “Concert A” that has been mentioned before in examples, set at 440 Hz. We will use 

this standard in our discussion of this project. 

 



 

Note Example Scale Interval Equal 

Temperament 

Frequency Factor 

Just Interval 

Frequency Ratio 

1 C unison 1 1 

2 C♯/D♭ minor second 21/12 16/15 

3 D major second 22/12 9/8 

4 D♯/E♭ minor third 23/12 6/5 

5 E/F♭ major third 24/12 5/4 

6 E♯/F perfect fourth 25/12 4/3 

7 F♯/G♭ augmented 

fourth 

26/12 45/32 

8 G perfect fifth 27/12 3/2 

9 G♯/A♭ minor sixth 28/12 8/5 

10 A major sixth 29/12 5/3 

11 A♯/B♭ minor seventh 210/12 9/5 

12 B/C♭ major seventh 211/12 15/8 

13 B♯/C octave 212/12 2 

 
Figure 7. Intervals of the equal temperament chromatic scale (Durfee & Colton, 2012). 

 

1.2 Understanding the Guitar 

1.2.1 Common Conventions 

We need to be aware of a few common conventions to understand the needs of guitarists 

and to apply the physics of sound to their instrumental situation. Though we anticipate deviating 

from the equal temperament scale to improve intonation, we must still use its conventions: the 

frets on a guitar are set at equal-temperament intervals. This way when a guitarist presses a string 

down on the fingerboard on the first fret (the fret closest to the nut), the fret creates a node and 

forces the string’s frequency to go up by an equal-temperament half step: the new frequency will 

be a factor of 21/12 times the string’s original frequency for each fret up the neck that is utilized. 

Since the frets are permanently set in place, we will need to alter the fundamental frequency of 

the string rather than the fret it will be voiced with in order to adjust intonation. It is also 

important to note that guitarists create chords by placing their fingers on multiple strings at 

various frets and strumming several strings at the same time.  



The guitar has six strings; they are typically tuned to the notes E, A, D, G, B, and E (see 

Figure 7), which are standardly tuned to the equal temperament frequencies of 82.41, 110.00, 

146.83, 196.00, 246.94, and 329.63 Hz respectively. We refer to the frequencies of each string as 

f6, f5, f4, f3, f2, and f1 respectively. We will discuss frequency relationships between the strings in 

terms of the string frequencies. For example, f6 and f5 are an interval of a fourth apart (five half-

steps), so we can say that 𝑓6 ∗ 2
5

12 = 𝑓5. In the modern tuning of the guitar, it is important to note 

that f3 and f2 are unique in their frequency relationship, since they are only a major third apart: 

𝑓3 ∗ 2
4

12 = 𝑓2. It is also convenient to refer to the frets numbered sequentially from one—starting 

at the nut. Since each fret represents a half-step in the equal temperament scale, playing string f1 

with the finger on the first fret would result in the frequency𝑓1 ∗ 2
1

12. Playing string f1 at the 

fourth fret would result in the frequency 𝑓1 ∗ 2
4

12. This makes it easy to remember the effect that 

each fret will have on the string’s original frequency: the new frequency of a string with original 

frequency f, voiced with the finger on fret x, will be  𝑓 ∗ 2
𝑥

12. 

 
Figure 8. Diagram representing the neck of the guitar. Strings and frets are labeled as referred to in this paper. 

 

1.2.2 Unfulfilled Intonation Needs of Guitarists 

Now that we understand the fundamental physics of sound and the standards of the 

modern guitar, we can discuss the meaning of intonation for guitarists. It is accepted today that 

perfectly matching the frequencies of the strings to the preset frequencies in the equal 

temperament scale is the accepted definition of being in tune. But as we discussed earlier, the 

equal temperament scale still produces beating when notes are played together—its advantage is 



that it produces equal beating across all scales. Guitarists can hear beating even after perfectly 

matching their string frequencies with those set in the equal temperament scale. This can be very 

frustrating to guitarists—especially those who don’t understand the physics that governs sound 

and dictates that intonation can never be perfect across all intervals.  

In an effort to relieve this frustration with beating on the guitar, much has been written 

about tuning guitars. Some methods of tuning involve tweaks to the guitar such as nut, fret, and 

saddle adjustment (Locke) to better maintain the frequencies that strings are tuned to. These 

types of fixes “are not for the faint-hearted”, Luthier Locke warns, and are not realistic options 

for the typical guitarist. Other musicians give direction on the methodology of tuning strings 

(Flatley, 2007), some completely imprecise and vague: “If you want to be really accurate, the fifth 

should be slightly smoother than the fourth, but there's not a lot in it.” 

Some tuning schemes in existence can be beneficial for improvement of consonance in 

very specific situations. For example, guitarists may choose to use “open tuning” schemes, 

meaning that the six strings’ frequencies comprise a chord without having to be fretted. This 

tuning scheme is great for musicians intending to only play straight-barred chords since the 

intervals can be tuned by ear to nearly just intervals. This tuning scheme is usually only seen in 

slide guitar playing in which chords are played by pressing down on all the strings on the same 

fret. If another chord shape were to be used—altering string-interval relationships that were 

optimized for consonance—the intervals would likely produce more beating than in equal 

temperament tuning since the beating was minimized for a single chord shape. Another similar 

example is overtone tuning (Hanson, 1995) in which the open strings are in the same octave and form 

just intervals. As in open tuning, any chord shape besides the one optimized will have more beating than 

equal temperament tuning would cause. 

As we can see from these examples, many tuning options are not calculated based on 

physics. Most are the products of individual opinions and experimentation; they are useful only 

in very specific situations. To create a more accurate and versatile method of achieving 

consonance, we consider what we know about the physical laws governing consonance. From 

our discussion of beats, we know that a tuning which invokes a perfect compromise between all 

keys is not necessary when only a few chords and keys are being used by a musician. 

Furthermore, a small tweak in a frequency to make one interval perfectly in tune can make others 

sound worse by the laws of physics. Therefore, any tuning scheme that deviates from equal 



temperament without taking into account which chords will be played is inevitably flawed. An 

ideal tuning scheme will take into account which chords will be used in a given piece of music. 

This project is an endeavor to provide the best intonation for guitarists based on physical 

calculations—given the conditions of specific keys and chords that will be played. A custom 

tuning that minimizes beating between any given set of chords can be mathematically calculated, 

thus perfectly optimizing consonance for a specific situation. The end result of such a tuning 

scheme would be more consonant pieces of music—something musicians and scientists have 

been searching for throughout history.  

 

1.2.3 Fulfilling Intonation Needs of Guitarists: Currently Available Resources 

Other tuning resources that are available include programs, such as MIDI software, that 

allow for experimentation and better understanding of intonation. For example, Tonalsoft is “a 

music composition application which allows the user to create any imaginable tuning and 

compose music using those tunings and a valuable analytical tool which aids in the 

understanding of tuning theory and the various qualities of different types of musical tunings” 

(Monzo, 2005). Spectratune is a “musical pitch and spectrum analyzer” (Spier, 2013). 

Temperament Studio (Durfee D. S., 2013) demonstrates the sound of various historical 

intonations in pieces of music. Each tuning scheme demonstrates different beat patterns within 

songs and provides insight into the motivation for our modern-day intonation scheme. Most of 

these resources are designed around keyboard instruments or instruments where each note’s 

frequency can be customized. This is not always useful for guitarists since only the frequencies 

of each of the six strings can be readily altered.  

 

1.2.4 This Project as a Resource 

In order to provide a straightforward tuning tool for guitarists, this project envisions the 

ultimate authority on custom tuning schemes for any combination of chords a guitarist would 

like to play. Out of all the methods to improve intonation on a guitar, it is the most in line with 

physical laws, using calculations to create a customized tuning scheme based on chord usage—

specifically for guitar. Tunings can be calculated quickly for any song. Furthermore, guitarists 

can directly and quickly apply the custom tunings to their own guitars instead of experimenting 

with intonation on the internet or with expensive software programs. Musicians won’t have to 



rely on time-consuming research and experimentation to find a desirable tuning scheme. Finally, 

it will be convenient: guitarists can generate a custom tuning in seconds with a free, simple 

Android app.   

  



Chapter 2. Methods  

2.1 The Algorithm for Minimization of Beating 

2.1.1 An Overview  

We now describe in overview the algorithm used to calculate the frequencies for optimized 

intonation. As the string frequencies of a guitar are easily altered, the frequencies of the strings 

will be considered the variables in our minimization of beating across a custom set of chords. We 

will choose one string—f6—to be the constant frequency, giving a reference for the other 

frequencies to be calculated upon. Given a set of chords and their voicings, we will look at the 

relationships created in each chord between each of the strings. Each of these relationships can 

be seen as an equation with the string frequencies as variables. All of the frequency relationships 

in the set of chords can be written as a system of equations that can be minimized by using least-

squares matrix manipulation. 

 
Figure 9. Voicing and frequencies of the open E major chord. 

As an example of the algorithm, we will walk through the detailed calculation of frequencies 

for a single chord’s intonation optimization. In this example, we will use the E major chord. E 

major is voiced on the guitar seen in Figure 9: the blue dots represent where the finger is pressed 

on a string, giving the location of the fret we will integrate into the calculation. String f6 will be 

the constant frequency in our equations, set to the equal-temperament frequency of 82.408 Hz 

(E). We first look at the interval relationship between f6 and f5 with the voicing of the chord in 

consideration. String f6 is not voiced with a fret. String f5 is voiced with the second fret. We 

represent the notes voiced on the guitar in terms of these variables; since no frets are pressed on 



f6, we represent the voiced note by f6. Since the second fret is voiced on f5, the frequency of the 

voiced note will be the frequency of f5 plus two equal-temperament half steps, or 

 𝑣𝑜𝑖𝑐𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑛 𝑓5 = 𝑓5 2
2

12. (2.1) 

Now we must express the relationship of these two notes in terms of the strings’ fundamental 

frequencies. We know we would like the frequencies sounded from f6 and f5 to form an interval 

with the least amount of beating as possible—a just interval. Recall that the original relationship 

between f6 and f5 is a fourth, meaning there are five half steps between the frequencies (see 

Figure 7). Since there are two extra equal-temperament half-steps created between f6 and f5 by 

pressing on the second fret of f5, seven half steps now exist between the voiced notes, creating a 

fifth. From Figure 7, a just fifth relates the frequencies by a factor of 3/2. Therefore, we would 

like the voiced frequencies of f6 and f5 to be related by the following equation:  

 𝑓5 2
2

12 =
3

2
 𝑓6 . (2.2) 

But this equation does not directly give any information about our end goal: minimizing the 

beating that occurs between all the voiced frequencies. If we only used equation 2.2 to set the 

frequency of f5, we would eliminate beating across strings f6 and f5. We know that doing so could 

potentially result in worse beating for other intervals involving these strings, so we must choose 

f5 in a way that optimizes consonance for all intervals involved in the chord. Thus, we represent 

the beat rate between f6 and f5 as an equation so we can manipulate its value later on. As we 

recall, this beat rate is calculated by finding the difference in the frequencies:  

 𝐵𝑒𝑎𝑡𝑅𝑎𝑡𝑒 =  −2 𝑓5 2
2

12 + 3 𝑓6 . (2.3) 

It is easier to see here that we have a quantity we would like to be as close to zero as possible: 

the beat rate. We will refer to this as a residual in our calculations. If we calculate the beat rate 

that occurs between these frequencies using equal-temperament tuning, we find it to be non-zero:  

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = −2 𝑓5 2
2

12 + 3 𝑓6,  



 = −2 (110 𝐻𝑧) 2
2

12 + 3 (82.41 𝐻𝑧), (2.4) 

 = 10 𝐻𝑧. 
 

However, if we only set f6 to be constant and are allowed to adjust the frequency of f5, the beat 

rate can be set to zero for this interval.  

But this is not the only interval in consideration—we will need to compromise the beat rate in 

this interval to allow for small beating across other intervals, as well. 

Now consider the relationship between f5 and f4:  

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = −3 𝑓4 2
2

12 + 4 𝑓5 2
2

12 . (2.5) 

If we want to minimize the beat rates for both the f4-f5 relation and the f5-f6 relation, we must 

solve the system of equations representing their residuals, calling the residuals r1 and r2:  

 

{
𝑟1 = −2 𝑓52

2
12 + 3 𝑓6 ,

𝑟2 = −3 𝑓4 2
2
12 + 4 𝑓5 ∗ 2

2
12 .

 
(2.6) 

Here we can easily set r1 and r2 equal to 0 to completely eliminate beats, implement our known 

value of f6, and solve the resulting system of equations: 

 

{
0 = −2 𝑓52

2
12 + 3 (82.41) ,

0 = −3 𝑓4 2
2
12 + 4 𝑓5 2

2
12 .

 
(2.7) 

The first equation immediately gives us 

 𝑓5 =
3 (82.41)

2 (2
2
12) 

, 

= 110.13 𝐻𝑧. 

(2.8) 

The value for f5 can now be used in the second equation to solve for f4: 



 0 = −3 𝑓4 2
2

12 + 4 𝑓5 2
2

12,  

 
𝑓4 =

4 (110.13)2
2
12

3 (2
2
12)

 , (2.9) 

 = 146.84 𝐻𝑧 . 
 

These frequencies give us zero beats for r1 and r2, but we cannot assume that all of the 

residuals will be able to be zero; there will have to be compromise in order to minimize beating 

across all the intervals involved. Furthermore, many residuals still remain to be calculated and 

we cannot guess what their residuals might be as we did in this case. Therefore, a more 

reasonable method of solving this system of equations can be used that does not require guessing 

residual values: a method that uses matrix manipulation known as minimization by least squares. 

2.1.2 Using Least Squares Optimization for a Small Matrix 

Let us re-solve the system of equations for f4 and f5 using minimization by least squares. 

Beginning exactly as before, we want to minimize the beat rates for both the f4-f5 relation and 

the f5-f6 relation, so we must solve the system of equations representing both their residuals:  

 

{
𝑟1 = −2 𝑓52

2
12 + 3 𝑓6 ,

𝑟2 = −3 𝑓4 2
2
12 + 4 𝑓5 ∗ 2

2
12 .

 
(2.10) 

To begin, I can write this system of equations using matrices and vectors: 

 
[
−2(2

2

12) 0

4(2
2

12) −3(2
2

12)
] [
𝑓5
𝑓4
]+[
3𝑓6
0
] = [

𝑟1
𝑟2
] .  

(2.11) 

 

We can represent this equation as 

 𝐴𝑓 +  𝑏 =  𝑟 ,  
(2.12) 

a common equation seen in dealing with matrices and vectors. With this elegant equation, we can 

work through the math without having to know the precise values for A and b. We can also state 

our objective simply: we need to minimize the vector of residuals, r. We do this by manipulating 

the matrix and minimizing r2, which in terms of vectors is  



 𝑟𝑇𝑟. 
(2.13) 

We know that 

 𝑟𝑇 = 𝑓𝑇𝐴𝑇  +  𝑏𝑇 
(2.14) 

from the properties of transposed matrices, so 𝑟𝑇𝑟 can be written as 

 𝑟𝑇𝑟 = (𝑓𝑇𝐴𝑇 + 𝑏𝑇)(𝐴𝑓 + 𝑏), 
(2.15) 

 = (𝑓𝑇𝐴𝑇𝐴𝑓 + 𝑏𝑇𝐴𝑓 + 𝑓𝑇𝐴𝑇𝑏 + 𝑏𝑇𝑏) . 
 

On close observation, one can see that each of these terms is a scalar: 𝑟𝑇𝑟 and 𝑏𝑇𝑏 both consist 

of a 1𝑥2 and a 2𝑥1 matrix, which result in a 1𝑥1 matrix (a scalar) when multiplied through. We 

can generalize this statement by noting that a matrix’s dimensions are given by its number of 

columns, m, and its number of rows, n. Thus we can represent a matrix’s dimensions as 𝑚𝑥𝑛 and 

the dimensions of its transpose by 𝑛𝑥𝑚. Analyzing the rest of equation 2.5 in a similar manner as 

we did 𝑟𝑇𝑟, we demonstrate that each term is a scalar: 

 = (𝑓𝑇𝐴𝑇𝐴𝑓 + 𝑏𝑇𝐴𝑓 + 𝑓𝑇𝐴𝑇𝑏 + 𝑏𝑇𝑏), 
(2.16) 

= (1𝑥𝑚)(𝑚𝑥𝑛) (𝑛𝑥𝑚)(𝑚𝑥1) + (1𝑥𝑛)(𝑛𝑥𝑚)(𝑚𝑥1) + (1𝑥𝑚)(𝑚𝑥𝑛)(𝑛𝑥1) + (1𝑥𝑛)(𝑛𝑥1), 

 = ((1𝑥1) + (1𝑥1) + (1𝑥1) + (1𝑥1)) . 
 

Since 𝐴𝑇𝑓𝑇𝑏 is the transpose of 𝑏𝑇𝐴𝑓 and the transpose of a scalar is a scalar, we conclude that 

they are equal and can combine the terms: 

 𝑟𝑇𝑟 = (𝐴𝑇𝑓𝑇𝐴𝑓 + 2𝑏𝑇𝐴𝑓 + 𝑏𝑇𝑏) . 
(2.17) 

Now that we have simplified 𝑟𝑇𝑟 and know that it is a scalar, we can take the derivative with 

respect to f and set it to zero for minimization:  

 0 = 2𝐴𝑇𝐴𝑓 + 2𝐴𝑇𝑏 . 
(2.18) 

Solving for the vector f—the frequencies which give a minimized beat rate—we get  

 𝑓 = −(𝐴𝑇𝐴)−1𝐴𝑇𝑏 . 
(2.19) 

This is the general solution for any set of chords we wish to optimize for consonance.  

Here we return to our specific example and solve equation 2.19 using our values from our 

system of equations (Eq. 2.11). The matrices A and b are found in our first representation of our 

system using matrices (Eq. 2.11): 



 
𝐴 = [

−2(2
2

12) 0

4(2
2

12) −3(2
2

12)
], 

(2.20) 

 𝑏 = [
3𝑓6
0
]. (2.21) 

The transverse of A is the reflection of A across a diagonal running from its top left to its bottom 

right: 

 
𝐴𝑇 = [

−2(2
2

12) 4(2
2

12)

0 −3(2
2

12)
]. 

(2.22) 

Plugging these values into equation 2.19, we have an equation in need of simplification: 

𝑓 = −([
−2(2

2

12) 4(2
2

12)

0 −3(2
2

12)
] [
−2(2

2

12) 0

4(2
2

12) −3(2
2

12)
])

−1

[
−2(2

2

12) 4(2
2

12)

0 −3(2
2

12)
] [
3𝑓6
0
]. 

(2.23) 

Simplifying and factoring out the 2
2

12 from each matrix gives 

 
𝑓 = −([

20 −12
−12 9)

] 2
4

12)
−1

[
−2 4
0 −3

] 2
2

12 [
3𝑓6
0
]. (2.24) 

We know that the inverse of a 2x2 matrix is given by the shortcut 

 (𝐴)−1 =
1

𝑎𝑑−𝑏𝑐
[
𝑑 −𝑐
−𝑏 𝑎

], (2.25) 

which allows us to further simplify our equation: 

 
𝑓 = −(

1

36(2
8
12)
[
9 12
12 20

] 2
4

12) [
−2 4
0 −3

] 2
2

12 [
3𝑓6
0
], 

= −([
1/4 1/3
1/3 5/ 9

] 2
−4

12) [
−2 4
0 −3

] 2
2

12 [
3𝑓6
0
], 

= − [
−1/2 0
−2/3 −1/3

] 2
−2

12 [
3𝑓6
0
], 

= − [
−1/2 0
−2/3 −1/3

] 2
−2

12 [
3𝑓6
0
]. 

(2.26) 

Plugging in our pre-set value for 𝑓6, we get 

 
𝑓 = [

𝑓5
𝑓4
] = [

110.13
146.84

], (2.27) 

the same result as when we simplified our system of equations by setting the residuals to zero 

(Eq. 2.8 and 2.9). In this example we were able to force the residuals to be zero, but this won’t 

generally be possible when optimizing all strings for multiple chords. 



 

2.1.3 Using Least Squares Optimization for a Large Matrix 

We will now walk through the same calculation for an entire chord. We represent the 

residuals between every relevant string using a large system of equations. If all six strings of the 

guitar are used in a chord, there will be as many as 15 residuals. For many chords, some of the 

equations turn out to be linearly dependent on other equations in the system and are therefore 

unnecessary for completing the calculation. However, the algorithm works even with the 

inclusion of redundant equations, so we will include them all.  In the case of the E major chord, 

all six strings are used and the 15 residuals are represented as follows: 

 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝑟1 = −2 𝑓52

2
12 + 3 𝑓6 ,

𝑟2 =  2𝑓6 − 𝑓42
2
12 ,

𝑟3 = 10𝑓6 − 4𝑓32
1
12 ,

𝑟4 = 6𝑓6 − 2𝑓2  ,
𝑟5 = 4𝑓6 − 𝑓1 ,

𝑟6 = 4𝑓52
2
12 − 3𝑓42

2
12 ,

𝑟7 = 5𝑓52
2
12 − 3𝑓32

1
12 ,

𝑟8 = 2𝑓52
2
12 − 𝑓2 ,

𝑟9 = 8𝑓52
2
12 − 3𝑓1 ,

𝑟10 = 5𝑓42
2
12 − 4𝑓32

1
12 ,

𝑟11 = 3𝑓42
2
12 − 2𝑓2 ,

𝑟12 = 2𝑓42
2
12 − 𝑓1 ,

𝑟13 = 6𝑓32
1
12 − 5𝑓2 ,

𝑟14 = 8𝑓32
1
12 − 5𝑓1 ,

𝑟15 = 4𝑓2 − 3𝑓1 .

 

(2.28) 

This large system of equations needs to be minimized in order to minimize the beat rates 

occurring between all strings in an E major chord. We can minimize the residuals in this large 

system of equations using the same matrix manipulation we used for solving our small system. 

To begin, I can write this system of equations using matrices and vectors: 



[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 −2 ∗ 22/12

0 0 0 −22/12 0
0 0 −4 ∗ 22/12 0 0
0 −2 0 0 0
−1 0 0 0 0
0 0 0 −3 ∗ 22/12 4 ∗ 22/12

0 0 −3 ∗ 21/12 0 5 ∗ 22/12

0 −1 0 0 2 ∗ 22/12

−3 0 0 0 8 ∗ 22/12

0 0 −4 ∗ 21/12 5 ∗ 22/12 0
0 −2 0 3 ∗ 22/12 0
−1 0 0 2 ∗ 22/12 0
0 −5 6 ∗ 21/12 0 0
−5 0 8 ∗ 21/12 0 0
−3 4 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5]
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3𝑓6
2𝑓6
10𝑓6
6𝑓6
4𝑓6
0
0
0
0
0
0
0
0
0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑟1
𝑟2
𝑟3
𝑟4
𝑟6
𝑟7
𝑟8
𝑟9
𝑟10
𝑟11
𝑟12
𝑟13
𝑟14
𝑟15]
 
 
 
 
 
 
 
 
 
 
 
 
 

 .  

(2.29) 

 

Using the same reasoning as in equations 2.12 through 2.19, we know that the frequencies which 

give a minimized beat rate is given by (Eq. 2.19):  

 𝑓 = −(𝐴𝑇𝐴)−1𝐴𝑇𝑏 . 
(2.30) 

Plugging in our values from our equation for E major (Eq. 2.29) and simplifying equation 2.30 

will give the solution for vector f. The result is as follows: 

 

𝑓 =

[
 
 
 
 
𝑓5
𝑓4
𝑓3
𝑓2
𝑓1]
 
 
 
 

 = 

[
 
 
 
 
110.12
146.83
194.45
247.22
329.63]

 
 
 
 

. 

(2.31) 

Each of the frequencies that were solved for are given in Hz and are the frequencies that will 

give the best consonance possible in the E major chord on the guitar. Just as in our simpler 

example, these frequencies cause the value of all the residuals in the system of equations to be 

zero (discussed in Section 3.1.1). This typically won’t be the case when optimizing consonance 

for multiple chords. However, the calculation will provide frequencies that minimize beating as 

much as physically possible across the involved chords (see Chapter 3 for specific examples). 

For some perspective on the magnitude of frequency changes that optimization causes, 

see Figure 10 for a comparison of the frequencies of each string before and after optimization. 

The frequency adjustment for each of the five adjusted strings, on average, is only .258 Hz. 



 

Tuning Scheme f6 f5 f4 f3 f2 f1 

Equal Temperament 

Frequency 

82.41 110.00 146.83 196.0 246.94 329.63 

Optimized 

Frequency 

82.41 110.12 146.83 194.45 247.22 329.63 

Figure 10. String frequencies before and after optimization of the E major chord. 

When we calculate an optimized tuning scheme for more than one chord, we consider the 

beat rates across all the strings from both chords. Even though the system of equations grows 

much larger for each additional chord (at most 15 equations) included in the conditions for 

optimization, the most complicated part of the calculation—the inversion of a matrix—will 

always involve a 5x5 matrix: 

 𝐴𝑇𝐴 = (5𝑥𝑛)(𝑛𝑥5), 

= 5𝑥5. 

(2.32) 

Inverting the matrix can be done (rather tediously) by using the Gauss-Jordan method or the 

Adjunct method, but a computer program has no problem solving it in a very short amount of 

time. 

 

2.2 The Android App 

The app that will be used to create custom guitar tunings provides a straightforward user 

interface for a clean user experience. A custom multiple-choice ListView displays each chord 

and its voicing. Guitarists can choose specific voicings of chords that they will be playing based 

on the diagram next to each chord entry in the list; the inclusion of chord diagrams in the 

ListView is the result of the CustomListAdapter.java file. A button at the bottom of the screen is 

always visible and can be selected at any time to execute the least squares calculation involving 

the selected chords. A popup dialog displays once the calculation is complete, listing the 

frequency of each string that will provide the optimal intonation for the chords selected. When 

the dialog popup is acknowledged and exited, all chord selections are cleared in preparation to 

receive a new selection.  



 The entire calculation for optimization of consonance is carried out in a file called 

Optimization.java, written to follow the algorithm described in the Chapter 2 of this paper. 

Noteworthy specifics of my code in Optimization.java include its features that allow for versatile 

inclusion of new chords. New chords of any shape and voicing can easily be added to my code. 

The chord must be given a unique name and must be represented as a single array of integers at 

the beginning of the class “optimization”. Each integer in the chord array represents the voicing 

of strings f6 through f1: the integer indicates the number of the fret that is pressed on each string 

to voice the chord. A “0” represents no fret pressed, a positive number represents the pressed 

fret’s number, and a “-1” represents an unvoiced string. For example, the open E major chord 

(seen in Figure 9) is represented in the code as follows: 

private static final Integer[] EmajorFingering1 = new Integer[]{0,2,2,1,0,0};  . 

 The new chord must also be added into the variable String[] chords of MainActivity.java 

in order to be displayed in the interface’s multiple-choice ListView. A corresponding image of 

the chord must be added to the “drawable” folder under the same name as was entered into 

chords to allow selection of the correct chord voicing by the user. 

The app uses standard Android and Java libraries to provide the more general features of 

the app. For the calculation, the Jama Matrix library (MathWorks & NIST, 2012) is used to aid 

in several matrix operations found in Optimization.java including transposition, multiplication, 

and matrix inversion. The calculation is executed on action of the “Calculate” button on the 

Android interface. The optimized frequencies are returned to the Android class, which then 

displays them to the user. 

 With the simplicity and versatility of the code, any new chord can be easily implemented 

into the program. The calculation is designed to dynamically calculate the residuals between any 

strings based on the integer array representing a chord, so adding chords does not require any 

manual calculations. The user interface is also very simple, ensuring that the general public will 

be able to understand and use this tool. 

  



Chapter 3. Results and Discussion 
3.1 Quantitative Analysis of Results 

In verification of consonance improvement when using these calculations, we performed 

both quantitative and qualitative analysis. The result of minimizing the residuals in the E major 

chord gave an overall 100% decrease in beating within the chord from equal temperament 

tuning. Figure 11 displays a full comparison of beat rates between the strings before and after 

optimization.  

3.1.1 E Major Optimization 

String Pair Equal 

Temperament 

Beating (Hz) 

Minimized 

Beating (Hz) 

f6, f5 0.2790 0 

f6, f4 0.0005 0 

f6, f3 6.5501 0 

f6, f2 0.5574 0 

f6, f1 0.0004 0 

f5, f4 0.5567 0 

f5, f3 5.6102 0 

f5, f2 0.0003 0 

f5, f1 1.1174 0 

f4, f3 6.5523 0 

f4, f2 0.5560 0 

f4, f1 0.0013 0 

f3, f2 11.2186 0 

f3, f1 13.0981 0 

f2, f1 1.1160 0 

Average Beating 

within E Major 

3.1475 0 

Figure 11. Beat rates before and after optimization. 

As more chords are added, the amount of compromise necessary to optimize consonance 

approaches the amount of compromise in the equal temperament scale so there is less reduction 

of beating. Results for other chords and combinations of chords are outlined in the tables that 

follow. 



3.1.2 E Major and A Major Optimization 

String Pair Equal Temperament 

Beating (Hz) 

Minimized Beating 

(Hz) 

E Major   

f6, f5 0.2790 0.1334 

f6, f4 0.0005 0.0315 

f6, f3 6.5501 1.2930 

f6, f2 0.5574 3.1254 

f6, f1 0.0004 0.3078 

f5, f4 0.5567 0.1724 

f5, f3 5.6102 0.6363 

f5, f2 0.0003 1.6961 

f5, f1 1.1174 0.3897 

f4, f3 6.5523 1.1357 

f4, f2 0.5560 3.2197 

f4, f1 0.0013 0.2449 

f3, f2 11.2186 9.7530 

f3, f1 13.0981 1.0472 

f2, f1 1.1160 7.1740 

A Major   

f6, f5 0.3724 0.9236 

f6, f4 0.00045 0.0315 

f6, f3 0.7525 3.4248 

f6, f2 7.4801 3.1564 

f6, f1 0.0004 0.3078 

f5, f4 0.3733 0.8607 

f5, f3 0.0026 1.7573 

f5, f2 8.7321 1.1300 

f5, f1 0.7440 1.2316 

f4, f3 0.7543 3.5506 

f4, f2 7.4823 2.9992 

f4, f1 0.0013 0.2449 

f3, f2 8.7193 9.9165 

f3, f1 0.7517 4.0403 

f2, f1 14.9581 4.7740 

Average Beating 

within Chords 

3.2779 2.2739 

Figure 12. Beats before and after optimization for the use of E major and A major.  

The average beating within the chords E major and A major has been reduced by 36% 

through optimization, demonstrated in Figure 12. 



 

3.1.3 E Major, A Major, and G Major Optimization 

String Pair Equal Temperament 

Beating (Hz) 

Minimized Beating 

(Hz) 

E Major   

f6, f5 0.2790 0.1334 

f6, f4 0.0005 0.0315 

f6, f3 6.5501 1.2930 

f6, f2 0.5574 3.1234 

f6, f1 0.0004 0.3078 

f5, f4 0.5567 0.1724 

f5, f3 5.6102 0.6363 

f5, f2 0.0003 1.6951 

f5, f1 1.1174 0.3897 

f4, f3 6.5523 1.1358 

f4, f2 0.5560 3.2177 

f4, f1 0.0013 0.2449 

f3, f2 11.2186 9.7480 

f3, f1 13.0981 1.0472 

f2, f1 1.1160 7.1740 

A Major   

f6, f5 0.3724 0.9236 

f6, f4 0.00045 0.0315 

f6, f3 0.7525 3.4248 

f6, f2 7.4801 3.1598 

f6, f1 0.0004 0.3078 

f5, f4 0.3733 0.8607 

f5, f3 0.0026 1.7573 

f5, f2 8.7321 1.1345 

f5, f1 0.7440 1.2316 

f4, f3 0.7543 3.5506 

f4, f2 7.4823 3.0025 

f4, f1 0.0013 0.2449 

f3, f2 8.7193 9.9209 

f3, f1 0.7517 4.0403 

f2, f1 14.9581 4.7807 

G Major   

f6, f5 3.8889 4.7138 

f6, f4 0.3326 0.2758 

f6, f3 0.0023 1.2382 



f6, f2 7.7793 2.6474 

f6, f1 0.0005 0.3660 

f5, f4 6.6650 7.7602 

f5, f3 7.7666 15.6189 

f5, f2 0.0003 1.6951 

f5, f1 15.5534 17.0253 

f4, f3 0.6720 3.1632 

f4, f2 6.6660 2.6749 

f4, f1 1.3319 2.2011 

f3, f2 7.7680 8.8386 

f3, f1 0.0040 2.8425 

f2, f1 15.5562 3.4647 

Average Beating 

within Chords 

3.7998 3.1234 

Figure 13. Beats before and after optimization for the use of E major, A major, and G major.  

The average beating within the chords E major, A major, and G major has been reduced 

by 20% through optimization, demonstrated in Figure 13. 

 

3.2 Qualitative Analysis of Results 

 Qualitatively, the improvement was judged both on an actual guitar and on MIDI guitar 

software. In my opinion, the actual guitar did perform with improved consonance when tuned to 

the optimized frequencies. The MIDI Guitar software, developed by Dr. Dallin Durfee for the 

purpose of evaluating tuning schemes on guitar, takes a frequency input for any string and will 

then simulate chords played on the guitar. The software did provide a more reliable source for 

qualitative judgment than an actual guitar since the frequencies being heard were guaranteed to 

be perfectly in tune with the calculations. Overall, the software did demonstrate an improvement 

in consonance from equal temperament tuning when implementing the optimized frequencies.

 These results indicate an improvement in intonation on a guitar for any custom set of 

chords. The consistent improvement across chord combinations proves that this method of tuning 

is versatile and has the potential to be used to improve the consonance of any song. The simple 

app and its availability online makes it accessible and usable to musicians—both hobbyists and 

professionals. 

  



Chapter 4. Conclusions 

4.1 General Conclusions 

This project provides the first optimized, custom tuning based off of precise calculations for 

guitarists. This innovation is significant not only due to its precise calculations and versatility in 

providing custom tuning schemes, but also because of its accessibility and applicability. Anyone 

can download the app on their Android phone. A custom tuning can be generated in as little time 

as it takes to enter the chords being used. The custom tuning can be implemented in the short 

time it takes to tune the strings. In short, this app provides the simplest and most accurate custom 

tuning tool for guitarists in existence as of yet and has the potential to be a significant 

contribution to the musical experience of the general public. 

In summary, this project has resulted in an elegant java program that effectively optimizes 

intonation and provides a custom tuning scheme to guitarists. Intonation can be effectively 

improved by deviating from equal temperament intonation, as seen by analyzing the beat rates 

existent in each tuning scheme. The project is packaged into a simple app. It provides a 

convenient and easily-implemented solution for guitarists searching for greater consonance in 

their music. 

 

4.2 Suggestions for Future Research 

There remain areas of intonation that can be researched to improve the quality of the 

calculations. This application gives equal weight to all intervals, so beating is overall minimized. 

However, if it is found that particular intervals are more important to the human ear in achieving 

consonance, giving greater weight to those intervals during minimization would improve the 

results.  

This type of information has the greatest potential to be gathered from surveys, as it is the 

opinions and perceptions of potential users that will be of greatest importance in this matter. 

Various tuning schemes could potentially be generated by using different weights for particular 

intervals and played for a subject. Subjects can then vote on the tuning scheme they find most 

pleasing. When enough data is collected, the most important intervals for intonation—if any—

can be determined.   

Areas for improvement and further research remain concerning the calculations in this project. 

Calculating and accounting for dispersion in guitar strings and accounting for error in fret placement 



by measuring pitch changes could potentially improve the effectiveness of the algorithm in 

optimizing consonance. Further development of the Android app could result in an implemented 

tuner that analyzes a guitar string frequency and indicates if it is flat or sharp in comparison with the 

optimized frequency, making it a more approachable tool for musicians. 

Development of the project to this point has resulted in a working algorithm that has been 

written to calculate the frequencies for guitar strings that will optimize consonance. Its effectiveness 

has been proven by the results outlined in Chapter 3 of this paper. Finally, the culmination of the 

research: the algorithm has been successfully integrated into software that is running reliably in the 

form of an Android app. It is anticipated that the Android app will be made available to the general 

public and will provide guitarists with greater consonance in their music. 
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Appendix A: Android App Renderings 

 

Figure 14. Android app home page rendering. The screen is displaying the list of available chords to choose from. 



 

Figure 15. Chord selection within the Android App.  "A Major" and "E Major" are selected here in the list. 



 

Figure 16. The calculated frequencies of each string. The "Calculate Custom Tuning" button was selected and the frequencies for 
each string that will optimize consonance are displayed as a popup dialog. 



Appendix B: Android App Code 

AndroidManifest.xml 
<?xml version="1.0" encoding="utf-8"?> 

<manifest xmlns:android="http://schemas.android.com/apk/res/android" 

    package="com.example.clee.listviewdemo" > 

 

    <application 

        android:allowBackup="true" 

        android:icon="@mipmap/ic_launcher" 

        android:label="@string/app_name" 

        android:theme="@style/AppTheme" > 

        <activity 

            android:name=".MainActivity" 

            android:label="@string/app_name" > 

            <intent-filter> 

                <action android:name="android.intent.action.MAIN" /> 

 

                <category android:name="android.intent.category.LAUNCHER" /> 

            </intent-filter> 

        </activity> 

    </application> 

 

</manifest> 

 
 

  



activity_main.xml 
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" 

    xmlns:tools="http://schemas.android.com/tools" 

    android:layout_width="match_parent" 

    android:layout_height="match_parent" 

    android:paddingLeft="@dimen/activity_horizontal_margin" 

    android:paddingRight="@dimen/activity_horizontal_margin" 

    android:paddingTop="@dimen/activity_vertical_margin" 

    android:paddingBottom="@dimen/activity_vertical_margin" 

    tools:context=".MainActivity"> 

 

 

    <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 

        android:layout_width="fill_parent" 

        android:layout_height="fill_parent" 

        android:orientation="vertical"> 

 

        <TextView android:text="Select your chords" 

            android:layout_width="221dp" 

            android:layout_height="40dp" 

            android:layout_gravity="center_horizontal" 

            android:id="@+id/select_chords" 

            android:textSize="24dp" 

            android:textStyle="bold" /> 

        <Button 

            android:id="@+id/button1" 

            android:layout_width="wrap_content" 

            android:layout_height="wrap_content" 

            android:layout_gravity="center_horizontal" 

            android:onClick="calculateFrequencies" 

            android:text="Calculate Custom Tuning" /> 

 

        <ListView 

            android:id="@+id/android:list" 

            android:layout_width="match_parent" 

            android:layout_height="397dp" 

            android:choiceMode="multipleChoice"> 

             

        </ListView> 

    </LinearLayout> 

</RelativeLayout> 
 

  



MainActivity.java
package com.example.clee.listviewdemo; 

 

import android.app.AlertDialog; 

import android.app.Dialog; 

import android.content.DialogInterface; 

import android.support.v7.app.ActionBarActivity; 

import android.os.Bundle; 

import android.util.Log; 

import android.util.SparseBooleanArray; 

import android.view.Menu; 

import android.view.MenuItem; 

import android.app.ListActivity; 

import android.os.Bundle; 

import android.view.View; 

import android.widget.ArrayAdapter; 

import android.widget.ListView; 

import android.widget.TextView; 

import android.widget.Toast; 

 

import java.text.DecimalFormat; 

import java.util.ArrayList; 

import java.util.HashSet; 

import java.util.Set; 

 

public class MainActivity extends ListActivity { 

    private String [] chords = { 

            "A Major", 

            "B Major", 

            "C Major", 

            "D Major", 

            "E Major", 

            "F Major", 

            "G Major", 

    }; 

    Integer[] imageId = { 

            R.drawable.a_major_1, 

            R.drawable.b_major_1, 

            R.drawable.c_major_1, 

            R.drawable.d_major_1, 

            R.drawable.e_major_1, 

            R.drawable.f_major_1, 

            R.drawable.g_major_1 

    }; 

 

    //Put items into this array list when selected 

    ArrayList selectedItems = new ArrayList(); 

    Set selectedListItems = new HashSet(); 

 

    @Override protected void onCreate(Bundle savedInstanceState){ 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

 

        CustomListAdapter customAdapter = new CustomListAdapter(this, chords, 

imageId); 

        ListView listView = getListView(); 

        listView.setChoiceMode(ListView.CHOICE_MODE_MULTIPLE); 

        setListAdapter(customAdapter); 

    } 

 

    @Override protected void onListItemClick(ListView l, View v, int position, long 

id){ 

        ListView listView = getListView(); 

        for(int i = 0; i<listView.getCount(); i++) {   



CustomListAdapter.java 
package com.example.clee.listviewdemo; 

 

import android.app.Activity; 

import android.view.LayoutInflater; 

import android.view.View; 

import android.view.ViewGroup; 

import android.widget.ArrayAdapter; 

import android.widget.ImageView; 

import android.widget.TextView; 

 

public class CustomListAdapter extends ArrayAdapter<String> { 

 

    private final Activity context; 

    private final String[] itemname; 

    private final Integer[] imgid; 

 

    public CustomListAdapter(Activity context, String[] itemname, Integer[] imgid) { 

        super(context, R.layout.my_list_images, itemname); 

 

        this.context=context; 

        this.itemname=itemname; 

        this.imgid=imgid; 

    } 

 

    public View getView(int position,View view,ViewGroup parent) { 

        LayoutInflater inflater=context.getLayoutInflater(); 

        View rowView=inflater.inflate(R.layout.my_list_images, null, true); 

 

        TextView txtTitle = (TextView) rowView.findViewById(R.id.item); 

        ImageView imageView = (ImageView) rowView.findViewById(R.id.icon); 

 

        txtTitle.setText(itemname[position]); 

        imageView.setImageResource(imgid[position]); 

        return rowView; 

 

    }; 

} 

 
 

 

  



my_list_images.xml 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 

    android:layout_width="fill_parent" 

    android:layout_height="fill_parent" 

    xmlns:tools="http://schemas.android.com/tools" 

    android:orientation="horizontal"> 

    <ImageView 

        android:id="@+id/icon" 

        android:layout_width="50dp" 

        android:layout_height="50dp" 

        android:layout_marginBottom="5dp" 

        android:layout_marginLeft="5dp" 

        android:layout_marginRight="5dp" 

        android:layout_marginTop="5dp" /> 

    <TextView 

        android:id="@+id/item" 

        android:layout_width="fill_parent" 

        android:layout_height="fill_parent" 

        android:textSize="20sp" 

        android:background="?android:attr/activatedBackgroundIndicator" 

        android:paddingTop="5dp"/> 

</LinearLayout> 

 
  



Optimization.java 
package com.example.clee.listviewdemo; 

 

/** 

 * Created by cassi lee on 4/17/2015. 

 */ 

 

import android.util.Log; 

 

import java.util.ArrayList; 

import java.util.List; 

 

import Jama.Matrix; 

 

public class Optimization{ 

    private 

    static final double F6 = 82.406899; 

    static double f5; 

    static double f4; 

    static double f3; 

    static double f2; 

    static double f1; 

    static int m; 

    static int n; 

    static final int[] stringHalfSteps = {0,5,10,15,19,24};//{f6, f5, f4, f3, f2 f1} 

where f6 is the lowest string 

    static final int[] defaultStringHalfSteps = {0,5,10,15,19,24}; 

    static final double justIntervalFactors[][] = {{1.0, 1.0}, 

            {16.0, 15.0}, 

            {9.0, 8.0}, 

            {6.0, 5.0}, 

            {5.0, 4.0}, 

            {4.0, 3.0}, 

            {45.0, 32.0}, 

            {3.0, 2.0}, 

            {8.0, 5.0}, 

            {5.0, 3.0}, 

            {9.0, 5.0}, 

            {15.0, 8.0},}; 

    static ArrayList<Double> customChordBList = new ArrayList<Double>(); 

    static List<double[]> customChordArrayList = new ArrayList<double[]>(); 

    static double[] residualLine = new double[]{0.0, 0.0, 0.0, 0.0, 0.0}; 

    static ArrayList<double[]> matrixOfResiduals = new ArrayList<double[]>(); 

    static double[] frequenciesToDisplay = new double[6]; 

 

    static final Integer[] AmajorFingering1 = new Integer[]{-1,0,2,2,2,0}; 

    static final Integer[] BmajorFingering1 = new Integer[]{-1,2,4,4,4,2}; 

    static final Integer[] CmajorFingering1 = new Integer[]{-1,3,2,0,1,0}; 

    static final Integer[] DmajorFingering1 = new Integer[]{-1,-1,0,2,3,2}; 

    static final Integer[] EmajorFingering1 = new Integer[]{0,2,2,1,0,0}; 

    static final Integer[] FmajorFingering1 = new Integer[]{1,3,3,2,1,1}; 

    static final Integer[] GmajorFingering1 = new Integer[]{3,2,0,0,0,3}; 

 

public static double[] getCustomFrequencies(ArrayList<String[]> CustomChords) throws 

Exception { 

        matrixOfResiduals.clear(); 

        customChordArrayList.clear(); 

        customChordBList.clear(); 

        matrixOfResiduals.clear(); 

 

        String[] customChordsArray = CustomChords.toArray(new 

String[CustomChords.size()]); 

 

        for(int i =0; i < CustomChords.size(); i++) {  



            Log.i("customChordsArray["+i+"]: ", customChordsArray[i]); 

            System.out.println("customChordsArray[" + i + "]: "+ 

customChordsArray[i]); 

        } 

 

        //calculate the residuals for each relationship between the strings based on 

the fingering of the chord. add each residual calculated to the matrix 

        for(int i = 0; i < CustomChords.size(); i++){ 

            if(customChordsArray[i] == "A Major"){ 

                calculateMatrix(AmajorFingering1); 

            } 

            else if(customChordsArray[i] == "B Major"){ 

                calculateMatrix(BmajorFingering1); 

            } 

            else if(customChordsArray[i] == "C Major"){ 

                calculateMatrix(CmajorFingering1); 

            } 

            else if(customChordsArray[i] == "D Major"){ 

                calculateMatrix(DmajorFingering1); 

            } 

            else if(customChordsArray[i] == "E Major"){ 

                calculateMatrix(EmajorFingering1); 

            } 

            else if(customChordsArray[i] == "F Major"){ 

                calculateMatrix(FmajorFingering1); 

            } 

            else if(customChordsArray[i] == "G Major") { 

                calculateMatrix(GmajorFingering1); 

            } 

        } 

 

/****************Create the desired matrix by putting all the chords together chosen 

by user in a huge matrix***************/ 

        double[][] customChordArray = new double[matrixOfResiduals.size()][]; 

        for(int i = 0; i < matrixOfResiduals.size(); i++) { 

            customChordArray[i] = matrixOfResiduals.get(i); 

        } 

        Double[] customChordB = customChordBList.toArray(new 

Double[customChordBList.size()]); 

 

        double[] customChordB2 = new double[customChordB.length]; 

        for(int i = 0; i < customChordB.length; i++){//change the customChordArray to 

match the type "double" that DenseMatrix requires 

            customChordB2[i] = customChordB[i]; 

        } 

 

/**************************Solve using the jama library******************************/ 

        Matrix A = new Matrix(customChordArray/*numberChordsRows*/);//set matrix a 

        Matrix b = new Matrix(customChordB2, customChordB2.length);//set matrix b 

        Matrix frequenciesSolution = new Matrix(1, 5); 

        frequenciesSolution = 

((((A.transpose()).times(A)).inverse()).times((A.transpose()).times(b))).times(-1.0); 

 

 

        double[][] frequenciesForArray = frequenciesSolution.getArray(); 

        frequenciesToDisplay[0] = F6; 

        for(int i = 0; i < 5; i++){ 

            frequenciesToDisplay[i+1] = frequenciesForArray[i][0]; 

        } 

 

   return frequenciesToDisplay; 

 } 

  



    private static List<double[]> calculateMatrix(Integer[] fingering){ 

        int lowNote = 0; 

        int lowString = 0; 

        int intervalRelation = 0; 

        int octaveFactor = 0;//adds factors of 2 

        int justIntervalRelation = 0;//how many absolute half steps are between the 

notes if they were in the same octave 

        //for each fingering, go through and calculate all the relationships between 

all of the strings 

        for(int i = 0; i < 6; i++){ 

            if(fingering[i] >= 0){ 

                lowString = i; 

                lowNote = fingering[i]; 

                break; //ignore the -1's 

            } 

        } 

        for(int h = lowString; h<5; h++){ 

            if(h == 0){//start on residual 1 

                for(int i =1; i < 6; i++){//iterate through the strings to get each 

relationship with F6, starting with f5 (i = 1) 

                    intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[0] + stringHalfSteps[0]);//relationship between strings f5-f1 with 

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning 

                    octaveFactor = (intervalRelation/12)*2;//get the integer rep 

first, then multiply by 2 to get number of octaves between notes. 

                    if(octaveFactor == 0){ 

                        octaveFactor = 1; 

                    } 

                    justIntervalRelation = 

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just 

interval between the two strings 

 

                    //calculate what factor needs to be put into the residualLine 

                    residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0, 

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between 

strings)*(equal temperament factor from fingering to solve the open string frequency); 

                    Double f6Residual = 

octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*F6*Math.pow(2.0, 

fingering[0]/12.0); 

                    customChordBList.add(f6Residual); 

                    //add this residualLine[] to the matrix of residual arrays 

                    matrixOfResiduals.add(residualLine.clone()); 

 

                    //change residualLine back to all zeros for next time 

                    for(int j = 0; j<5; j++){ 

                        residualLine[j] = 0.0; 

                    } 

                } 

            } 

            if(h == 1){ 

                for(int i =2; i < 6; i++){//iterate through the strings to get each 

relationship with f5, starting with f4 (i = 2) 

                    intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[1] + stringHalfSteps[1]);//relationship between strings f5-f1 with 

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning 

                    octaveFactor = (intervalRelation/12)*2;//get the integer rep 

first, then multiply by 2 to get number of octaves between notes. 

                    if(octaveFactor == 0){ 

                        octaveFactor = 1; 

                    } 

                    justIntervalRelation = 

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just  



interval between the two strings 

                    residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0, 

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between 

strings)*(equal temperament factor from fingering to solve the open string frequency); 

                    

residualLine[0]=octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*Math.pow

(2.0, fingering[1]/12.0);//set f5's residual 

                    matrixOfResiduals.add(residualLine.clone());//add this 

residualLine[] to the matrix of residual arrays 

                    for(int j = 0; j<5; j++){ 

                        residualLine[j] = 0.0; 

                    } 

                } 

                double[] f5Residuals = {0.0, 0.0, 0.0, 0.0}; 

                for(int i = 0; i < f5Residuals.length; i++){ 

                    customChordBList.add(f5Residuals[i]); 

                } 

            } 

            if(h == 2){ 

                for(int i =3; i < 6; i++){//iterate through the strings to get each 

relationship with f4, starting with f3 (i = 3) 

                    intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[2] + stringHalfSteps[2]);//relationship between strings f5-f1 with 

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning 

                    octaveFactor = (intervalRelation/12)*2;//get the integer rep 

first, then multiply by 2 to get number of octaves between notes. 

                    if(octaveFactor == 0){ 

                        octaveFactor = 1; 

                    } 

                    justIntervalRelation = 

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just 

interval between the two strings 

                    residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0, 

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between 

strings)*(equal temperament factor from fingering to solve the open string frequency); 

                    

residualLine[1]=octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*Math.pow

(2.0, fingering[2]/12.0);//set f4's residual 

                    matrixOfResiduals.add(residualLine.clone());//add this 

residualLine[] to the matrix of residual arrays 

                    for(int j = 0; j<5; j++){ 

                        residualLine[j] = 0.0; 

                    } 

                } 

                double[] f4Residuals = {0.0, 0.0, 0.0}; 

                for(int i = 0; i < f4Residuals.length; i++){ 

                    customChordBList.add(f4Residuals[i]); 

                } 

            } 

            if(h==3){ 

                for(int i =4; i < 6; i++){//iterate through the strings to get each 

relationship with f3, starting with f2 (i = 4) 

                    intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[3] + stringHalfSteps[3]);//relationship between strings f5-f1 with 

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning 

                    octaveFactor = (intervalRelation/12)*2;//get the integer rep 

first, then multiply by 2 to get number of octaves between notes. 

                    if(octaveFactor == 0){ 

                        octaveFactor = 1; 

                    } 

                    justIntervalRelation =  



intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just 

interval between the two strings 

                    residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0, 

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between 

strings)*(equal temperament factor from fingering to solve the open string frequency); 

                    

residualLine[2]=octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*Math.pow

(2.0, fingering[3]/12.0);//set f4's residual 

                    matrixOfResiduals.add(residualLine.clone());//add this 

residualLine[] to the matrix of residual arrays 

                    for(int j = 0; j<5; j++){ 

                        residualLine[j] = 0.0; 

                    } 

                } 

                double[] f3Residuals = {0.0, 0.0}; 

                for(int i = 0; i < f3Residuals.length; i++){ 

                    customChordBList.add(f3Residuals[i]); 

                } 

            } 

            if(h==4){ 

                for(int i =5; i < 6; i++){//iterate through the strings to get each 

relationship with f2, starting with f1 (i = 5) 

                    intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[4] + stringHalfSteps[4]);//relationship between strings f5-f1 with 

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning 

                    octaveFactor = (intervalRelation/12)*2;//get the integer rep 

first, then multiply by 2 to get number of octaves between notes. 

                    if(octaveFactor == 0){ 

                        octaveFactor = 1; 

                    } 

                    justIntervalRelation = 

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just 

interval between the two strings 

                    residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0, 

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between 

strings)*(equal temperament factor from fingering to solve the open string frequency); 

                    

residualLine[3]=octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*Math.pow

(2.0, fingering[4]/12.0);//set f4's residual 

                    matrixOfResiduals.add(residualLine.clone());//add this 

residualLine[] to the matrix of residual arrays 

                    for(int j = 0; j<5; j++){ 

                        residualLine[j] = 0.0; 

                    } 

                } 

                double[] f2Residuals = {0.0}; 

                for(int i = 0; i < f2Residuals.length; i++){ 

                    customChordBList.add(f2Residuals[i]); 

                } 

            } 

        } 

 

        return matrixOfResiduals; 

    } 

} 
 

 


