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ABSTRACT 

We investigated the uniformity of electron transit times across the full spatial extent of two 5” 

photomultiplier tubes, the Hamamatsu R1250 and the Adit B133D01. The photomultiplier tubes 

were translated across a localized incident light source while a portion of the incident light was 

simultaneously measured and recorded by a fast photodiode. Constant fraction discrimination 

was utilized to calculate electron transit times as the difference between the start times of the 

photodiode and photomultiplier traces. The Hamamatsu tube provided a uniform timing response 

that varied by no more than 1.7 ns. The Adit tube was extremely non-uniform with transit times 

that varied by as much as 57 ns, yet the symmetry of variation in transit times differed 

significantly when analyzed with two different algorithms to determine pulse timing. These 

results indicate that the Hamamatsu tube is superior to the Adit for experimental timing 

applications, and that the method of analysis significantly affects final timing results of the Adit 

tube. 

Parts of this work were funded by NNSA Grant no. DE-FG52-10NA29655 and DHS Award no. 
2010-DN-077-ARI039-02.
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INTRODUCTION 

Background and Purpose 

Photomultiplier tubes, PMTs, are used in many physics experiments requiring time sensitive 

measurements of very small amounts of light. They convert incident photons into electrons via the 

photoelectric effect. This conversion occurs at the surface of the photocathode material contained 

within the PMT. These photoelectrons are accelerated towards the first positively charged dynode 

and are subsequently multiplied via a cascade of secondary emission. Upon passing through a 

series of dynodes and arriving at the final anode, the multiplied electrons produce a measurable 

signal as a sharp spike of electric current. The time it takes for the primary photoelectrons to travel 

and arrive at the final anode is known as the electron transit time. There is an inherent distribution 

in electron transit time across the spatial extent of the PMT. This distribution of transit times is 

attributed to the different photoelectron trajectories at the initial photocathode surface and 

subsequent dynode surfaces. My purpose is to investigate the uniformity of electron transit times 

across the full spatial extent of two commercial 5” PMTs, the Hamamatsu R1250 and the Adit 

B133D01.  

 

Motivation 

PMTs are used in conjunction with scintillators as an effective means to detect particle radiation. 

Many such experiments require precise timing information to calculate time-of-flight energies and 

energy spectra of the detected particles. If there is a substantial difference in electron transit times 

due to the location of the incident photon on the photocathode, the results of these sensitive timing 

measurements are made less accurate, and in extreme cases, invalid. Typically, a single large 

homogenous scintillator is used to illuminate the full photocathode surface simultaneously. This 
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results in a single current spike, or signal, that is a superposition of responses from each spatial 

location on the PMT. Although each spatial location differs in transit time and response size, their 

sum typically results in a smooth Gaussian shaped response curve that minimizes the non-

uniformity of the tube by essential averaging over all non-uniformities. The FWHM of this 

summed response is known as the transit time spread. Most manufacturers of PMTs optimized for 

timing applications carefully engineer their products to minimize this spread. Therefore, for a 

PMT operated in this manner, little importance is given to the difference in electron transit times 

from one location to the next. Yet, the BYU nuclear physics group currently uses a neutron 

detector that employs optically separated rectangular slabs of plastic scintillator. These rectangular 

scintillator slabs do not uniformly illuminate the full surface of the PMT simultaneously. In other 

words, the light created from a radiation event in a specific slab of the detector, will only 

illuminate a small rectangular portion of the PMT surface. If the transit time differs significantly in 

that region, then the sensitive timing measurements are made less accurate. Consequently, by 

characterizing the uniformity of transit times across the full spatial extent of the tube, we can 

effectively minimize timing uncertainties and improve experimental results. In addition, the 

experimental procedure we used to characterize the non-uniformity of transit times can also be 

applied to any research that utilizes a PMT for timing information. For example, the Positron 

Emission Tomography (PET) scan used in medical physics applications. A more accurate 

localization of the electron positron annihilation event is made possible when the transit time non-

uniformities are known and minimized [2]. A more accurate localization results in a higher 

resolution image that can aid physicians in making better diagnoses. 
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Context 

There is current research being conducted concerning the transit time characteristics of typical 

commercial PMTs.  Lung and Arisaka at UCLA investigated the timing characteristics of a 3” 

Hamamatsu R11410-10 tube operated in a vacuum cryostat for Dark Matter detection experiments 

[3]. They found that the transit time was highly position dependent and that large deviations on the 

order of 5 ns did occur near the edges of the PMT surface. They also found symmetry along the X 

and Y axis corresponding to the location and design of the first dynode. More recently, Xu Wang 

has investigated many 1” and 2” PMTs for applications in cosmic ray astronomy.[4] His initial 

results confirm those of Lung and Arisaka. In addition, he found that a location with a slower 

relative transit time, like an edge point, also had greater transit time spread among the samples 

taken at that location.() Both of the above cited experiments, and the subject matter of this report, 

have similar experimental setups and procedures that will be discussed in further detail in the 

Methods and Materials section. Importantly, no large diameter PMT (5”) used in nuclear physics 

applications has yet been investigated.  Additionally, by characterizing and comparing the timing 

properties of two very different PMTs, Adit box-and-grid and Hamamatsu linear focused, this 

research will provide useful information for physicists who must select which type of large PMT 

is best suited for their particular experiment. Finally, in conjunction with the timing information, 

we will also detail the uniformity of peak height and area response across the full spatial extent of 

the PMT.  These metrics are often employed in nuclear physics experiments, and no published 

research has been done to quantify the uniformity across a large PMT at typical operating 

parameters. 
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METHODS AND MATERIALS 

Materials 

An in-depth review of the characteristics of each PMT is necessary to justify key differences in 

experimental design. Both the Hamamatsu R1250 and the Adit B133D01 are 5” diameter, head-on type 

photomultiplier tubes that use bialkali photocathodes with a minimum useful diameter of 120 mm.  The 

Hamamatsu employs a 14-stage linear focused dynode structure with a maximum operating voltage of 

2000 V. The Adit has a 10-stage box-and-grid dynode structure with a maximum operating voltage of 

1500 V. We used an Ortec Model 266 short base with the Adit, and a custom base for the Hamamatsu. 

Although the Hamamatsu base was custom, the voltage distribution ratio matched the distribution given 

by the original data sheet. On average, the Hamamatsu had a larger peak voltage response than did the 

Adit. To compensate for this effect, and to eliminate saturation in the data acquisition oscilloscope, we 

attenuated the input laser pulse with two additional neutral density filters when taking data on the 

Hamamatsu PMT. This method of attenuation was done using a very practical algorithm. We used 

sufficient neutral density (ND) filters until the PMT response no longer saturated the oscilloscope, and 

the addition of any more ND filters would completely eliminate all signal response from the PMT. In 

other words, we attenuated the incident light source until we reached the minimal amount of incident 

photons required to produce a measureable current response from the given PMT at its maximum 

operating voltage. This method of attenuation also ensured that the PMT response remained linear. All 

other components and procedures of the experiment were held constant for each tube. As our pulsed 

light source, we used a Ti Sapphire laser frequency doubled to a wavelength of 400 ±10 nm. This mode 

of operation was ideal for our experiment because both tubes had maximum quantum efficiency and 

maximum absolute sensitivity near this wavelength. The laser operated in mode lock at 550 ±100 mW 

and a pulse length of 100 ps. At incidence on the PMT surface, it had 2 mm diameter spot size. 
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Experimental Set-Up 

Figure 1 concisely illustrates the basic experimental design. The Ti Sapphire laser comes from an 

adjacent lab by passing through a periscope and iris to reach the first component, the Quantum 

Technology Model D02-110R2 frequency doubler. The laser then passes through a green filter to 

eliminate any remnants of the original 800 nm wavelength pulse. The ThorLabs CM1-BS013 

beam splitter then sends half the incident beam through a light-tight black tube to the fast 

photodiode, and the other half of the beam into the attenuation scope. The ThorLabs DET210 fast 

photodiode (FPD) has an attached NE20A filter to attenuate the incident beam to within the FPD 

linearity limit of 1 mW. The signal from the FPD is recorded in the Tektronix DPO7104 

oscilloscope on Ch. 3. The other half of the beam passes through the attenuation scope, which is 

composed of three neutral density filters (NE60A, NE05A, ND40A). The attenuated beam enters 

the light-tight black box where it illuminates the PMT surface at normal incidence. Two 

programmable motorized stages translate the PMT coplanar with the front surface of the PMT and 

normal to the incident light pulse. The signal from the PMT is recorded in the oscilloscope on Ch. 

2. Typical reflective mirrors are also utilized throughout the set-up to ensure a clear path and 

normal incidence at the correct location on the PMT surface.  

Fig. 1. A simplified diagram of the experimental design 
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Experimental Procedure 

After placing the PMT and its base in the specially manufactured metal clamp on the motorized 

stages, the laser was turned on and set to operate in mode-lock at 800 nm. A measurement of the 

laser power was performed to ensure it was operating at approximately 550 mW. Laser power was 

also measured upon completion of the data acquisition session to ensure it was still functioning in 

the appropriate range after several hours of continuous operation. After creating a clear path for 

the laser beam through all parts of the experiment, a level was used to double-check for normal 

incidence at both the PMT and FPD surfaces. Any adjustments in mirror positioning were made as 

needed. Both the FPD and PMT glass surfaces were properly cleaned before every experimental 

run. We then used a LabView VI to operate the motorized stages and move the PMT into its initial 

position. It was important to correlate the physical location of the incident light with the LabView 

program’s virtual coordinates. This ensured that our program’s recorded location matched the 

actual location of incident light on the PMT surface. We then sealed the light-tight black box and 

turned off all ambient lights to ensure optimal PMT operating conditions. After we were satisfied 

with the light seal, we turned on the FPD, oscilloscope, and high voltage power supply. We waited 

a few minutes to ensure that the power supply had properly warmed up and reached steady-state 

operation. We operated the Hamamatsu tube at 2000 V and the Adit at 1500 V, both their 

respective maximum operating voltages. We choose to perform the experiment at the maximum 

operating voltage for two key reasons: the BYU nuclear physics group operates its PMTs in this 

manner for typical experiments, and the best timing performance is obtained by operating the tube 

at the maximum voltage permitted [1]. We then set the oscilloscope parameters: 50 Ω termination 

for both channels (set to match the base and cable impedances), with a sampling rate of 10 GS/s or 

100 ps/pt (highest rate achievable on the oscilloscope), and 3.5 mV rising edge manual trigger on 

the FPD channel. The vertical scale was only set after a quick scan was performed over the entire 
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surface of the PMT. During this scan, we checked for saturation in the oscilloscope and added 

more light attenuation as needed (practical attenuation algorithm). For both data acquisition 

sessions, the PMT channel 2 was set to 200 mV/div and the FPD channel 3 was set to 7 mV/div. 

At each trigger event, both the PMT and FPD wave traces were recorded on the oscilloscope and 

saved to the computer as csv files for later analysis. Before the final full scan was performed, we 

took a preliminary scan of 1000 waveforms at the center location on the PMT surface. These data 

were later analyzed to ensure that the laser had indeed been operating in a consistent manner.  This 

same scan was repeated after the data acquisition session as well. Finally, we programmed the 

LabVIEW VI to perform a raster scan on a square grid across the full face of the PMT surface. We 

divided the step size in 5 mm increments in both the X and Y directions for a total of 729 spatial 

locations. Although increased spatial resolution was possible with our experimental design, it was 

time prohibitive as the regular scan already lasted more than 3 hours. The LabVIEW program 

saved 10 waveform pairs (PMT and FPD) at every location, along with the spatial coordinates and 

timescale from the oscilloscope. Once again, we choose to save only 10 waveform pairs per spatial 

location due to time limitations on laser operation and access to the laser lab. 
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Fig. 2. Typical Adit PMT waveform example. Note the small peak before the largest Gaussian shaped peak. 

 

Data Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Typical Hamamatsu waveform example. Note the steep rising slope and afterpulsing. 
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Data analysis began by using MATLAB to plot a few typical example events (both PMT and FPD 

waveforms) from many different locations on the PMT. Both waveforms exhibited some voltage 

noise and a small constant offset. The pulses were smoothed using a moving average filter of 5 

adjacent data points, and a constant offset was calculated by averaging over 1000 data points of noise 

(Figs. 2 and 3). Visual inspection of these waveforms helped identify their common pulse 

characteristics. The common pulse characteristics then dictated which analysis algorithms would 

produce valid results. Figure 2 demonstrates that some Adit PMT responses had a small peak about 

20 ns earlier in time before the main Gaussian peak. Figure 3 demonstrates that Hamamatsu response 

waveforms don’t have any early peaks, but rather significant afterpulsing. These key pulse 

differences justify the use of different analysis algorithms for the two different data sets. The 

variables we desired to measure from the waveforms were the following: start and stop channel of the 

PMT and FPD waveforms, transit time (difference between start of FPD trace and the start of the 

PMT trace), maximum peak height, and area response. To pick-off the start time of any pulse, we 

used a zero-crossing algorithm. A zero-crossing algorithm first attenuates the response pulse to a 

constant fraction of its original amplitude. It then creates another altered response pulse by inverting 

and delaying the original signal. Summing these two altered waveforms results in a new waveform 

which crosses zero at the point in time when the leading edge of the original response pulse reaches 

the preset constant fraction of pulse amplitude. This algorithm for pulse timing provides consistent 

results across a large input dynamic range. Utilizing this algorithm required finding an ideal offset or 

delay time that was greater than all peak rise times but less than the sum of rise and fall times. This 

was accomplished by creating a histogram of all rise, fall, and sum times. After visual inspection of 

these histograms, we selected an offset time for each data set that matched the aforementioned 

criterion. A proper attenuation level was then selected which minimized the variance of start times at 

a given location. Interestingly, because the Adit data consisted of waveforms with two superimposed 
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peaks, a different attenuation level produced very different results. Thus, we analyzed the Adit with 

one low attenuation level (10%), and one high attenuation level (90%). The Hamamatsu did not vary 

with respect to changes in the attenuation level, so it was only analyzed with 10% attenuation. The 

area response of the PMT pulse was calculated by summing the region beneath the peak from the 

calculated start time to the calculated stop time on the backside of the pulse. The stop time was 

calculated using a trailing-edge constant fraction technique set to 10% of the maximum peak height. 

We did try using a lower trailing-edge constant fraction, 5%, to include all afterpulses from the 

Hamamatsu data. This did not significantly alter the final calculated areas because all afterpulse areas 

were directly proportional to the original pulse area. Finally, because not all saved data locations 

corresponded to a physical location on the surface of the PMT (square grid scan of circular PMT), we 

choose a minimum voltage threshold that would define which PMT waveforms constituted a real 

response. This was determined by creating a histogram of the maximum voltage noise from every 

event. The threshold was then set above the maximum recorded noise from any one event. Near the 

physical edges of the PMT surface we found that only some of the 10 PMT response waveforms 

exceeded the minimum threshold, while others from the same location failed to meet the criterion and 

were therefore disregarded as noise. This variance in PMT response at a given location was due to the 

fact that the intensity of incident light also varied in time (as measured by the FPD peak response). 

Therefore, we also required that at least 7 of 10 events meet the response criterion in order for a given 

spatial location to be saved, averaged, and included in the analysis. We choose to require at least 7 of 

10 events because all measurement variables are represented as averages at a given location. 

Averaging fewer than 7 events could produce skewed results given a few outliers. Additionally, by 

requiring 7 events, the size and geometry of our saved locations essentially matched the physical 

parameters of the PMT being scanned (Fig. 4). After we were satisfied that the threshold 

requirements were valid, we threw out all spatial locations that were not contained within the 
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Fig. 4. Saved spatial locations after enforcing minimum threshold. Adit scan on left and Hamamatsu scan on right 

manufacturer’s minimum useful diameter (120 mm). The validity of our data analysis method is 

brought into question by the results of the saved data locations from the Hamamatsu scan (Fig. 4). 

After enforcing the minimum threshold requirement on the Hamamatsu data, some spatial locations 

remained despite not correlating to physical locations on the surface of the PMT. Increasing the 

minimum threshold requirement did not eliminate these erroneous data points. Nonetheless, these 

same data points were not contained within the minimum useful diameter, and were therefore not 

included in the final data analysis. As a final check of all analysis parameters, we analyzed the before 

and after scans performed at the PMT center location. Because we saved 1000 waveforms at that one 

location, we had better counting statistics and smooth Gaussian distributions to help determine 

correct analysis parameters. Importantly, we checked that the transit time spread (TTS) was 

minimized and that the distribution of relative area responses (ratio of PMT and FPD area) was also 

narrow. After we were satisfied that the correct parameters had been set, we performed an analysis of 

all spatial points on the PMT surface. For each of the 10 waveform pairs at every location, we 

calculated and saved the start channel, stop channel, integrated area, and max peak voltage. We then 

calculated the averages and variances of these same variables at every spatial location.  
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RESULTS AND DISCUSSION 

 

 

Fig. 5. Timing Characteristics of the Adit B133D01 tube with analysis attenuation level set to 10% 

The Adit timing characteristics were non-uniform when analyzed with an attenuation level of 

10%. Transit times varied by as much as 57.9 ns from one location to another. The distribution of 

transit times shows that there were two distinct groupings of transit times. These groups also 

correlated to separate physical regions on the tube surface (3D surface plot). Upon closer 

inspection of the X and Y axis uniformity plots, the fastest transit times occurred at the origin, 

and an azimuthally symmetric region at a radius of about 30 mm. This effect is due to the small 

response peak that occurs before the main Gaussian peak for points in this region (Fig. 2). 
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Fig. 6. Timing Characteristics of Adit tube with attenuation level set to 90% 

 

 

The Adit timing characteristics were still non-uniform when analyzed with an attenuation level 

of 90%, yet the non-uniformities were smoother and followed a consistent pattern. Transit times 

still varied by as much as 57.7 ns from one location to another, but the distribution was more 

homogenous and uniform. The X and Y axis plots, along with the 3D surface plot, show that the 

transit time was fastest at the origin and slowest at the edges. The smooth rise from origin to 

edge roughly fits a paraboloid. The X axis plot also shows a large discontinuity 40 mm to the left 

of the origin. The 3D surface plot confirms that this continuity occurs at all points along the 

vertical line X = -40. This discontinuity is the result of a subset of PMT response pulses (Fig. 7).  
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Fig. 7. Example pulses of Adit scan. First green line marks start time of FPD. Second green line marks start time of PMT. 

 

 

 

 

 

 

 

 

 

Figure 7 demonstrates that the timing discontinuity is the result of two equally sized 

superimposed response pulses that occur at locations in this region. In the example on the left,     

𝑋 = −40, the pulse start time is calculated using the first superimposed pulse. In the example on 

the right, 𝑋 = −45, the pulse start time is calculated using the second superimposed pulse. This 

dual peak effect results in a time shift of approximately 28 ns as shown in Figs. 6 and 7. 

Although the timing discontinuity is the direct result of our method for calculating the pulse start 

time, we are confident that the dual peak characteristic for points in this region is a valid 

response that would affect final results using any analysis method. Comparison of the Adit 

timing characteristics when analyzed with different attenuation levels demonstrates that Adit 

data from any experiment will provide different results depending on the method of analysis. 
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Fig. 8. Hamamatsu timing characteristics with attenuation level set to 10% 

 

 
 

The Hamamatsu provided a very uniform timing response across the full spatial extent of the tube. 

The transit time varied by no more than 1.7 ns from one location to another. The Gaussian 

distribution of transit times had a FWHM of only 0.4 ns.  Although both the X and Y axis plots 

show no clear pattern, the timing jitter is so minimal that it would go unnoticed in most 

experimental applications. In our nuclear physics experiments, we utilize a digitizer whose 

maximum sampling rate of 250 MHz results in 4 ns channels. Hence, the limiting factor for timing 

resolution in this case would be the digitizer and not the Hamamatsu PMT. The Hamamatsu is 

clearly far superior to the Adit for timing applications.  
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Fig. 9. Surface plot of FPD trigger pulse areas from Adit scan. 

Although we analyzed and calculated the uniformity of area and peak response across the full 

spatial extent of each the Adit and the Hamamatsu tube, we are unsure of the validity of the 

results for two key reasons. First, we repeated a full scan of the Hamamatsu tube after rotating it 

90˚ from the initial scan orientation. The timing results correctly followed the rotation, while all 

area and peak response results did not rotate with the tube. In other words, it appeared that all 

symmetry in the area and peak responses were a result of our left-to-right raster scanning method 

and not the tube symmetry itself. Second, we also calculated the area and peak responses of the 

accompanying FPD trigger pulses. The laser power randomly varied in time as measured by the 

FPD peak and area responses (Fig. 9). Because the PMT response is linearly proportional to the 

amount of incident light, the ratio of PMT area to FPD area should be correlated, and should 

provide a better measurement of the relative PMT response. Yet, the relative area and peak 

responses did not have less variance nor less overall spread than the normal area and peak 

responses. In other words, normalizing the PMT peak and area response by dividing by the FPD 

peak and area response only served to introduce more uncertainty and randomness in the relative 

results. 
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Fig. 10. Adit peak and area response characteristics with attenuation level set to 10% 

 

 
 
 

The Adit was fairly uniform with respect to area response and maximum peak height for both 10% and 

90% attenuation levels. Within the minimum useful diameter, the area response only varied by a factor 

of 3.1 for 10% attenuation, and by a factor of 4.7 for 90% attenuation. The peak height varied by a 

factor of 3.8 for both attenuation levels. Interestingly, the same pre-bump waveform characteristic of 

the Adit PMT also affected the area calculation at 10% attenuation. An azimuthally symmetric region 

at a radius of 30 mm had a larger area response than did the surrounding regions due to this effect. 

Furthermore, the largest area responses were found at the edges of the PMT where two superimposed 

pre-bumps occurred in the PMT response instead of the usual one. These pre-bumps increase the total 

area as if there had been two simultaneous responses occurring at the same point in time.  
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Fig. 11. Hamamatsu peak and area response characteristics with attenuation level at 10% 

 

 

The Hamamatsu was not uniform with respect to maximum peak height and area response. Within the 

minimum useful diameter, the area response varied by a factor of 11.1 and the max peak response 

varied by a factor of 10.3. In other words, the peak and area responses varied by a full order of 

magnitude, a significant factor. There was apparent symmetry in the X axis area response; a small area 

response on the left rose linearly to a large area response on the right. Yet, with the tube rotated 90˚ 

clockwise and the scan repeated, this apparent left-to-right symmetry remained while all timing metrics 

correctly followed the rotation. This suggests that the apparent symmetry is only a result of our 

scanning methods (left-to-right). More research must be done to understand this effect. At this time, it 

appears that the Adit is far superior to the Hamamatsu for peak and area applications.  
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CONCLUSION 

The investigation of the uniformity of transit times across the full spatial extent of two 

commercial 5” PMTs, the Hamamatsu R1250 and the Adit B133D01, revealed there are 

important non-uniformities and differences between the tubes that would dictate which tube is 

best suited for different experimental applications. For precise timing measurements, like time-

of-flight energy spectra, the Hamamatsu tube provides the most uniform timing response. The 

transit time varied by no more than 1.7 ns from one location to another and the Gaussian 

distribution of transit times had a FWHM of only 0.4 ns. In other words, the limiting factor for 

timing resolution in a typical nuclear physics experiment would be a slow scintillator or the 

maximum sampling rate of the digitizer, and not the Hamamatsu tube itself. Yet, this same 

Hamamatsu tube simultaneously offered a very non-uniform peak height and area response. Both 

the area and peak response varied by more than a factor of 10 from one location to another on the 

surface of the PMT. Even though these peak and area results have important implications for 

experiments that utilize such metrics to make inferences about detected particles and their 

spectra, we are not wholly confident in the validity of these results. In summary, the Hamamatsu 

is great for timing applications, but is seemingly poor for light collection uniformity and area 

response applications. On the other hand, the Adit tube provided a fairly consistent peak height 

and area response across the full spatial extent of the tube. Within the minimum useful diameter, 

the area response only varied by a factor of 3.1, and the peak height varied by a factor of 3.6. 

Meaning, that the location of incident light could still effect the outcome of the peak height and 

area response, but its effect would not introduce as much uncertainty in the experimental results 

as did the Hamamatsu. Yet, the validity of the Adit peak and area responses are questionable. 

Even though the Adit fared well with respect to area response uniformity, it was extremely non-
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uniform with respect to transit time characteristics. Within the minimum useful diameter, transit 

times varied by as much as 57 ns from one location to another (when analyzed with both high 

and low attenuation levels). Although the transit times varied with radial and azimuthal 

symmetry, the symmetries were significantly different when analyzed with low versus high 

attenuation levels. These differences were a result of the small peak about 20 ns earlier in time 

before the main Gaussian response curve. Because of the radial symmetry of the regions where 

the pre-peaks occur, it appears that these pre-peaks are valid responses from the PMT rather than 

merely some artifact of our experimental design. They seem to be real responses that are 

superimposed with the large main Gaussian response at that location. It is possible that a fraction 

of the incident light is scattered or reflected towards another faster location on the photocathode 

surface, resulting in the superposition of the two nearly simultaneous responses. In summary, the 

Adit is best suited for peak height and area response experimental applications. Yet, neither the 

Adit nor the Hamamatsu can be considered the best option for all experimental applications. 

Future research could investigate: other commercial tubes that are designed as more of a 

compromise between timing and area response, differences between two identical tubes due to 

the manufacture process, different operating voltages, and isolation of the Adit pre-bump 

response characteristic.   
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APPENDIX A  

MATLAB ANALYSIS CODE 

%PMT Timing and Effeciency Written by Kent T, Trevor J and Taylor R 

  
clear; clc; close all; 

  
global fpdthreshold pmtthreshold fpdoffset fpdcfd pmtoffset  
global pmtcfd req datapoints minradius xcenter ycenter smoothingfactor 

  
%Settings for July12 Adit Data Analyzed at CFD = 0.9 
fpdthreshold = .0035; 
pmtthreshold = 0.03; 
fpdoffset = 15; 
fpdcfd = .1; 
pmtoffset = 100; 
pmtcfd =.9; 
req = 7; 
datapoints = 5000; 
minradius = 60; 
xcenter = 80; 
ycenter = 83; 
smoothingfactor = 5; 

  
% %Settings for July12 Adit Data Analyzed at CFD = 0.1 
% fpdthreshold = .0035; 
% pmtthreshold = 0.03; 
% fpdoffset = 15; 
% fpdcfd = .1; 
% pmtoffset = 570; 
% pmtcfd =.1; 
% req = 7; 
% datapoints = 5000; 
% minradius = 60; 
% xcenter = 80; 
% ycenter = 83; 
% smoothingfactor = 5; 

  

  
fprintf('What do you want to do?\n\n'); 
fprintf('  0 Quit\n'); 
fprintf('  1 Plot individual events (Fast Photodiode & PMT Traces)\n'); 
fprintf('  2 Write Summary file of Timing and Effeciency Information\n'); 
fprintf('  3 Analyze Sumfile (Zero Supressed)\n'); 
fprintf('  4 Plot Rise and Fall Times Distribution\n'); 
fprintf('  5 Create Peak Timing Information ("Pre-Bump")\n'); 
fprintf('  6 Create Response Histogram & Find Maximum Response\n'); 
fprintf('  7 Analyze SumFile\n'); 
fprintf('  8 Before and After Pre-Scan Analysis\n'); 
fprintf('  9 Analyze Peak Timing Info\n'); 

  
fprintf('\n'); 
choice=' '; 
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while choice==' ' 
    choice=input('Select item> ','s'); 
    switch choice 
%__________________________________________________________________________                     
        case '0' %Quit 
            break 
%__________________________________________________________________________                         
        case '1';  %Plot raw spectra of Fast Photodiode & PMT Traces 
            wdir=uigetdir('','Select directory for raw pmt files'); 
            file=uigetfile([wdir,'\*.pmt'],'Select .pmt file'); 
            PMT_plotRawData(wdir,file);%plot each event from .pmt file 
%__________________________________________________________________________                         
        case '2';  %write Summary File 
            wdir=uigetdir('','Select directory for raw data files'); 
            PMT_MakeSumFile(wdir); 
%__________________________________________________________________________                         
        case '3';  %Analyze sumfile (New) 
            wdir=uigetdir('','Select directory for sumfile'); 
            file1=uigetfile([wdir,'\*.csv'],'Select sumfile'); 
            PMT_Analysis_Zero_Supressed(wdir,file1); 
%__________________________________________________________________________                         
        case '4'; %Make Rise and Fall Plots for CFD Offset 
            wdir=uigetdir('','Select directory for raw data files'); 
            PMT_MakeRisePlots(wdir)    
%__________________________________________________________________________                         
        case '5'; %Analyze Peak Timing Info 
            wdir=uigetdir('','Select directory'); 
            PMT_PeakFinder(wdir); 
%__________________________________________________________________________                         
        case '6'; %Response Histogram and Max Response 
            wdir=uigetdir('','Select directory for raw data files'); 
            PMT_MakeResponse_Histogram(wdir);  
%__________________________________________________________________________                         
        case '7'; %SumFile Analysis 
            wdir=uigetdir('','Select directory for SumFile'); 
            file1=uigetfile([wdir,'\*.csv'],'Select sumfile'); 
            PMT_Analysis(wdir,file1)   
%__________________________________________________________________________                         
        case '8';  %Before and After Pre-Scan Info 
            wdir=uigetdir('','Select directory for pmtdata'); 
            file1=uigetfile([wdir,'\*.pmt'],'Select data point'); 
            PMT_PreScan(wdir,file1)               
%__________________________________________________________________________                         
        case '9';  %Analyze Peak Timing Info 
            wdir=uigetdir('','Select directory for PMT Timing Info File'); 
            file1=uigetfile([wdir,'\*.csv'],'Select PMT Timing sumfile'); 
            Peak_Analysis(wdir,file1) 
%__________________________________________________________________________                         

  
        otherwise 
            choice=' '; 
    end 
end 

     
fclose('all'); 
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function [offset]=FPD_Offset(data) 

  
latetime = 1000; %Choosen by reviewing typical events (very safe margin) 
offset = mean(data(latetime:end)); 

 

 

 

 
function [area,start,stop,maxpeak]=FPD_PeakSub(smoothdata) 

  
global fpdoffset fpdcfd  

  
[maxpeak,peakch]=max(smoothdata); 
full=length(smoothdata); 

  
while peakch > full-1000 %the peak can't be in last 1000 channels. If it is, 
    smoothdata(peakch:full)=0; %zero it out and look for another peak 
    [maxpeak,peakch]=max(smoothdata); 
end 

  
%Insert peak time offset 
timedelay=fpdoffset;%Time Delay in Number of Channels 
delay=zeros(timedelay,1);%Zeros because already subtracted offset 
delayed=[delay.',smoothdata.'];%Add Time Delay at start of wave trace 

  
%Create inverted delayed peak 
invert_delayed=-1.*delayed; 

  
%Create Attenuated peak 
atten = [fpdcfd.*(smoothdata.'),(delay.')]; 

  
data = invert_delayed + atten; %final data set for calculating timing 

  
start=500; %arbitrary start value for zero crossing point 
for i = (peakch + timedelay):-1:10 

     
    if data(i) < 0; %zero crossing 

         
        start=i;%Chanel of Zero Crossing 
        break; 

         
    end 

     
end 

  
stop=900;%Arbitrary end point in timing 
for i = peakch:+1:full 

     
    if smoothdata(i)< fpdcfd*maxpeak;%Arbitrary level for end time 

         
        stop=i; 
        break; 
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    end 

     
end 

  

  
%Subtracting back time delay added to pulse at start of pulse analysis 
start = start - timedelay;%This subtraction should be the same for all 
area=sum(smoothdata(start:stop)); %total area 

  
end 

 

 

 

 

 
function [sum,rise,fall,start,stop,peakch]=FPD_RiseTime(smoothdata) 

  
global fpdcfd 

  
[peakmax,peakch]=max(smoothdata); 
full=length(smoothdata); 

  
while peakch>full-1000 %the peak can't be in the last 1000 channels so if it 

is, 
    smoothdata(peakch:full)=0; %it zeros it out and looks for another peak 
    [peakmax,peakch]=max(smoothdata); 
end 

  

  
start=300; %arbitrary start channel 
for i=peakch:-1:5 %Finding the start time of the rising edge 

     
    if smoothdata(i) < fpdcfd*peakmax; 

         
        start=i; 
        break; 

         
    end 

     
end 

  
rise=peakch-start; 

  
stop=1500; %arbitrary stop channel 
    for i=peakch:+1:full 

         
        if smoothdata(i)< fpdcfd*peakmax; 

             
            stop=i; 
            break; 

             
        end 
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    end 

     
fall=stop-peakch; 
sum = stop-start; 

 

 

 

 

 

 

 

 

 

 
function Peak_Analysis(wdir,file1) 

  
global minradius xcenter ycenter 

  
%load data file 
filename=[wdir,'/',file1]; 
fprintf(1,'\n Analyzing %s\n',filename); 
data=load(filename);%load the .sum file chosen earlier 

  
%Arr = 

[x,y,tstart,tstop,dt,atstart,atstop,adt,adiff,ax,ay,vtstart,vtstop,vdt,vdiff,

vx,vy]; 

  
atstart=[];atstop=[];adiff=[]; 
adt=[];ax=[];ay=[]; 

  
vtstart=[];vtstop=[];vdiff=[]; 
vdt=[];vx=[];vy=[]; 

  
i=1; 
while data(i,10)~= -1 
    distance = sqrt((data(i,10)-xcenter)^2 + (data(i,11)-ycenter)^2); 
    if distance > 12 && distance <35 
        %loading the averages at each spatial location saved 
        atstart =[atstart;data(i,6)]; 
        atstop = [atstop;data(i,7)]; 

         
        adt = [adt;data(i,8)]; 
        adiff = [adiff;data(i,9)]; 

         
        ax = [ax;data(i,10)]; 
        ay = [ay;data(i,11)]; 

         
        %loading the variances at each spatial location saved 
        vtstart =[vtstart;data(i,12)]; 
        vtstop = [vtstop;data(i,13)]; 
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        vdt = [vdt;data(i,14)]; 
        vdiff = [vdiff;data(i,15)]; 

         
        vx = [vx;data(i,16)]; 
        vy = [vy;data(i,17)]; 
    end 
    i=i+1; 
end 

  
%Number of Spatial Locations NOT thrown out 
num = length(ax); 

  
ax = ax - xcenter; 
ay = ay - ycenter; 

  
%triagulate grid points (x,y) 
tri = delaunay(ax,ay); 

  
%Plot Saved Location Points 
plot(ax,ay,'*r') 
xlabel('x (mm)') 
ylabel('y (mm)') 
s=sprintf('Saved DOUBLE ONLY Peak Points; Spatial Locations = %g ',num); 
title(s) 
axis equal 
pause 

  

  
%Plot of Pre-Bump Peak Times 
hist(atstart) 
xlabel('Mean Pre-Bump Peak Location (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Pre-Bump Peak Location; Spatial Locations = %g 

',num); 
title(s) 
pause 

  
hist(vtstart) 
xlabel('Variance of Pre-Bump Peak Location (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of Pre-Bump Peak Location; Spatial Locations 

= %g ',num); 
title(s) 
pause 

  
%Plot of Peak Channel Location 
hist(atstop) 
xlabel('Mean Peak Channel Location (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Peak Channel Location; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vtstop) 
xlabel('Variance of Peak Channel Location (100 ps Channels)') 
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ylabel('Count') 
s=sprintf('Histogram of Variance of Peak Channel Location; Spatial Locations 

= %g ',num); 
title(s) 
pause 

  

  
%Scatter Plot of Transit-Time Variance vs Transit-Time 
plot(adt,vdt,'*') 
xlabel('Mean Transit-Time (100 ps Channels)') 
ylabel('Transit-Time Variance') 
s=sprintf('Scatter Plot of Transit-Time Variance vs Transit-Time; Total 

Points = %g ',num); 
title(s) 
pause 

  
%Distribution of Transit Times 
hist(adt) 
xlabel('Mean Transit-Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Distribution of Transit-Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
%Distribution of Peak Time Difference 
hist(adiff) 
xlabel('Mean Peak Time Difference (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Distribution of Peak Time Difference; Spatial Locations = %g 

',num); 
title(s) 
pause 

  
hist(vdiff) 
xlabel('Variance of Peak Time Difference (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Distribution of Variance of Peak Time Difference; Spatial 

Locations = %g ',num); 
title(s) 
pause 

  

  
%Plot Transit Time 
dtnano = adt .* (.1); %nanosecond scale 
hh=figure(1); 
set(hh,'Units','normalized'); 
set(hh,'OuterPosition',[.3 0 .6 .9]) 
trisurf(tri, ax, ay, dtnano,-dtnano)%(-dtnano is to make red fast and blue 

slow) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('dt (ns)') 
s=sprintf('Mean Transit Time; Spatial Locations = %g ',num); 
title(s) 
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shading interp 
colorbar EastOutside 

  

  
%Plot Peak Differnce 
h2=figure(2); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .6 .9]) 
trisurf(tri, ax, ay, adiff) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Mean Peak Time Difference (100 ps Channels)') 
t=sprintf('Peak Time Difference; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  

  
%Plot Pre-bump Start Channel 
h2=figure(3); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .6 .9]) 
trisurf(tri, ax, ay, atstart) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Mean Pre-Bump Peak Location (100 ps Channels)') 
t=sprintf('Pre-Bump Peak Location; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
pause 

  
end 

 

 

 

 

 

 

 
function PMT_Analysis(wdir,file1) 

  
global minradius xcenter ycenter 

  
%load data file 
filename=[wdir,'/',file1]; 
fprintf(1,'\n Analyzing %s\n',filename); 
data=load(filename);%load the .sum file chosen earlier 

  
% Arr = 
%[x,y,tstart,tstop,tarea,tpeak,start,stop,lstop,area,peak,dt,timestep,larea, 
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% atstart,atstop,atarea,atpeak,astart,astop,alstop,aarea,apeak,adt,alarea, 
% 

ax,ay,vtstart,vtstop,vtarea,vtpeak,vstart,vstop,vlstop,varea,vpeak,vdt,vlarea

,vx,vy]; 

  
%full illumination = sum of all individual transit times within useful 

diameter 
alldt = []; 

  
%Overall Averages 
atstart=[];atstop=[];atarea=[];atpeak=[];astart=[];astop=[];alstop=[];aarea=[

];apeak=[]; 
adt=[];alarea=[];ax=[];ay=[]; 

  
%Overall Variances 
vtstart=[];vtstop=[];vtarea=[];vtpeak=[];vstart=[];vstop=[];vlstop=[];varea=[

];vpeak=[]; 
vdt=[];vlarea=[];vx=[];vy=[]; 

  
xtstart=[];xtstop=[];xtarea=[];xtpeak=[];xstart=[];xstop=[];xlstop=[];xarea=[

];xpeak=[]; 
xdt=[];xlarea=[];xx=[];xx=[]; 

  
ytstart=[];ytstop=[];ytarea=[];ytpeak=[];ystart=[];ystop=[];ylstop=[];yarea=[

];ypeak=[]; 
ydt=[];ylarea=[];yy=[];yy=[]; 

  
index=1; 
while index <= length(data) 

     
    if sqrt((data(index,1)-xcenter)^2 + (data(index,2)-ycenter)^2) <= 

minradius 

         
        alldt = [alldt;data(index,12)]; 

         
    end 
    index = index + 1; 
end 

  
i=1; 
while data(i,26)~= -1 
    if sqrt((data(i,26)-xcenter)^2 + (data(i,27)-ycenter)^2)<=minradius 
        %loading the averages at each spatial location saved 
        atstart =[atstart;data(i,15)]; 
        atstop = [atstop;data(i,16)]; 
        atarea = [atarea;data(i,17)]; 
        atpeak = [atpeak;data(i,18)]; 

         
        astart = [astart;data(i,19)]; 
        astop = [astop;data(i,20)]; 
        alstop = [alstop;data(i,21)]; 
        aarea = [aarea;data(i,22)]; 
        apeak = [apeak;data(i,23)]; 
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        adt = [adt;data(i,24)]; 
        alarea = [alarea;data(i,25)]; 

         
        ax = [ax;data(i,26)]; 
        ay = [ay;data(i,27)]; 

         
        %loading the variances at each spatial location saved 
        vtstart = [vtstart;data(i,28)]; 
        vtstop = [vtstop;data(i,29)]; 
        vtarea = [vtarea;data(i,30)]; 
        vtpeak = [vtpeak;data(i,31)]; 

         
        vstart = [vstart;data(i,32)]; 
        vstop = [vstop;data(i,33)]; 
        vlstop = [vlstop;data(i,34)]; 
        varea = [varea;data(i,35)]; 
        vpeak = [vpeak;data(i,36)]; 

         
        vdt = [vdt;data(i,37)]; 
        vlarea = [vlarea;data(i,38)]; 

         
        vx = [vx;data(i,39)]; 
        vy = [vy;data(i,40)]; 

         
        %load x-axis information 
        if (data(i,27)-ycenter) == 0 

             
            xtstart =[xtstart;data(i,15)]; 
            xtstop = [xtstop;data(i,16)]; 
            xtarea = [xtarea;data(i,17)]; 
            xtpeak = [xtpeak;data(i,18)]; 

             
            xstart = [xstart;data(i,19)]; 
            xstop = [xstop;data(i,20)]; 
            xlstop = [xlstop;data(i,21)]; 
            xarea = [xarea;data(i,22)]; 
            xpeak = [xpeak;data(i,23)]; 

             
            xdt = [xdt;data(i,24)]; 
            xlarea = [xlarea;data(i,25)]; 

             
            xx = [xx;data(i,26)]; 

             
        end 

         
        %load y-axis information 
        if (data(i,26)-xcenter) == 0 

             
            ytstart =[ytstart;data(i,15)]; 
            ytstop = [ytstop;data(i,16)]; 
            ytarea = [ytarea;data(i,17)]; 
            ytpeak = [ytpeak;data(i,18)]; 

             
            ystart = [ystart;data(i,19)]; 
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            ystop = [ystop;data(i,20)]; 
            ylstop = [ylstop;data(i,21)]; 
            yarea = [yarea;data(i,22)]; 
            ypeak = [ypeak;data(i,23)]; 

             
            ydt = [ydt;data(i,24)]; 
            ylarea = [ylarea;data(i,25)]; 

             
            yy = [yy;data(i,27)]; 

             
        end 

         
    else 
        %loading the zeros at all other spatial locations saved 

         
        atarea = [atarea;0.0000001]; 
        atpeak = [atpeak;0.0000001]; 

         

         
        aarea = [aarea;0]; 
        apeak = [apeak;0]; 

         
        adt = [adt;0]; 
        alarea = [alarea;0]; 

         
        ax = [ax;data(i,26)]; 
        ay = [ay;data(i,27)]; 

         

         

         
        vtarea = [vtarea;0]; 
        vtpeak = [vtpeak;0]; 

         

         
        varea = [varea;0]; 
        vpeak = [vpeak;0]; 

         
        vdt = [vdt;0]; 
        vlarea = [vlarea;0]; 

         
        vx = [vx;data(i,39)]; 
        vy = [vy;data(i,40)]; 

         
        %load x-axis information 
        if (data(i,27)-ycenter) == 0 

             
            xtstart =[xtstart;0]; 
            xtstop = [xtstop;0]; 
            xtarea = [xtarea;0.0000001]; 
            xtpeak = [xtpeak;0.0000001]; 

             
            xstart = [xstart;0]; 
            xstop = [xstop;0]; 
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            xlstop = [xlstop;0]; 
            xarea = [xarea;0]; 
            xpeak = [xpeak;0]; 

             
            xdt = [xdt;0]; 
            xlarea = [xlarea;0]; 

             
            xx = [xx;data(i,26)]; 

             
        end 

         
        %load y-axis information 
        if (data(i,26)-xcenter) == 0 

             
            ytstart =[ytstart;0]; 
            ytstop = [ytstop;0]; 
            ytarea = [ytarea;0.0000001]; 
            ytpeak = [ytpeak;0.0000001]; 

             
            ystart = [ystart;0]; 
            ystop = [ystop;0]; 
            ylstop = [ylstop;0]; 
            yarea = [yarea;0]; 
            ypeak = [ypeak;0]; 

             
            ydt = [ydt;0]; 
            ylarea = [ylarea;0]; 

             
            yy = [yy;data(i,27)]; 

             
        end 

         
    end 
    i=i+1; 
end 

  

  
%Number of Spatial Locations Saved 
num = length(ax); 

  
%Area Response 
relativearea = aarea./atarea; 
relativearea = relativearea./max(relativearea); 
lrelativearea = alarea./atarea; 
relpeak = apeak./atpeak; 
relpeak = relpeak./max(relpeak); 

  
%triagulate grid points (x,y) 
ax = ax-xcenter; 
ay = ay-ycenter; 
tri = delaunay(ax,ay); 

  
%Plot Saved Location Points 
hh=figure; 
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set(hh,'Units','normalized'); 
set(hh,'OuterPosition',[.3 0 .2 .35]) 
plot(ax,ay,'*r') 
xlabel('x (mm)') 
ylabel('y (mm)') 
s=sprintf('Saved Points; Spatial Locations = %g ',num); 
title(s) 
axis equal 
pause 

  

  
%Plot of Trigger Start Times 
hist(atstart) 
xlabel('Trigger Start Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Trigger Start Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vtstart) 
xlabel('Variance of Trigger Start Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of Trigger Start Times; Spatial Locations = 

%g ',num); 
title(s) 
pause 

  
%Plot of Trigger Stop Times 
hist(atstop) 
xlabel('Trigger Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Trigger Stop Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vtstop) 
xlabel('Variance of Trigger Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of Trigger Stop Times; Spatial Locations = 

%g ',num); 
title(s) 
pause 

  
%Plot of Start Times 
hist(astart) 
xlabel('PMT Start Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of PMT Start Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vstart) 
xlabel('Variance of PMT Start Time (100 ps Channels)') 
ylabel('Count') 
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s=sprintf('Histogram of Variance of PMT Start Times; Spatial Locations = %g 

',num); 
title(s) 
pause 

  
%Plot of Stop Times 
hist(astop) 
xlabel('PMT Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of PMT Stop Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vstop) 
xlabel('Variance of PMT Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of PMT Stop Times; Spatial Locations = %g 

',num); 
title(s) 
pause 

  
%Plot of Late Stop Times 
hist(alstop) 
xlabel('PMT Late Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Late PMT Stop Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vlstop) 
xlabel('Variance of PMT Late Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of Late PMT Stop Times; Spatial Locations = 

%g ',num); 
title(s) 
pause 

  
%Scatter Plot of Transit-Time Variance vs Transit-Time 
plot(adt,vdt,'*') 
xlabel('Transit-Time (100 ps Channels)') 
ylabel('Transit-Time Variance') 
s=sprintf('Scatter Plot of Transit-Time Variance vs Transit-Time; Total 

Points = %g ',num); 
title(s) 
pause 

  
%Distribution of Transit Times 
dtnano = adt .* (.1); %nanosecond scale 
hist(dtnano) 
xlabel('Transit-Time (ns)') 
ylabel('Count') 
s=sprintf('Distribution of Transit-Times; Spatial Locations = %g ',num); 
title(s) 
pause 
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%Plot Transit Time 
dtnano = adt .* (.1); %nanosecond scale 
hh=figure(1); 
set(hh,'Units','normalized'); 
set(hh,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, dtnano,-dtnano)%(-dtnano is to make red fast and blue 

slow) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Transit-Time (ns)') 
s=sprintf('Transit Time(Average); Spatial Locations = %g ',num); 
title(s) 
shading interp 
colorbar EastOutside 
%colorbar('YTickLabel',{'Very Slow','Slow','Average','Fast','VeryFast'}) 

  

  
%Plot Relative Area Response 
h2=figure(2); 
set(h2,'Units','normalized'); 
set(hh,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, relativearea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Normalized Area Ratio') 
t=sprintf('Normalized Relative Area(PMT Area/FPD Area); Spatial Locations = 

%g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Area (Late) Response 
h3=figure(3); 
set(h3,'Units','normalized'); 
set(h3,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, lrelativearea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Area Ratio (PMT Area/FPD Area)') 
t=sprintf('Relative Area(Late); Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Area Response 
aarea = aarea./max(aarea); 
h2=figure(4); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, aarea) 
axis vis3d 
xlabel('x (mm)') 
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ylabel('y (mm)') 
zlabel('Normalized Area') 
t=sprintf('Normalized PMT Area; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Late Area Response 
h2=figure(9); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, alarea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Area') 
t=sprintf('Late PMT Area; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Trigger Area Response 
h2=figure(5); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, atarea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Area') 
t=sprintf('Trigger Area; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Trigger Peak Response 
h2=figure(6); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, atpeak) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('V') 
t=sprintf('Trigger Peaks; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot PMT Peak Response 
h2=figure(7); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, apeak) 
axis vis3d 
xlabel('x (mm)') 
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ylabel('y (mm)') 
zlabel('V') 
t=sprintf('PMT Peak Response; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Relative PMT Peak Response 
h2=figure(8); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, relpeak) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Normalized Peak Ratio (PMT Peak/FPD Peak)') 
t=sprintf('Normalized Relative PMT Peaks (PMT Peak/FPD Peak); Spatial 

Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Axis Timing Uniformity 

  
[xx,index1] = sort(xx); 
xdt = xdt(index1,:).*.1;%sort and covert to ns; 
xx = xx-xcenter;%centering values 

  
h2=figure(9); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .6 .9]) 
plot(xx,xdt,'*-') 
xlabel('X Position (mm)') 
ylabel('Time (ns)') 
t=sprintf('X-Axis Transit-Time Uniformity'); 
title(t) 

  
[yy,index2] = sort(yy); 
ydt = ydt(index2,:).*.1;%sort and covert to ns; 
yy = yy-ycenter; 

  
%Plot Axis Timing Uniformity 
h2=figure(10); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .6 .9]) 
plot(yy,ydt,'*-') 
xlabel('Y Position (mm)') 
ylabel('Time (ns)') 
t=sprintf('Y-Axis Transit-Time Uniformity'); 
title(t) 

  
%Plot Axis Area Uniformity 
xrelarea = xarea./xtarea; 
xarea = xarea(index1,:); 
xarea = xarea./max(xarea); 
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h2=figure(11); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(xx,xarea,'*-') 
xlabel('X Position (mm)') 
ylabel('Normalized Area') 
t=sprintf('X-Axis PMT Area Response Uniformity'); 
title(t) 

  
yrelarea = yarea./ytarea; 
yarea = yarea(index2,:); 
yarea = yarea./max(yarea); 

  
%Plot Axis Area Uniformity 
h2=figure(12); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(yy,yarea,'*-') 
xlabel('Y Position (mm)') 
ylabel('Normalized Area') 
t=sprintf('Y-Axis PMT Area Response Uniformity'); 
title(t) 

  

  
%Plot Axis Peak Uniformity 

  
xpeak = xpeak(index1,:); 

  
h2=figure(13); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(xx,xpeak,'*-') 
xlabel('X Position (mm)') 
ylabel('V') 
t=sprintf('X-Axis PMT Peak Response Uniformity'); 
title(t) 

  
ypeak = ypeak(index2,:); 

  
%Plot Axis Peak Uniformity 
h2=figure(14); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(yy,ypeak,'*-') 
xlabel('Y Position (mm)') 
ylabel('V') 
t=sprintf('Y-Axis PMT Peak Response Uniformity'); 
title(t) 

  

  
%Plot Axis Relative Area Uniformity 
xrelarea = xrelarea(index1,:); 
xrelarea = xrelarea./max(xrelarea); 
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h2=figure(15); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(xx,xrelarea,'*-') 
xlabel('X Position (mm)') 
ylabel('Normalized Relative Area (PMT/FPD)') 
t=sprintf('X-Axis Relative Area Uniformity'); 
title(t) 

  
%Plot Axis Relative Area Uniformity 
yrelarea = yrelarea(index2,:); 
yrelarea = yrelarea./max(yrelarea); 

  
h2=figure(16); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(yy,yrelarea,'*-') 
xlabel('Y Position (mm)') 
ylabel('Normalized Relative Area (PMT/FPD)') 
t=sprintf('Y-Axis Relative Area Uniformity '); 
title(t) 

  

  
%Plot Full Ilumination 
h2=figure(17); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
hist(alldt,50) 
xlabel('Transit-Time (100 ps Channels)') 
ylabel('Count') 
t=sprintf('Transit-Time Spread (TTS)'); 
title(t) 

  
pause 

  
end 

 

 

 

 

 

 
function PMT_Analysis_Zero_Supressed(wdir,file1) 

  
global minradius xcenter ycenter 

  
%load data file 
filename=[wdir,'/',file1]; 
fprintf(1,'\n Analyzing %s\n',filename); 
data=load(filename);%load the .sum file chosen earlier 

  
% Arr = 
%[x,y,tstart,tstop,tarea,tpeak,start,stop,lstop,area,peak,dt,timestep,larea, 
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% atstart,atstop,atarea,atpeak,astart,astop,alstop,aarea,apeak,adt,alarea, 
% 

ax,ay,vtstart,vtstop,vtarea,vtpeak,vstart,vstop,vlstop,varea,vpeak,vdt,vlarea

,vx,vy]; 

  
%full illumination = sum of all individual transit times within useful 

diameter 
alldt = []; 

  
%Overall Averages 
atstart=[];atstop=[];atarea=[];atpeak=[];astart=[];astop=[];alstop=[];aarea=[

];apeak=[]; 
adt=[];alarea=[];ax=[];ay=[]; 

  
%Overall Variances 
vtstart=[];vtstop=[];vtarea=[];vtpeak=[];vstart=[];vstop=[];vlstop=[];varea=[

];vpeak=[]; 
vdt=[];vlarea=[];vx=[];vy=[]; 

  
xtstart=[];xtstop=[];xtarea=[];xtpeak=[];xstart=[];xstop=[];xlstop=[];xarea=[

];xpeak=[]; 
xdt=[];xlarea=[];xx=[];xx=[]; 

  
ytstart=[];ytstop=[];ytarea=[];ytpeak=[];ystart=[];ystop=[];ylstop=[];yarea=[

];ypeak=[]; 
ydt=[];ylarea=[];yy=[];yy=[]; 

  
index=1; 
while index <= length(data) 

     
    if sqrt((data(index,1)-xcenter)^2 + (data(index,2)-ycenter)^2) <= 

minradius 

     
       alldt = [alldt;data(index,12)]; 

        
    end 
    index = index + 1; 
end 

  
i=1; 
while data(i,26)~= -1 
    if sqrt((data(i,26)-xcenter)^2 + (data(i,27)-ycenter)^2)<=minradius 
        %loading the averages at each spatial location saved 
        atstart =[atstart;data(i,15)]; 
        atstop = [atstop;data(i,16)]; 
        atarea = [atarea;data(i,17)]; 
        atpeak = [atpeak;data(i,18)]; 

         
        astart = [astart;data(i,19)]; 
        astop = [astop;data(i,20)]; 
        alstop = [alstop;data(i,21)]; 
        aarea = [aarea;data(i,22)]; 
        apeak = [apeak;data(i,23)]; 
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        adt = [adt;data(i,24)]; 
        alarea = [alarea;data(i,25)]; 

         
        ax = [ax;data(i,26)]; 
        ay = [ay;data(i,27)]; 

         
        %loading the variances at each spatial location saved 
        vtstart = [vtstart;data(i,28)]; 
        vtstop = [vtstop;data(i,29)]; 
        vtarea = [vtarea;data(i,30)]; 
        vtpeak = [vtpeak;data(i,31)]; 

         
        vstart = [vstart;data(i,32)]; 
        vstop = [vstop;data(i,33)]; 
        vlstop = [vlstop;data(i,34)]; 
        varea = [varea;data(i,35)]; 
        vpeak = [vpeak;data(i,36)]; 

         
        vdt = [vdt;data(i,37)]; 
        vlarea = [vlarea;data(i,38)]; 

         
        vx = [vx;data(i,39)]; 
        vy = [vy;data(i,40)]; 

         
        %load x-axis information 
        if (data(i,27)-ycenter) == 0 

             
            xtstart =[xtstart;data(i,15)]; 
            xtstop = [xtstop;data(i,16)]; 
            xtarea = [xtarea;data(i,17)]; 
            xtpeak = [xtpeak;data(i,18)]; 

             
            xstart = [xstart;data(i,19)]; 
            xstop = [xstop;data(i,20)]; 
            xlstop = [xlstop;data(i,21)]; 
            xarea = [xarea;data(i,22)]; 
            xpeak = [xpeak;data(i,23)]; 

             
            xdt = [xdt;data(i,24)]; 
            xlarea = [xlarea;data(i,25)]; 

             
            xx = [xx;data(i,26)]; 

             
        end 

         
        %load y-axis information 
        if (data(i,26)-xcenter) == 0 

             
            ytstart =[ytstart;data(i,15)]; 
            ytstop = [ytstop;data(i,16)]; 
            ytarea = [ytarea;data(i,17)]; 
            ytpeak = [ytpeak;data(i,18)]; 

             
            ystart = [ystart;data(i,19)]; 
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            ystop = [ystop;data(i,20)]; 
            ylstop = [ylstop;data(i,21)]; 
            yarea = [yarea;data(i,22)]; 
            ypeak = [ypeak;data(i,23)]; 

             
            ydt = [ydt;data(i,24)]; 
            ylarea = [ylarea;data(i,25)]; 

             
            yy = [yy;data(i,27)]; 

             
        end 

         
    end 
    i=i+1; 
end 

  
%Number of Spatial Locations NOT thrown out within useful diameter 
num = length(ax); 

  
%Area Response 
relativearea = aarea./atarea; 
relativearea = relativearea./max(relativearea); 
lrelativearea = alarea./atarea; 
relpeak = apeak./atpeak; 
relpeak = relpeak./max(relpeak); 

  
%triagulate grid points (x,y) 
ax = ax-xcenter; 
ay = ay-ycenter; 
tri = delaunay(ax,ay); 

  
%Plot Saved Location Points 
hh=figure; 
set(hh,'Units','inches'); 
set(hh,'OuterPosition',[2 2 4 4]) 
plot(ax,ay,'*r') 
xlabel('x (mm)') 
ylabel('y (mm)') 
s=sprintf('Saved Points within Minimum Useful Diameter; Spatial Locations = 

%g ',num); 
title(s) 
axis equal 
pause 

  

  
%Plot of Trigger Start Times 
hist(atstart) 
xlabel('Trigger Start Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Trigger Start Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vtstart) 
xlabel('Variance of Trigger Start Time (100 ps Channels)') 
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ylabel('Count') 
s=sprintf('Histogram of Variance of Trigger Start Times; Spatial Locations = 

%g ',num); 
title(s) 
pause 

  
%Plot of Trigger Stop Times 
hist(atstop) 
xlabel('Trigger Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Trigger Stop Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vtstop) 
xlabel('Variance of Trigger Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of Trigger Stop Times; Spatial Locations = 

%g ',num); 
title(s) 
pause 

  
%Plot of Start Times 
hist(astart) 
xlabel('PMT Start Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of PMT Start Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vstart) 
xlabel('Variance of PMT Start Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of PMT Start Times; Spatial Locations = %g 

',num); 
title(s) 
pause 

  
%Plot of Stop Times 
hist(astop) 
xlabel('PMT Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of PMT Stop Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vstop) 
xlabel('Variance of PMT Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of PMT Stop Times; Spatial Locations = %g 

',num); 
title(s) 
pause 

  
%Plot of Late Stop Times 
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hist(alstop) 
xlabel('PMT Late Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Late PMT Stop Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  
hist(vlstop) 
xlabel('Variance of PMT Late Stop Time (100 ps Channels)') 
ylabel('Count') 
s=sprintf('Histogram of Variance of Late PMT Stop Times; Spatial Locations = 

%g ',num); 
title(s) 
pause 

  
%Scatter Plot of Transit-Time Variance vs Transit-Time 
plot(adt,vdt,'*') 
xlabel('Transit-Time (100 ps Channels)') 
ylabel('Transit-Time Variance') 
s=sprintf('Scatter Plot of Transit-Time Variance vs Transit-Time; Total 

Points = %g ',num); 
title(s) 
pause 

  
%Distribution of Transit Times 
dtnano = adt .* (.1); %nanosecond scale 
hist(dtnano,30) 
xlabel('Transit-Time (ns)') 
ylabel('Count') 
s=sprintf('Distribution of Transit-Times; Spatial Locations = %g ',num); 
title(s) 
pause 

  

  
%Plot Transit Time 
dtnano = adt .* (.1); %nanosecond scale 
hh=figure(1); 
set(hh,'Units','normalized'); 
set(hh,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, dtnano,-dtnano)%(-dtnano is to make red fast and blue 

slow) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Transit-Time (ns)') 
s=sprintf('Transit Time(Average); Spatial Locations = %g ',num); 
title(s) 
shading interp 
colorbar EastOutside 
%colorbar('YTickLabel',{'Very Slow','Slow','Average','Fast','VeryFast'}) 

  

  
%Plot Relative Area Response 
h2=figure(2); 
set(h2,'Units','normalized'); 
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set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, relativearea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Normalized Area Ratio') 
t=sprintf('Normalized Relative Area(PMT Area/FPD Area); Spatial Locations = 

%g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Area (Late) Response 
h3=figure(3); 
set(h3,'Units','normalized'); 
set(h3,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, lrelativearea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Area Ratio (PMT Area/FPD Area)') 
t=sprintf('Relative Area(Late); Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Area Response 
aarea = aarea./max(aarea); 
h2=figure(4); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, aarea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Normalized Area') 
t=sprintf('Normalized PMT Area; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Late Area Response 
h2=figure(9); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, alarea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Area') 
t=sprintf('Late PMT Area; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Trigger Area Response 
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h2=figure(5); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, atarea) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Area') 
t=sprintf('Trigger Area; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Trigger Peak Response 
h2=figure(6); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, atpeak) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('(V)') 
t=sprintf('Trigger Peaks; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot PMT Peak Response 
h2=figure(7); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, apeak) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('(V)') 
t=sprintf('PMT Peaks; Spatial Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 

  
%Plot Relative PMT Peak Response 
h2=figure(8); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .35]) 
trisurf(tri, ax, ay, relpeak) 
axis vis3d 
xlabel('x (mm)') 
ylabel('y (mm)') 
zlabel('Normalized Peak Ratio (PMT Peak/FPD Peak)') 
t=sprintf('Normalized Relative PMT Peaks (PMT Peak/FPD Peak); Spatial 

Locations = %g ',num); 
title(t) 
shading interp 
colorbar EastOutside 
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%Plot Axis Timing Uniformity 

  
[xx,index1] = sort(xx); 
xdt = xdt(index1,:).*.1;%sort and covert to ns; 
xx = xx-xcenter;%centering values 

  
h2=figure(9); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(xx,xdt,'*-') 
xlabel('X Position (mm)') 
ylabel('Time (ns)') 
t=sprintf('X-Axis Transit-Time Uniformity'); 
title(t) 

  
[yy,index2] = sort(yy); 
ydt = ydt(index2,:).*.1;%sort and covert to ns; 
yy = yy-ycenter; 

  
%Plot Axis Timing Uniformity 
h2=figure(10); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(yy,ydt,'*-') 
xlabel('Y Position (mm)') 
ylabel('Time (ns)') 
t=sprintf('Y-Axis Transit-Time Uniformity'); 
title(t) 

  
%Plot Axis Area Uniformity 
xrelarea = xarea./xtarea; 
xarea = xarea(index1,:); 
xarea = xarea./max(xarea); 

  
h2=figure(11); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(xx,xarea,'*-') 
xlabel('X Position (mm)') 
ylabel('Normalized Area') 
t=sprintf('X-Axis PMT Area Response Uniformity'); 
title(t) 

  
yrelarea = yarea./ytarea; 
yarea = yarea(index2,:); 
yarea = yarea./max(yarea); 

  
%Plot Axis Area Uniformity 
h2=figure(12); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(yy,yarea,'*-') 
xlabel('Y Position (mm)') 
ylabel('Normalized Area') 
t=sprintf('Y-Axis PMT Area Response Uniformity'); 
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title(t) 

  

  
%Plot Axis Peak Uniformity 

  
xpeak = xpeak(index1,:); 

  
h2=figure(13); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(xx,xpeak,'*-') 
xlabel('X Position (mm)') 
ylabel('V') 
t=sprintf('X-Axis PMT Peak Response Uniformity'); 
title(t) 

  
ypeak = ypeak(index2,:); 

  
%Plot Axis Peak Uniformity 
h2=figure(14); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(yy,ypeak,'*-') 
xlabel('Y Position (mm)') 
ylabel('V') 
t=sprintf('Y-Axis PMT Peak Response Uniformity'); 
title(t) 

  

  
%Plot Axis Relative Area Uniformity 
xrelarea = xrelarea(index1,:); 
xrelarea = xrelarea./max(xrelarea); 

  
h2=figure(15); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(xx,xrelarea,'*-') 
xlabel('X Position (mm)') 
ylabel('Normalized Relative Area (PMT/FPD)') 
t=sprintf('X-Axis Relative Area Uniformity'); 
title(t) 

  
%Plot Axis Relative Area Uniformity 
yrelarea = yrelarea(index2,:); 
yrelarea = yrelarea./max(yrelarea); 

  
h2=figure(16); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
plot(yy,yrelarea,'*-') 
xlabel('Y Position (mm)') 
ylabel('Normalized Relative Area (PMT/FPD)') 
t=sprintf('Y-Axis Relative Area Uniformity '); 
title(t) 
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%Plot Full Ilumination 
h2=figure(17); 
set(h2,'Units','normalized'); 
set(h2,'OuterPosition',[.3 0 .2 .3]) 
hist(alldt,50) 
xlabel('Transit-Time (100 ps Channels)') 
ylabel('Count') 
t=sprintf('Transit-Time Spread (TTS)'); 
title(t) 

  
pause 

  
end 

 

 

 

 
function PMT_MakeResponse_Histogram(wdir) 

  
global smoothingfactor 

  

  
savename='Response';%name of save file 
wdir2=dir(wdir); 
numberfiles=length(wdir2)-2;%two hidden unecessary files in every folder 

  
%set arrays and response variables 
maxrespeak=[];maxrelpeak=[];maxnoise=[];noiseratio=[];MAX=1;xmax=0;ymax=0; 
trigpeak=[]; 

  
%loop over each .pmt file and make a rise file for each one 
fileindex=0; 
while fileindex < numberfiles 
    fileindex=fileindex+1; 

     
    %find the next file and load it 
    file=wdir2(fileindex+2).name; 
    if ~strcmp(file(end-2:end),'pmt') 
        continue; 
    end 
    filename=[wdir,'/',file]; 
    fprintf(1,'Analyzing %s\n',filename); 
    data=load(filename);%load the .pmt file chosen earlier 

     
    %number of data points per trace 
    [numtraces,~] = size(data); 

     
    %create temporary bins 
    maxrespeak_1 = []; 
    maxrelpeak_1 = []; 
    noiseratio_1 = []; 
    maxnoise_1 = []; 
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    trigpeak_1 = []; 

     
    event = 0; % comes in pairs of traces 
    while event < numtraces  

         
        event=event+2;   
        pmt=data(event-1,3:end);%get pmt pulse 
        pmt = pmt*-1; %invert signal 

         
        fpd=data(event,3:end); 
        offset2=FPD_Offset(fpd); 
        fpd=fpd-offset2; 

         
        %calulates offset for the anodes (PMT) 
        offset = PMT_Offset(pmt); 
        pmt=pmt-offset;%apply the offset 

         
        %All remaining calculations done using smoothed data 
        pmt = smooth(pmt,smoothingfactor); 
        fpd = smooth(fpd,smoothingfactor); 

         
        x1=data(event-1,1);%get the grid position 
        y1=data(event,1);%get the grid position 

         
        maxpmt = max(pmt); 
        maxfpd = max(fpd); 
        rel=maxpmt/maxfpd; 

         
        noise = -min(pmt);%already subtracted offset 
        signalvsnoise = maxpmt/noise; 

         
        if maxpmt>MAX 
            MAX = maxpmt; 
            xmax = x1; 
            ymax = y1; 
        end 

         
        maxrespeak_1=[maxrespeak_1;maxpmt]; 
        maxrelpeak_1=[maxrelpeak_1;rel]; 
        noiseratio_1=[noiseratio_1;signalvsnoise]; 
        maxnoise_1=[maxnoise_1;noise]; 
        trigpeak_1=[trigpeak_1;maxfpd]; 

         
    end 

     
    maxrespeak=[maxrespeak;maxrespeak_1]; 
    maxrelpeak=[maxrelpeak;maxrelpeak_1]; 
    noiseratio=[noiseratio;noiseratio_1]; 
    maxnoise=[maxnoise;maxnoise_1]; 
    trigpeak=[trigpeak;trigpeak_1]; 

  
end 

  
of=[savename,'.response']; 
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Arr = [maxrespeak,maxrelpeak,noiseratio,maxnoise]; 
dlmwrite(of,Arr,'precision', 7); 
fclose('all'); 

  
%Make Plots 
hist(maxrespeak,30) 
title('Max PMT Response Peak Histogram') 
ylabel('Count') 
xlabel('(V)') 
pause 

  
hist(maxrelpeak,30) 
title('Max Relative Response Peak Histogram') 
ylabel('Count') 
xlabel('(Max PMT/Max FPD)') 
pause 

  
hist(noiseratio,100) 
title('Signal to Noise Ratio Histogram') 
ylabel('Count') 
xlabel('(Max PMT Response/Max PMT Noise)') 
pause 

  
hist(maxnoise,100) 
title('Maximum Noise Histogram') 
ylabel('Count') 
xlabel('(V)') 
pause 

  
hist(trigpeak,100) 
title('Trigger Peak Histogram') 
ylabel('Count') 
xlabel('(V)') 
pause 

  
fprintf('Max Response = %g at X=%g Y=%g',MAX,xmax,ymax) 

  
close all; 

 

 

 

 

 

 

 
function PMT_MakeRisePlots(wdir) 

  
global fpdthreshold pmtthreshold req datapoints smoothingfactor 

  
savename=input('Enter PMT Rise File Name - ','s'); 
wdir2=dir(wdir); 
numberfiles=length(wdir2)-2;%two hidden unecessary files in every folder 
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%Creating a summary file of slow rise events 
res = zeros(1,datapoints); 
dlmwrite('slowriseevents.csv',res); 

  
%set arrays for complete Risefile 
rise=[];fall=[];sum=[]; 
trise=[];tfall=[];tsum=[];trigch=[]; 
trigpeakch=[]; 
start =[]; 
stop =[]; 
tstop =[]; 

  
notenough=zeros(1,2)-4; 
dlmwrite('notenoughrise.csv',notenough); 

  
%loop over each .pmt file and make a rise file for each one 
fileindex=0; 
while fileindex < numberfiles 
    fileindex=fileindex+1; 

     
    %find the next file and load it 
    file=wdir2(fileindex+2).name; 
    if ~strcmp(file(end-2:end),'pmt') 
        continue; 
    end 
    filename=[wdir,'/',file]; 
    fprintf(1,'Analyzing %s\n',filename); 
    data=load(filename);%load the .pmt file chosen earlier 

     
    %number of data points per trace 
    [numtraces,~] = size(data); 

     
    %create temporary bins 
    rise_1 = []; 
    fall_1 = []; 
    sum_1 = []; 
    start_1 =[]; 
    stop_1 =[]; 
    tstop_1 =[]; 
    trise_1 = []; 
    tfall_1 = []; 
    tsum_1 = []; 
    trigch_1 = []; 
    trigpeakch_1=[]; 

     
    x1=0; 
    y1=0; 

     
    event = 0; % comes in pairs of traces 
    while event < numtraces 

         
        event=event+2; 

         
        pmt=data(event-1,3:end);%get pmt pulse 
        fpd=data(event,3:end);%photodiode trace 
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        pmt=pmt*-1;%invert the pmt pulse 

         
        %calulates offset for the anodes (PMT) 
        offset = PMT_Offset(pmt); 
        pmt=pmt-offset;%apply the offset 

         
        %calulates offset for the anodes (FPD) 
        offset = FPD_Offset(fpd); 
        fpd=fpd-offset;%apply the offset 

         
        x1=data(event-1,1);%get the grid position 
        y1=data(event,1);%get the grid position 

         
        %All remaining calculations done using smoothed data 
        pmt = smooth(pmt,smoothingfactor); 
        fpd = smooth(fpd,smoothingfactor); 

         
        %check for "bad" corner data points 
        if max(pmt)<pmtthreshold || isnan(max(pmt)) == 1 || 

max(fpd)<fpdthreshold || isnan(max(fpd))==1 
            continue; 
        end 

         

         
        [sum1,rise1,fall1,start1,stop1]=PMT_RiseTime(pmt); 
        [tsum1,trise1,tfall1,trigch1,tstop1,trigpeakch1]=FPD_RiseTime(fpd); 

         
        rise_1=[rise_1;rise1']; 
        fall_1=[fall_1;fall1']; 
        sum_1 = [sum_1;sum1']; 
        trise_1=[trise_1;trise1']; 
        tfall_1=[tfall_1;tfall1']; 
        tsum_1 = [tsum_1;tsum1']; 
        trigch_1=[trigch_1;trigch1']; 
        trigpeakch_1=[trigpeakch_1;trigpeakch1']; 
        start_1 =[start_1;start1]; 
        stop_1 =[stop_1;stop1]; 
        tstop_1 =[tstop_1;tstop1]; 

         
    end 

     
    if isempty(rise_1)==1 || length(rise_1)<req %require that at least 7/10 

events valid 
        xy = [x1,y1]; 
        dlmwrite('notenoughrise.csv',xy,'-append') 
        continue 
    end 

     
    rise=[rise;rise_1]; 
    fall=[fall;fall_1]; 
    sum = [sum;sum_1]; 
    start = [start;start_1]; 
    stop = [stop;stop_1]; 
    tstop = [tstop;tstop_1]; 
    trise=[trise;trise_1]; 
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    tfall=[tfall;tfall_1]; 
    tsum = [tsum;tsum_1]; 
    trigch = [trigch;trigch_1]; 
    trigpeakch = [trigpeakch;trigpeakch_1]; 

     
end 

  
of=[savename,'.rise']; 
Arr = [rise,fall,sum,start,stop,trise,tfall,tsum,trigch,trigpeakch,tstop]; 
dlmwrite(of,Arr,'precision', 7); 
fclose('all'); 

  
%Make Plots 
hist(rise,30) 
title('Rise Times Histogram in 100 ps Channels (PMT)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(start,30) 
title('Start Times Histogram in 100 ps Channels (PMT)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(stop,30) 
title('Stop Times Histogram in 100 ps Channels (PMT)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(fall,30) 
title('Fall Times Histogram in 100 ps Channels (PMT)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(sum,30) 
title('Sum Times Histogram in 100 ps Channels (PMT)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(trise,30) 
title('Rise Times Histogram in 100 ps Channels (FPD)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(tfall,30) 
title('Fall Times Histogram in 100 ps Channels (FPD)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 
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hist(tsum,30) 
title('Sum Times Histogram in 100 ps Channels (FPD)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(trigch,30) 
title('Trigger Channel Location Start Times Histogram (FPD)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(tstop,30) 
title('Trigger Channel Location Stop Times Histogram (FPD)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
hist(trigpeakch,30) 
title('Trigger PEAK Channel Location Times Histogram (FPD)') 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
pause 

  
close all; 

  
end 

 

 

 

 

 

 
function PMT_MakeSumFile(wdir) 

  
global fpdthreshold pmtthreshold req datapoints smoothingfactor 

  
savename=input('Enter PMT Summary Name - ','s'); 
wdir2=dir(wdir); 
numberfiles=length(wdir2)-2;%two hidden unecessary files 

  
%set arrays for complete sum file 
tstart=[];tstop=[];tarea=[];tpeak=[]; 
start=[];stop=[];lstop=[];area=[];peak=[];dt=[]; 
x=[];y=[];timestep=[];larea=[]; 

  
%averages 
atstart=[];atstop=[];atarea=[];atpeak=[]; 
astart=[];astop=[];alstop=[];aarea=[];apeak=[];adt=[]; 
alarea=[];ax=[];ay=[]; 

  
%variances 
vtstart=[];vtstop=[];vtarea=[];vtpeak=[]; 
vstart=[];vstop=[];vlstop=[];varea=[];vpeak=[];vdt=[]; 



58 
 

vlarea=[];vx=[];vy=[]; 

  
%Creating a summary file of events thrown out 
res=zeros(1,datapoints);notenough=zeros(1,2)-2; 
dlmwrite('noresponse.csv',res); 
dlmwrite('notenough.csv',notenough); 

  
%loop over each .pmt file and make a temp array of values 
fileindex = 0; 
while fileindex < numberfiles 
    fileindex=fileindex+1; 

     
    %find the next file and load it 
    file=wdir2(fileindex+2).name; 
    if ~strcmp(file(end-2:end),'pmt')%check for correct file type 
        continue; 
    end 
    filename=[wdir,'/',file]; 
    fprintf(1,'\n Analyzing %s\n',filename); 
    data=load(filename);%load the .pmt file chosen earlier 

     
    %number of traces taken at each spatial location 
    [numtraces,~] = size(data); 

     
    %create temporary bins 
    tstart_1 = []; 
    tstop_1 = []; 
    tarea_1 =[]; 
    tpeak_1 = []; 
    start_1 =[]; 
    stop_1 = []; 
    lstop_1= []; 
    area_1 = []; 
    peak_1 =[]; 
    dt_1 = []; 
    x_1 = []; 
    y_1 = []; 
    timestep_1 = []; 
    larea_1 =[]; 

     
    x1=0; 
    y1=0; 

     
    event = 0; % come in pairs of traces 
    while event < numtraces 

         
        event=event+2; 

         
        pmt=data(event-1,3:end);%get pmt pulse 
        fpd=data(event,3:end);%photodiode trace 
        pmt=pmt*-1;%invert the pmt pulse 

         
        %calulates offset for the anodes (PMT) 
        offset = PMT_Offset(pmt); 
        pmt=pmt-offset;%apply the offset 
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        %calulates offset for the anodes (FPD) 
        offset = FPD_Offset(fpd); 
        fpd=fpd-offset;%apply the offset 

         
        x1=data(event-1,1);%get the grid position 
        y1=data(event,1);%get the grid position 
        timestep1=data(event-1,2);%get time interval spacing 

         

         
        %All remaining calculations done using smoothed data 
        pmt = smooth(pmt,smoothingfactor); 
        fpd = smooth(fpd,smoothingfactor); 

         

         
        %check for "bad" corner data points 
        if max(pmt) < pmtthreshold|| isnan(max(pmt)) == 1 || 

max(fpd)<fpdthreshold || isnan(max(fpd))==1 
            xpmt = [x1,event/2,pmt']; 
            yfpd = [y1,event/2,fpd']; 
            dlmwrite('noresponse.csv',xpmt,'-append') 
            dlmwrite('noresponse.csv',yfpd,'-append') 
            continue; 
        end 

         

         
        [area1,larea1,start1,stop1,lstop1,maxpeak1] = PMT_PeakSub(pmt); 
        [tarea1,tstart1,tstop1,tmaxpeak1] = FPD_PeakSub(fpd); 

         
        dt1 = start1 - tstart1; 

         
        tstart_1=[tstart_1;tstart1]; 
        tstop_1 = [tstop_1;tstop1]; 
        tarea_1=[tarea_1;tarea1]; 
        tpeak_1=[tpeak_1;tmaxpeak1]; 
        start_1=[start_1;start1]; 
        stop_1=[stop_1;stop1]; 
        lstop_1=[lstop_1;lstop1]; 
        area_1=[area_1;area1]; 
        peak_1=[peak_1;maxpeak1]; 
        dt_1=[dt_1;dt1]; 
        x_1 = [x_1;x1]; 
        y_1 = [y_1;y1]; 
        timestep_1 =[timestep_1;timestep1]; 
        larea_1 = [larea_1;larea1]; 

         
    end 

     
    if isempty(dt_1)==1 || length(dt_1)<req %require that at least 7/10 

events valid 
        xy = [x1,y1]; 
        dlmwrite('notenough.csv',xy,'-append') 
        continue 
    end 
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    tstart=[tstart;tstart_1]; 
    tstop = [tstop;tstop_1]; 
    tarea=[tarea;tarea_1]; 
    tpeak=[tpeak;tpeak_1]; 
    start=[start;start_1]; 
    stop=[stop;stop_1]; 
    lstop=[lstop;lstop_1]; 
    area=[area;area_1]; 
    peak=[peak;peak_1]; 
    dt=[dt;dt_1]; 
    x = [x;x_1]; 
    y = [y;y_1]; 
    timestep =[timestep;timestep_1]; 
    larea = [larea;larea_1]; 

     

     
    atstart=[atstart;mean(tstart_1)]; 
    atstop = [atstop;mean(tstop_1)]; 
    atarea=[atarea;mean(tarea_1)]; 
    atpeak=[atpeak;mean(tpeak_1)]; 
    astart=[astart;mean(start_1)]; 
    astop=[astop;mean(stop_1)]; 
    alstop=[alstop;mean(lstop_1)]; 
    aarea=[aarea;mean(area_1)]; 
    apeak=[apeak;mean(peak_1)]; 
    adt=[adt;mean(dt_1)]; 
    alarea = [alarea;mean(larea_1)]; 
    ax =[ax;mean(x_1)]; 
    ay =[ay;mean(y_1)]; 

     
    vtstart=[vtstart;var(tstart_1)]; 
    vtstop = [vtstop;var(tstop_1)]; 
    vtarea=[vtarea;var(tarea_1)]; 
    vtpeak=[vtpeak;var(tpeak_1)]; 
    vstart=[vstart;var(start_1)]; 
    vstop=[vstop;var(stop_1)]; 
    vlstop=[vlstop;var(lstop_1)]; 
    varea=[varea;var(area_1)]; 
    vpeak=[vpeak;var(peak_1)]; 
    vdt=[vdt;var(dt_1)]; 
    vlarea = [vlarea;var(larea_1)]; 
    vx =[vx;var(x_1)]; 
    vy =[vy;var(y_1)]; 

     
end 

  
%Making two different types of vectors the same length for writing to file 
kk = length(x)-length(atstart); 
addstuff = zeros(kk,1)-1; 

  
atstart=[atstart;addstuff]; 
atstop = [atstop;addstuff]; 
atarea=[atarea;addstuff]; 
atpeak=[atpeak;addstuff]; 
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astart=[astart;addstuff]; 
astop=[astop;addstuff]; 
alstop=[alstop;addstuff]; 
aarea=[aarea;addstuff]; 
apeak=[apeak;addstuff]; 
adt=[adt;addstuff]; 
alarea = [alarea;addstuff]; 
ax = [ax;addstuff]; 
ay = [ay;addstuff]; 

  
vtstart=[vtstart;addstuff]; 
vtstop = [vtstop;addstuff]; 
vtarea=[vtarea;addstuff]; 
vtpeak=[vtpeak;addstuff]; 
vstart=[vstart;addstuff]; 
vstop=[vstop;addstuff]; 
vlstop=[vlstop;addstuff]; 
varea=[varea;addstuff]; 
vpeak=[vpeak;addstuff]; 
vdt=[vdt;addstuff]; 
vlarea = [vlarea;addstuff]; 
vx = [vx;addstuff]; 
vy = [vy;addstuff]; 

  
%writing to file 
of=[savename,'.csv']; 
Arr = 

[x,y,tstart,tstop,tarea,tpeak,start,stop,lstop,area,peak,dt,timestep,larea,at

start,atstop,atarea,atpeak,astart,astop,alstop,aarea,apeak,adt,alarea,ax,ay,v

tstart,vtstop,vtarea,vtpeak,vstart,vstop,vlstop,varea,vpeak,vdt,vlarea,vx,vy]

; 
dlmwrite(of,Arr,'precision', 7); 
fclose('all'); 

  
end 

 

 

 

 

 

 

 
function [offset]=PMT_Offset(data) 

  
earlytime = 1000; %Choosen by reviewing typical events (very safe margin) 
offset = mean(data(1:earlytime)); 
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function PMT_PeakFinder(wdir) 

  
global fpdthreshold pmtthreshold req smoothingfactor 

  
savename=input('Enter PeakTime Summary Name - ','s'); 
wdir2=dir(wdir); 
numberfiles=length(wdir2)-2;%two hidden unecessary files 

  
%set arrays for complete sum file 
tstart=[];tstop=[];dt=[];diff=[]; 
x=[];y=[]; 

  
%averages 
atstart=[];atstop=[];adt=[];adiff=[]; 
ax=[];ay=[]; 

  
%variances 
vtstart=[];vtstop=[];vdt=[];vdiff=[]; 
vx=[];vy=[]; 

  
%loop over each .pmt file and make a temp array of values 
fileindex = 0; 
while fileindex < numberfiles 
    fileindex=fileindex+1; 

     
    %find the next file and load it 
    file=wdir2(fileindex+2).name; 
    if ~strcmp(file(end-2:end),'pmt')%check for correct file type 
        continue; 
    end 
    filename=[wdir,'/',file]; 
    fprintf(1,'\n Analyzing %s\n',filename); 
    data=load(filename);%load the .pmt file chosen earlier 

     
    %number of traces taken at each spatial location 
    [numtraces,~] = size(data); 

     
    %create temporary bins 
    tstart_1 = []; 
    tstop_1 = []; 
    dt_1 = []; 
    diff_1=[]; 

     
    x_1 = []; 
    y_1 = []; 

     

     
    event = 0; % come in pairs of traces 
    while event < numtraces 

         
        event=event+2; 

         
        pmt=data(event-1,3:end);%get pmt pulse 
        fpd=data(event,3:end);%photodiode trace 
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        pmt=pmt*-1;%invert the pmt pulse 

         
        %calulates offset for the anodes (PMT) 
        offset = PMT_Offset(pmt); 
        pmt=pmt-offset;%apply the offset 

         
        %calulates offset for the anodes (FPD) 
        offset = FPD_Offset(fpd); 
        fpd=fpd-offset;%apply the offset 

         
        x1=data(event-1,1);%get the grid position 
        y1=data(event,1);%get the grid position 

         

         
        %All remaining calculations done using smoothed data 
        pmt = smooth(pmt,smoothingfactor); 
        fpd = smooth(fpd,smoothingfactor); 

         
        %check for "bad" corner data points 
        if max(pmt)< pmtthreshold || isnan(max(pmt)) == 1 || 

max(fpd)<fpdthreshold || isnan(max(fpd))==1 
            continue; 
        end 

         

         
        [~,~,start1,~,~,~] = PMT_PeakSub(pmt); 
        [~,tstart1dt,~,~] = FPD_PeakSub(fpd); 

         
        dt1 = start1 - tstart1dt; 

         

         
        [~,loc] = 

findpeaks(pmt,'SORTSTR','descend','MINPEAKDISTANCE',100,'MINPEAKHEIGHT',pmtth

reshold); 

         
        %ensures that is really a PRE-bump not a post bump 
        if length(loc)>1 
            check = loc(1)-loc(2); 
            if check>0 
                diff1 = loc(1)-loc(2); 
            else 
                continue 
            end 
        else 
            continue %no pre-bump present 
        end 

         
        tstart_1=[tstart_1;loc(2)]; 
        tstop_1 = [tstop_1;loc(1)]; 
        diff_1=[diff_1;diff1]; 

         
        dt_1=[dt_1;dt1]; 
        x_1 = [x_1;x1]; 
        y_1 = [y_1;y1]; 
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    end 

     
    if isempty(dt_1)==1 || length(dt_1)<req %require that at least 7/10 

events valid 
        continue 
    end 

     
    tstart=[tstart;tstart_1]; 
    tstop = [tstop;tstop_1]; 
    diff = [diff;diff_1]; 

     
    dt=[dt;dt_1]; 
    x = [x;x_1]; 
    y = [y;y_1]; 

     

     

     
    atstart=[atstart;mean(tstart_1)]; 
    atstop = [atstop;mean(tstop_1)]; 
    adiff = [adiff;mean(diff_1)]; 

     
    adt=[adt;mean(dt_1)]; 

     
    ax =[ax;mean(x_1)]; 
    ay =[ay;mean(y_1)]; 

     
    vtstart=[vtstart;var(tstart_1)]; 
    vtstop = [vtstop;var(tstop_1)]; 
    vdiff = [vdiff;var(diff_1)]; 

     
    vdt=[vdt;var(dt_1)]; 

     
    vx =[vx;var(x_1)]; 
    vy =[vy;var(y_1)]; 

     
end 

  
%Making two different types of vectors the same length for writing to file 
kk = length(x)-length(atstart); 
addstuff = zeros(kk,1)-1; 

  
atstart=[atstart;addstuff]; 
atstop = [atstop;addstuff]; 
adiff = [adiff;addstuff]; 

  
adt=[adt;addstuff]; 

  
ax = [ax;addstuff]; 
ay = [ay;addstuff]; 

  
vtstart=[vtstart;addstuff]; 
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vtstop = [vtstop;addstuff]; 
vdiff = [vdiff;addstuff]; 

  
vdt=[vdt;addstuff]; 

  
vx = [vx;addstuff]; 
vy = [vy;addstuff]; 

  
%writing to file 
of=[savename,'.csv']; 
Arr = 

[x,y,tstart,tstop,dt,atstart,atstop,adt,adiff,ax,ay,vtstart,vtstop,vdt,vdiff,

vx,vy]; 
dlmwrite(of,Arr,'precision', 7); 
fclose('all'); 

  
end 

 
 
 
 
 
 
function [area,larea,start,stop,lstop,maxpeak]=PMT_PeakSub(smoothdata) 

  
global pmtoffset pmtcfd 

  
[maxpeak,peakch]=max(smoothdata); 
full=length(smoothdata); 

  
while peakch > full-1000 %the peak can't be in last 1000 channels. If it is, 
    smoothdata(peakch:full)=0; %zero it out and look for another peak 
    [maxpeak,peakch]=max(smoothdata); 
end 

  
%Insert peak time offset 
timedelay=pmtoffset;%Time Delay in Number of Channels 
delay=zeros(timedelay,1);%Zeros because already subtracted offset 

  
delayed=[delay.',smoothdata.'];%Add Time Delay at start of wave trace 

  
%Create inverted attenuated peak to add to delayed original peak 
invert_atten=[(-pmtcfd).*(smoothdata.'),delay.']; 

  
data = delayed + invert_atten; %final data set for calculating timing 

  
start=500; %arbitrary start value for zero crossing point 
for i = (peakch + timedelay):-1:10 

     
    if data(i) < 0; %zero crossing 

         
        start=i;%Chanel of Zero Crossing 
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        break; 

         
    end 

     
end 

  

  
stop=1500;%Arbitrary end point in timing 
for i = peakch:+1:full 

     
    if smoothdata(i)< pmtcfd*maxpeak;%Arbitrary level for end time 

         
        stop=i; 
        break; 

         
    end 

     
end 

  
lstop=1900;%Arbitrary end point in timing 
for i = peakch:+1:full 

     
    if smoothdata(i)< 0.05*maxpeak;%Arbitrary level for end time 

         
        lstop=i; 
        break; 

         
    end 

     
end 

  
%Subtracting back time delay added to pulse at start of pulse analysis 
start = start - timedelay;%This subtraction should be the same for all 
area=sum(smoothdata(start:stop)); %total area 
larea=sum(smoothdata(start:lstop)); %late area 

  
end 

 
 
 
 
 
 
function PMT_plotRawData(wdir,file1) 

  
global fpdthreshold pmtthreshold smoothingfactor xcenter ycenter 

  
data=load([wdir,'\',file1]);%load the .pmt file chosen earlier 

  
%The data files are saved in the following format 
% x-pos | dt | PMT data points 
% y-pos | dt | FPD data points 
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%number of data points per trace 
datapoints = length(data)-2; %(first index position; second is timestep) 
[numtraces,~] = size(data);  %total number of traces at each spatial loc. 

  
time=1:datapoints;% in 100 ps channels 
timens=time.*(0.1);% in nanosecond channels 

  
event = 2; % comes in pairs of traces 
while event < numtraces + 1 %plot each trace combination 

     
    pmt=data(event-1,3:end);%pmt trace 
    fpd=data(event,3:end);%photodiode trace 
    pmt=pmt*-1;%invert the pmt pulse 

   
    %calulates offset for the anodes (PMT) 
    offset = PMT_Offset(pmt); 
    pmt=pmt-offset;%apply the offset 

    
    %calulates offset for the fast photodiode (FPD) 
    offset = FPD_Offset(fpd); 
    fpd=fpd-offset;%apply the offset 

     
    %smooth data set 
    spmt = smooth(pmt,smoothingfactor); 
    sfpd = smooth(fpd,smoothingfactor); 

     
    x=data(event-1,1);%get the grid position 
    y=data(event,1);%get the grid position 

     
    %check for "bad" corner data points 
    if max(spmt)< pmtthreshold || isnan(max(spmt)) == 1 || 

max(sfpd)<fpdthreshold || isnan(max(sfpd))==1 

         
        close all;%close previous figures 
        hh=figure; 
        set(hh,'Units','normalized'); 
        set(hh,'OuterPosition',[.5 0 .5 .9]) 
        subplot(2,1,1) 
        plot(timens,fpd,'r',timens,sfpd,'b') 
        legend('FPD','SmoothFPD') 
        ylabel('V') 
        xlabel('time (nansecond channels)') 
        t=sprintf('FPD Trace %g of %g at 

(X,Y)=(%g,%g)',event/2,numtraces/2,x-xcenter,y-ycenter); 
        title(t) 
        subplot(2,1,2) 
        plot(timens,pmt,'m',timens,spmt,'c') 
        legend('PMT','SmoothPMT') 
        ylabel('V') 
        xlabel('time (nansecond channels)') 
        t=sprintf('PMT Response %g of %g at 

(X,Y)=(%g,%g)',event/2,numtraces/2,x,y); 
        title(t) 

         



68 
 

    else 

         
        [area,larea,start,stop,~,maxpeak]= PMT_PeakSub(spmt); 
        [tarea,trigch,tstop,trigamp] = FPD_PeakSub(sfpd); 
        dt = (start - trigch)*.1;%nanosecond scale 
        rarea = area/tarea;%relative area response 

         
        close all;%close previous figures 
        hh=figure; 
        set(hh,'Units','normalized'); 
        set(hh,'OuterPosition',[.5 0 .5 .9]) 
        plot(timens,sfpd,'r',timens,spmt,'b') 
        legend('FPD','PMT') 
        ylabel('V') 
        xlabel('Time (nansecond channels)') 
        t=sprintf('FPD & PMT Waveform %g of %g at 

(X,Y)=(%g,%g)',event/2,numtraces/2,x-xcenter,y-ycenter); 
        title(t) 

           
        hold on; 
        plot([start*.1,start*.1],[0 maxpeak*1.1],'g') 
        plot([trigch*.1,trigch*.1],[0 maxpeak*1.1],'g') 
        hold off; 

         
        fprintf('Transit time (ns) = %g \n Relative Area = %g \n',dt,rarea) 
        fprintf('Start = %g \n Stop = %g \n',start,stop) 
        fprintf('Area = %g \n Late Area = %g Max = %g \n',area,larea,maxpeak) 
        fprintf('Triger Channel Start = %g \n Triger Channel Stop = %g \n 

Trigger Peak = %g \n',trigch,tstop,trigamp) 
    end 

     
    %iterate & check if user wants to continue 
    event = event + 2; 
    ostr2='Press Enter to continue or enter any character to end> ';%pause 
    resp=input(ostr2,'s');%get user input to continue 
    if strcmp(resp,''); continue;%continue or quit depending on user input 
    else break; end; 

     
end 
clc;%clear command window to make it look nice again 

 

 
 
 
 
 
 
function PMT_PreScan(wdir,file1) 

  
global fpdthreshold pmtthreshold datapoints smoothingfactor 

  
%set arrays for specific data to plot 
dt=[];trigloc=[];trigpeak=[];trigarea=[];peak=[];area=[];rel=[]; 
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filename=[wdir,'/',file1]; 
fprintf(1,'\n Analyzing %s\n',filename); 
data=load(filename);%load the .pmt file chosen earlier 

  
%number of traces at each spatial location 
[numtraces,~] = size(data); 

  
%Creating a summary file of events thrown out 
res = 2 + zeros(1,datapoints); %2 used as an identifier 
dlmwrite('thrownoutres.csv',res); 

  
event = 0; % come in pairs of traces 
while event < numtraces 

     
    event=event+2; 

     
    pmt=data(event-1,3:end);%get pmt pulse 
    fpd=data(event,3:end);%photodiode trace 
    pmt=pmt*-1;%invert the pmt pulse 

     
    %calulates offset for the anodes (PMT) 
    offset = PMT_Offset(pmt); 
    pmt=pmt-offset;%apply the offset 

     
    %calulates offset for the anodes (FPD) 
    offset = FPD_Offset(fpd); 
    fpd=fpd-offset;%apply the offset 

     
    x1=data(event-1,1);%get the grid position 
    y1=data(event,1);%get the grid position 

     

     
    %All remaining calculations done using smoothed data 
    pmt = smooth(pmt,smoothingfactor); 
    fpd = smooth(fpd,smoothingfactor); 

     
    %check for "bad" corner data points 
    if max(pmt)< pmtthreshold || isnan(max(pmt)) == 1 || 

max(fpd)<fpdthreshold|| isnan(max(fpd))==1 
        xpmt = [x1,event/2,pmt']; 
        yfpd = [y1,event/2,fpd']; 
        dlmwrite('thrownoutres.csv',xpmt,'-append') 
        dlmwrite('thrownoutres.csv',yfpd,'-append') 
        continue; 
    end 

     

     
    [area1,~,start1,~,~,peak1] = PMT_PeakSub(pmt); 
    [trigarea1,tstart1,~,trigpeak1] = FPD_PeakSub(fpd); 

     
    dt1 = start1 - tstart1; 

     
    rel1=peak1/trigpeak1; 
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    dt = [dt;dt1]; 
    trigloc = [trigloc;tstart1]; 
    trigpeak = [trigpeak;trigpeak1]; 
    trigarea = [trigarea;trigarea1]; 
    peak = [peak;peak1]; 
    area = [area;area1]; 
    rel = [rel;rel1]; 

     

     
end 

  
relarea = area./trigarea; 

  
%transit time plot 
ave = mean(dt); 
timestep1=data(event-2,2);%get time interval spacing 
saved = length(dt); 
total = (event)/2; 
h=hist(dt,20); 
hh=figure (1); 
set(hh,'Units','normalized'); 
set(hh,'OuterPosition',[.3 .3 .6 .6]) 
hist(dt,20) 
hold on; 
t=sprintf('Timing Spread (Jitter). X=%g Y=%g dt=%g Saved=%g/%g 

Mean=%g',x1,y1,timestep1,saved,total,ave); 
title(t) 
ylabel('Count') 
xlabel('Time (100 ps channels)') 
height = max(h)*1.1; 
plot([ave,ave],[0 height],'g') 
hold off 

  
%trigger location plot 
hhh=figure(2); 
set(hhh,'Units','normalized'); 
set(hhh,'OuterPosition',[.3 .3 .6 .6]) 
hist(trigloc,100) 
tt=sprintf('Trigger Location X=%g Y=%g dt=%g 

Saved=%g/%g',x1,y1,timestep1,saved,total); 
title(tt) 
ylabel('Count') 
xlabel('Time (100 ps channels)') 

  
%trigger peak histogram 
ha=figure(3); 
set(ha,'Units','normalized'); 
set(ha,'OuterPosition',[.3 .3 .6 .6]) 
hist(trigpeak,100) 
tta=sprintf('Trigger Peak Height X=%g Y=%g dt=%g 

Saved=%g/%g',x1,y1,timestep1,saved,total); 
title(tta) 
ylabel('Count') 
xlabel('(V)') 
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%response peak histogram 
hat=figure(4); 
set(hat,'Units','normalized'); 
set(hat,'OuterPosition',[.3 .3 .6 .6]) 
hist(peak,100) 
ttat=sprintf('PMT Peak Height X=%g Y=%g dt=%g 

Saved=%g/%g',x1,y1,timestep1,saved,total); 
title(ttat) 
ylabel('Count') 
xlabel('(V)') 

  

  
%relative response histogram 
hata=figure(5); 
set(hata,'Units','normalized'); 
set(hata,'OuterPosition',[.3 .3 .6 .6]) 
hist(rel,100) 
ttata=sprintf('Relative Response Peak Height (PMT/FPD) X=%g Y=%g dt=%g 

Saved=%g/%g',x1,y1,timestep1,saved,total); 
title(ttata) 
ylabel('Count') 

  

  
%relative response histogram 
hata=figure(6); 
set(hata,'Units','normalized'); 
set(hata,'OuterPosition',[.3 .3 .6 .6]) 
hist(relarea,100) 
ttata=sprintf('Relative Response Area(PMT/FPD) X=%g Y=%g dt=%g 

Saved=%g/%g',x1,y1,timestep1,saved,total); 
title(ttata) 
ylabel('Count') 

  

  
pause 

  
end 

 
 
 
 
 
 
function [sum,rise,fall,start,stop]=PMT_RiseTime(smoothdata) 

  
global pmtcfd 

  
[peakmax,ch]=max(smoothdata); 
full=length(smoothdata); 

  
while ch>full-1000 %the peak can't be in the last 1000 channels so if it is, 
    smoothdata(ch:full)=0; %it zeros it out and looks for another peak 
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    [peakmax,ch]=max(smoothdata); 
end 

  
start=10; %arbitrary start channel 
for i=ch:-1:5 %Finding the start time of the rising edge 

     
    if smoothdata(i) < pmtcfd*peakmax; 

         
        start=i; 
        break; 

         
    end 

     
end 

  
rise=ch-start; 

  
stop=1500; %arbitrary stop channel 
    for i=ch:+1:full 

         
        if smoothdata(i)< pmtcfd*peakmax; 

             
            stop=i; 
            break; 

             
        end 

         
    end 

     
fall=stop-ch; 
sum = stop-start; 
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