

Development of an Energy-Based Sound Power Measurement Device

by

Joel Andrus

Submitted to the Department of Physics and Astronomy in partial fulfillment

of graduation requirements for the degree of

Bachelor of Science

Brigham Young University

April 2004

Advisor: Scott D. Sommerfeldt Capstone Coordinator: Branton S. Campbell

Department Chair: Scott D. Summerfeldt

 ii

CONTENTS

1. Introduction 1

 1.1 Overview 1

 1.2 Three Current Methods for measuring Sound Power 1

 1.3 Energy-based Quantities 2

2. Interpolation of the Near Field Pressure 3

 2.1 Ideal Source Derivations 3

 2.2 Least Squared Pressure 4

3. Extension to the Far Field 5

4. Sensor Development 6

 4.1 Orthogonal Array 7

 4.2 Tetrahedron Array 9

5. Conclusions 9

6. References 10

Appendix 11

 1

Development of an Energy-Based Sound Power Measurement Device

CHAPTER I. Introduction

1.1 Overview

 Sound Power is a widely used quantity used to describe how much sound an

acoustic source is radiating. It is more commonly used than Sound Pressure Level

because it is independent of the measurement location. Sound Power, which is measured

in watts (W), is often expressed on a logarithmic scale. This gives the Sound Power

Level, which has the units of decibels (dB). Sound Power Level can be determined by

finding the average Sound Pressure Level at several points in the far field surrounding the

source, which can be found from several different ways. Since the square of the pressure

in the far field is proportional to the intensity, it can be integrated to get sound power.

Sound Power can also be determined by scanning over a surface with an intensity probe,

and then integrating the intensity over the area scanned. Another possible way to

measure sound power is with an energy-density probe. This is the method being

investigated in this paper.

1.2 Three Current Methods

Currently, there are three basic methods for measuring Sound Power. The first

one, which necessitates free field conditions (i.e. those found in an anechoic room),

involves taking sound pressure measurements in the far field along a hemispherical

surface surrounding the source. The second method assumes highly reflective boundary

conditions, which can be found in a reverberation room. The Sound Power can then be

measured directly as long as the total sound absorption of the room is known. Since the

reflected sound is now considered diffuse, it is equally probable that the sound will come

into the microphone from all directions, which allows the determination of the power

 2

using the pressure measured at a number of locations in the room. The third method

measures the acoustic intensity directly with an intensity probe. By scanning over a

closed surface enclosing the source, it is possible to estimate the total radiated power.

While this method is more expensive, it can be applied to more general field conditions

including the outdoors, which is important if what you are trying to measure is big.

Determining which method is best takes into account several considerations. First, the

size of the noise source should be considered. The reverberation room works best when

the source is less than one percent of the volume of the room. The free field method

places a 15 meter limit on the largest dimension of the source. The second issue is the

character of the noise, in terms of it’s frequency content. The reverberation method

requires a frequency above that of the Schroeder frequency, which is the frequency limit

for diffusion of sound waves in a room. Sources with a relatively low frequency content

will require a large chamber to lower the Schroeder frequency. Third, the accuracy

required is also an important consideration. Generally, the free field and reverberation

methods will give the highest accuracy while the intensity measurements will give the

least [1]. But greater accuracy requires greater measurement effort. The question also

exists as to which test environment is suitable for measurements. If the source is small

and movable, any method will work. However, if the source is installed outside, or has a

significantly large volume (about two m3), then the reverberation and the free field

methods may not be applicable.

1.3 Energy-based Quantities

 Energy-based measurements could offer many advantages over current methods.

For instance, they have the potential to provide simplified (possibly single-point)

measurements in a laboratory reverberation room because they are much more global in

 3

nature than pressure. Because spatial variations in the energy quantities should be much

smaller than variations in pressure waves, they promise greater accuracy and less

complexity in measuring the Sound Power. This leads to the capacity to decrease the cost

involved in finding out the power a source is emanating. Another significant advantage

of the proposed method is that energy-based methods could reduce the restrictions on

reverberation room measurements by allowing sub-Schroeder frequencies (objects can

radiate at a lower frequency in a smaller test room), and by potentially

allowing testing at the site where the source will be located. That would have a huge

impact on current techniques and what researchers are able to afford in the testing of their

equipment.

2. Interpolation of the Near-Field Pressure

 The first step taken in this project was to compare energy-based measurements

with regular pressure measurements to see if the number of measurements could be

reduced at all in determining the pressure in the near-field.

 To do this, a Matlab m file was created to produce exact pressure values at 1000

points equidistant from the source. Several ideal sources were modeled, including a

dipole, a tesseral quadrupole, and an axial quadrupole. Least squares methods were then

devised to produce the pressure in between measurements.

2.1 Ideal Source Derivations

 Some concerns were expressed regarding the assumptions made in the derivation

of the ideal sources. In the tesseral quadrupole, it is assumed that the distance between

the four sources is small, so you can use a Taylor expansion for the Green’s function

describing the medium. This allows several higher order terms to drop out. However,

the error for this approximation was generally less than ten dB at 2.5 centimeters from the

 4

source. Since the actual distance would be closer to half a meter, it was considered

negligible. So the expressions containing this assumption were used.

2.2 Least Squared Pressure

 At this point, another m file was created that would take part of those exact

pressure measurements, and then use a least squares method to interpolate the pressure

between them. Using this technique, it was determined that using a combination of

pressure and angular velocity would produce the same fit as pressure measurements

alone, with half the measurements. The only drawback is that velocity measurements

require more microphones. So, in reality, the same amount of information was being

collected, there was just fewer measurements.

In analyzing these methods, ideal sources were used to form a basis for error.

These are easily

programmed into

Matlab. The fits that

were obtained for

Sound Pressure,

Angular Velocity,

Radial Velocity and

Energy Density are

extremely good, even

for an ideal Tesseral

source. Figure 1 shows

one of these fits for Energy Density emanating from a Tesseral source. The theoretical

result was plotted from 0-4π to show the wave pattern better. These fits are obtained

Figure 1. The far field extension of Energy Density (blue) with
theoretical values (red).theoretical profile (red), with the fit

obtained from the Near field extension (blue)

 5

from a combination of 4 Matlab scripts which can be found in Appendix A. (datafit.m,

funcfit.m, leastsq.m, Tessercheckl.m)

Excel was also used to fit the curves by another student working on the project.

Eventually, the best fit in Excel was given with a splines type function. Results from the

two different programs are comparable. Using these methods allowed us to cut the

number of measurements in half, which is what we were looking for.

3. Extension to the Far Field with Huygens Principle

 Once a proper fit was obtained, it was attempted to extend the pressure field

outward. Two possible approaches have been suggested. The first is based on the well

known Huygens’s principle. The second is called Near-Field Acoustic Holography

(NAH), which was developed Dr. Earl Williams. For my involvement with the research,

it was decided to focus on Huygens’s principle to determine the pressure field.

 Matlab was used to model the waves being propagated outward to the far-field.

This proved to be a daunting task because the waves propagate outward in 3-D. The

code has to be able to distinguish the direction of each wave front and then the direction

of subsequent wave fronts of sound off of those. It also needs to be able to determine if

the sphere will block the wave so that it does not inappropriately add pressure to the end

result. So the model must choose only those parts that are contributing to the point they

are measuring. The code at this point assumes a dipole source for simplicity so that it is

straight forward to see if the propagation to the far field is correct. Currently, work on

this part of the project has stopped because it was determined that the NAH approach

would be more suitable for the far field reconstruction.

 6

4. Sensor Development

NASA recently awarded a grant to BYU, in conjunction with Larson-Davis, a

local company, to develop a new energy density measurement probe. Among other

applications, this probe could be used to measure Sound Power. Larson–Davis is

developing the new probe based on the results from our research. They will then work

with us to validate the performance of the probes.

The standard energy-based probe that is used in acoustic measurements today is a

six microphone arrangement as can be seen in Fig. 2. There are two microphones on

each axis, one in the negative direction and

one in the positive direction. The current

design for this probe is extremely fragile and

expensive, with prices ranging in the

thousands of dollars.

Currently, two new probe

configurations have been proposed by the

BYU acoustics research group. Both use an

array of four microphones circumscribed in a solid sphere. The radius of these has not

been definitely determined yet, but the prototypes have a radius of 1 and 0.313 inches. A

larger probe is desired for the lower frequency range, and the smaller probe is needed for

higher frequencies (up to about 6kHz). One advantage of the spherical probe is that it

improves some of the bias errors.

One configuration investigated is an orthogonal arrangement with all four

microphones in one half of the sphere, which will be referred to hereafter as the ortho

Figure 2--Sound Energy Probe

 7

probe and can be seen in Fig 3. The other is a tetrahedron arrangement, which will

hereafter be referred to as the tetra probe and can be seen in Fig 4.

Figure 3--Orthogonal Probe Figure 4—Tetrahedron Probe

4.1 Orthogonal Array

The time over the summer of 2003 was used to determine the scattering of the

sound from the spherical surface of the sphere. The equation for scattering from a sphere

involves several spherical Bessel functions, as well as a Legendre polynomial. The

equation below defines a plane wave traveling to the right along the polar axis:

∑
∞

=

−− +==
0

2)cos()()(cos)12(
m

ivt
mm

mctrik
p ekrjPimAAep πθ θ

where cIA oρ= , 123=oρ , c=343 m/s, and
c

p
I

oρ

2

= . Plugging I into A results in the

realization that pA = , meaning that the amplitude of the wave is equal to the magnitude

of the pressure for the sound wave. mP is a Legendre Polynomial of order m, and mj is a

spherical Bessel function of order m [2]. The expression for the wave scattered from a

sphere of radius a with its center at the origin is:

 8

 0
.5 1

 1
.5

30

21
0

60

24
0

90 27
0

12
0

30
0

15
0

33
0

18
0

0

|p
sc

(th
et

a)
| f

or
 5

00
0

H
z

∑
∞

=

−−+ ++−=
0

21)]()()[(cossin)12(
m

ivt
mmmm

im
s ekrinkrjPeimAp m πδ θδ

where mδ =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−+−

mm

mm

ymym
jmjm

)1()(
)()1(

tan 1

This equation was programmed into Matlab to study the effect of radius and frequency on

scattering. Knowing the scattering is necessary to determine the actual sound pressure at

each microphone of the probe. The m files for this are: spherbesselj.m, spherbessely.m,

and scatteredpressure.m, which can be found in the appendix. Figures 5 and 6 show the

results of the Matlab model for the scattering of sound on a probe with a radius of 1 inch.

The sound wave of 5000 Hz in Fig. 6 approaches from the bottom to the top.

Figure 5. Polar plot of the scattered pressure
from a plane wave approaching from the left.

Figure 6. Surface plot of the scattered pressure
from a sphere, with the incident plane wave

approaching from the bottom.

The Matlab model that determines the pressure measured by the ortho probe, currently

gives an error of less that 2 dB at 5000 Hz. The ortho probe is being developed first in

this project. It’s currently being tested for accuracy by Lance Locey.

 9

4.2 Tetrahedron Array

 The Tetra probe is not being developed yet. There is a prototype for it, but no

calibration has been attempted due to the work being focused on the ortho probe at this

point. All of the work done for the scattering of the waves off of the probe still applies

just the same. The only difference is how the probe determines what the velocity at each

microphone is.

5. Conclusion

 In this project I was exposed to several different aspects of research. First, I had

to identify the problem. This occurred with each step of the research. If you don’t know

where you need to go, you won’t get there. I also had to learn everything that I could

about that subject, so that I could be productive with my research. I also had to learn how

to use numerical models to verify the theoretical models. This was the hardest step for

me, as things often made sense in thinking about them, but it was difficult to make the

computer reproduce it. Working and talking things through was the most beneficial part

of research. Many times I found answers to my questions in trying to explain the

problem to someone else.

 The new probe will be a great asset to those who need to make a sound power

measurement quickly and without having to scan over the surface to get the intensity.

This probe reduces the number of measurements by half with very little error. It is also a

great improvement in design and functionality over current sound-energy probes.

 10

6. References

[1] C. Harris, Acoustical Measurements & Noise Control, 2nd Edition, (McGraw Hill)

pp.13.1-6

[2] P. Morse and K. U. Ingard, Theoretical Acoustics, 3rd Edition, (Princeton

University Press) pp.419

 11

Appendix (Matlab code)

datafit.m

%this file will do the least squares fit to find the coefficients for Pressure,
% Radial Velocity, Angular Velocity, and Energy Density. It then saves those
% coefficients to a distinct file for later use.
clear; close all;
global R w rho k
npts=6;

%load data points from Pressure
load presspoints.xls;
x=presspoints(:,1);y=presspoints(:,2);
xmin=min(x);
xmax=max(x);
dx=(xmax-xmin)/(npts-1);
xplot=xmin:dx:xmax;
% ifit=0;
% while ifit==0
% disp('Enter an initial guess for the function parameters')
%
a=input('[a(1).*sin(4.*x)+a(2).*cos(4.*x)+a(3).*sin(2.*x)+a(4).*cos(2.*x)+a(5).*(sin(x)).
^2+a(6).*(cos(x)).^2+a(7).*cos(x).*sin(x)+a(8)] in vector form [...]-\n\n')
% yplot=funcfit(a,xplot);
% %plots the data and the intial function guess
% plot(x,y,'b*',xplot,yplot,'r-')
% xlabel('x')
% ylabel('y')
% title('Pressure Points Least Squares Fit')
% ifit=input('Enter 0 to try again, 1 to try to fit -')
% end
%with the option TolX set, fminsearch will adjust (a) until each of its elements is
determined to within TolX.
a=[1 1 1 1 1 1 1 1 1 1];
option=optimset('TolX',1e-7);
a=fminsearch(@leastsq,a,option,x,y);
B=0:2*pi/999:4*pi;
yplot=funcfit(a,B);
%Now we plot the data and the final function fit
plot(x,y,'b*',B,yplot,'r-');
xlabel('x');
ylabel('y');
q=a;
Y=['N=' num2str(length(y)) ', Tess Pressure where kR=' num2str(k*R) '--a(1)= '
num2str(q(1)) ' a(2)=' num2str(q(2)) ' a(3)=' num2str(q(3)) ' a(4)=' num2str(q(3)) '
a(5)=' num2str(q(5)) ' a(6)=' num2str(q(6)) ' a(7)=' num2str(q(7)) ' a(8)='
num2str(q(8))];

 12

title(Y);
save pressurecoefficients a

hold on
load realpresspoints.xls;
x=realpresspoints(:,1);y=realpresspoints(:,2);
xmin=min(x);
xmax=max(x);
nnpts=1000;
dx=(xmax-xmin)/(nnpts-1);
xplot=xmin:dx:xmax;
plot(x,y,'b');
hold off;
figure(1);
figure;

%Radial Velocity

load rvpoints.xls;
x=rvpoints(:,1);y=rvpoints(:,2);
xmin=min(x);
xmax=max(x);
dx=(xmax-xmin)/(npts-1);
xplot=xmin:dx:xmax;
b=input('[b(1).*sin(4.*x)+b(2).*cos(4.*x)+b(3).*sin(2.*x)+b(4).*cos(2.*x)+b(5).*(sin(x))
.^2+b(6).*(cos(x)).^2+b(7).*cos(x).*sin(x)+b(8)] in vector form [...]-\n\n')
b=[1 1 1 1 1 1 1 1 1 1];
%with the doption TolX set, fminsearch will adjust (a) until each of its elements is
determined to within TolX.
option=optimset('TolX',1e-7);
b=fminsearch(@leastsq,b,option,x,y);
B=0:2*pi/999:4*pi;
yplot=funcfit(b,B);
%Now we plot the data and the final function fit
plot(x,y,'b*',B,yplot,'r-');
xlabel('x');
ylabel('y');
q=b;
Y=['Radial velocity-kR=' num2str(k*R) '-b(1)=' num2str(q(1)) ' b(2)=' num2str(q(2)) '
b(3)=' num2str(q(3)) ' b(4)=' num2str(q(3)) ' b(5)=' num2str(q(5)) ' b(6)=' num2str(q(6))
' b(7)=' num2str(q(7)) ' b(8)=' num2str(q(8))];
title(Y);
save rvcoefficients b

hold on
load realrvpoints.xls;
x=realrvpoints(:,1);y=realrvpoints(:,2);
xmin=min(x);

 13

xmax=max(x);
nnpts=1000;
dx=(xmax-xmin)/(nnpts-1);
xplot=xmin:dx:xmax;
plot(x,y,'b');
hold off;
figure(2);
figure

% Angular velocity
load tvpoints.xls;
x=tvpoints(:,1);y=tvpoints(:,2);
xmin=min(x);
xmax=max(x);
dx=(xmax-xmin)/(npts-1);
xplot=xmin:dx:xmax;
e=input('[e(1).*sin(4.*x)+e(2).*cos(4.*x)+e(3).*sin(2.*x)+e(4).*cos(2.*x)+e(5).*(sin(x)).
^2+e(6).*(cos(x)).^2+e(7).*cos(x).*sin(x)+e(8)] in vector form [...]-\n\n')
e=[1 1 1 1 1 1 1 1 1 1];
option=optimset('TolX',1e-7);
e=fminsearch(@leastsq,e,option,x,y);
B=0:2*pi/999:4*pi;
yplot=funcfit(e,B);
plot(x,y,'b*',B,yplot,'r-');
xlabel('x');
ylabel('y');
q=e;
Y=['Angular Velocity-kR=' num2str(k*R) '-e(1)=' num2str(q(1)) ' e(2)=' num2str(q(2)) '
e(3)=' num2str(q(3)) ' e(4)=' num2str(q(3)) ' e(5)=' num2str(q(5)) ' e(6)=' num2str(q(6)) '
e(7)=' num2str(q(7)) ' e(8)=' num2str(q(8))];
title(Y);
save tvcoefficients e

hold on
load realtvpoints.xls;
x=realtvpoints(:,1);y=realtvpoints(:,2);
xmin=min(x);
xmax=max(x);
nnpts=1000;
dx=(xmax-xmin)/(nnpts-1);
xplot=xmin:dx:xmax;
plot(x,y,'b');
hold off;
figure(3);
figure

% I had to scale energy density by a factor of 1 million in order to get it to work.
% Energy Density

 14

load edpoints.xls;
x=edpoints(:,1);y=edpoints(:,2);
xmin=min(x);
xmax=max(x);
dx=(xmax-xmin)/(npts-1);
xplot=xmin:dx:xmax-dx;
g=input('[g(1).*sin(4.*x)+g(2).*cos(4.*x)+g(3).*sin(2.*x)+g(4).*cos(2.*x)+g(5).*(sin(x))
.^2+g(6).*(cos(x)).^2+g(7).*cos(x).*sin(x)+g(8)] in vector form [...]-\n\n')
% with the option TolX set, fminsearch will adjust (a) until each of its elements is
determined to within TolX.
g=[1 1 1 1 1 1 1 1 1 1];
option=optimset('TolX',1e-7);
g=fminsearch(@leastsq,g,option,x,y);
B=0:2*pi/999:4*pi;
yplot=funcfit(g,B);
% Now we plot the data and the final function fit
plot(x,y,'b*',B,yplot,'r-');
xlabel('x');
ylabel('y');
q=g;
Y=['Energy Density-kR=' num2str(k*R) '-g(1)=' num2str(q(1)) ' g(2)=' num2str(q(2)) '
g(3)=' num2str(q(3)) ' g(4)=' num2str(q(3)) ' g(5)=' num2str(q(5)) ' g(6)=' num2str(q(6))
' g(7)=' num2str(q(7)) ' g(8)=' num2str(q(8))];
title(Y);
save edcoefficients g

hold on
load realedpoints.xls;
x=realedpoints(:,1);y=realedpoints(:,2);
xmin=min(x);
xmax=max(x);
nnpts=1000;
dx=(xmax-xmin)/(nnpts-1);
xplot=xmin:dx:xmax;
plot(x,y,'b');
hold off;
figure(4);

funcfit.m

function f=funcfit(a,x)
%Evaluates the function that is to be fit to the data
f=a(1).*sin(4.*x)+a(2).*cos(4.*x)+a(3).*sin(2.*x)+a(4).*cos(2.*x)+a(5).*(sin(x)).^2+a(6
).*(cos(x)).^2+a(7).*cos(x).*sin(x)+a(8).*(cos(x)).^2.*(sin(x)).^2+a(9).*cos(2.*x).^2+a(1
0);

leastsq.m

 15

function s=leastsq(d,x,y)
s=sum((y-funcfit(d,x)).^2);

Tessercheckl.m

close all;
clear;
global R w rho k
c=343;
rho=1.21;
% Q=input('Please type in the value of Q\n\n');
% d=input('Please type in the value of d (distance between sources)\n\n');
% f=input('Please type in the value of f\n\n');
% R=input('Please type in the value of R\n\n');
R=.163;
f=100;
Q=1;
d=.01;
k=2*pi*f/c;x0=.5*d;
Theta=0:2*pi/5 :2*pi;
theta=0:2*pi/999 :2*pi;

%Makes Pressure points from a Tesseral Quadrupole
M=-j.*k.^3.*d.^2.*rho.*c.*Q.*((cos(Theta)).*sin(Theta))./(4.*pi).*[1-3./(k.*R).^2-
(j.*3)./(k.*R)].*exp(j.*(-k.*R));
polar(Theta,M,'-r');
T=['Pressure of Quadrupole where kR=' num2str(k*R)];
title(T);
e=zeros(2,6);
e(1,:)=Theta;
e(2,:)=M;
e=e';
dlmwrite('presspoints.xls',e,'\t');
figure(1);
figure

%Makes Radial Velocity points from a Tesseral Quadrupole
W=-j.*k.^3.*d.^2.*Q./(4.*pi.*R).*cos(Theta).*sin(Theta).*(1-9/(k^2.*R.^2)-
j.*4./(k.*R)+j.*9./(k.^3.*R.^3))*exp(-j*k.*R);
polar(Theta,W,'-k');
T=['Radial Velocity of Quadrupole where kR=' num2str(k*R)];
title(T);
e=zeros(2,6);
e(1,:)=Theta;
e(2,:)=W;
e=e';
dlmwrite('rvpoints.xls',e,'\t');
figure

 16

%Makes Angular Velocity points from a Tesseral Quadrupole
S=k^2*d.^2.*Q./(4*pi*R.^2).*(2.*(sin(Theta)).^2-1).*(1-3.*j./k./R-
3./k.^2./R.^2).*exp(j.*(-k.*R));
polar(Theta,S,'-g');
T=['Angular Velocity of Quadrupole where kR=' num2str(k*R)];
title(T);
e=zeros(2,6);
e(1,:)=Theta;
e(2,:)=S;
e=e';
dlmwrite('tvpoints.xls',e,'\t');
figure

% Notice the factor of 1 million in the energy density. That was necessary to get a good
fit.
%Makes Energy Density points from a Tesseral Quadrupole
K=d.^4.*Q.^2.*rho.*k.^4./(32.*pi.^2.*(R).^2).*(k^2.*(cos(Theta)).^2.*(sin(Theta)).^2.*(
2+1./(k.*R).^2+18./(k.*R).^4+81./(k.*R).^6));
U=d.^4.*Q.^2.*rho.*k.^4./(32.*pi.^2.*(R).^2).*((cos(2*Theta)).^2./(R).^2).*(1+3./(k.*R)
.^2+9./(k.*R).^4);
r=1000000*(K+U);
polar(Theta,r,'-b')
T=['Energy Density of Quadrupole where kR=' num2str(k*R)];
title(T);
e=zeros(2,6);
e(1,:)=Theta;
e(2,:)=r;
e=e';
dlmwrite('edpoints.xls',e,'\t');

%Create a set of a thousand points to check it against

M=-j.*k.^3.*d.^2.*rho.*c.*Q.*((cos(theta)).*sin(theta))./(4.*pi).*[1-3./(k.*R).^2-
(j.*3)./(k.*R)].*exp(j.*(-k.*R));
e=zeros(2,1000);
e(1,:)=theta;
e(2,:)=M;
e=e';
dlmwrite('realpresspoints.xls',e,'\t');

W=-j.*k.^3.*d.^2.*Q./(4.*pi.*R).*cos(theta).*sin(theta).*(1-9/(k^2.*R.^2)-
j.*4./(k.*R)+j.*9./(k.^3.*R.^3))*exp(-j*k.*R);
e=zeros(2,1000);
e(1,:)=theta;
e(2,:)=W;
e=e';
dlmwrite('realrvpoints.xls',e,'\t');

 17

S=k^2*d.^2.*Q./(4*pi*R.^2).*(2.*(sin(theta)).^2-1).*(1-3.*j./k./R-
3./k.^2./R.^2).*exp(j.*(-k.*R));
e=zeros(2,1000);
e(1,:)=theta;
e(2,:)=S;
e=e';
dlmwrite('realtvpoints.xls',e,'\t');

K=d.^4.*Q.^2.*rho.*k.^4./(32.*pi.^2.*(R).^2).*(k^2.*(cos(theta)).^2.*(sin(theta)).^2.*(2
+1./(k.*R).^2+18./(k.*R).^4+81./(k.*R).^6));
U=d.^4.*Q.^2.*rho.*k.^4./(32.*pi.^2.*(R).^2).*((cos(2*theta)).^2./(R).^2).*(1+3./(k.*R).
^2+9./(k.*R).^4);
E=1000000*(K+U);
e=zeros(2,1000);
e(1,:)=theta;
e(2,:)=E;
e=e';
dlmwrite('realedpoints.xls',e,'\t');

Scatteredpressure.m

close all;
clear;
global R w rho k
c=343;
rho=1.21;
% Q=input('Please type in the value of Q\n\n');
% d=input('Please type in the value of d (distance between sources)\n\n');
% f=input('Please type in the value of f\n\n');
% R=input('Please type in the value of R\n\n');
R=.163;
f=100;
Q=1; d=.01;
k=2*pi*f/c;x0=.5*d;
Theta=0:2*pi/5 :2*pi;
theta=0:2*pi/999 :2*pi;

%Makes Pressure points from a Tesseral Quadrupole
M=-j.*k.^3.*d.^2.*rho.*c.*Q.*((cos(Theta)).*sin(Theta))./(4.*pi).*[1-3./(k.*R).^2-
(j.*3)./(k.*R)].*exp(j.*(-k.*R));
polar(Theta,M,'-r');
T=['Pressure of Quadrupole where kR=' num2str(k*R)];
title(T);
e=zeros(2,6);
e(1,:)=Theta;
e(2,:)=M;
e=e';

 18

dlmwrite('presspoints.xls',e,'\t');
figure(1);
figure

%Makes Radial Velocity points from a Tesseral Quadrupole
W=-j.*k.^3.*d.^2.*Q./(4.*pi.*R).*cos(Theta).*sin(Theta).*(1-9/(k^2.*R.^2)-
j.*4./(k.*R)+j.*9./(k.^3.*R.^3))*exp(-j*k.*R);
polar(Theta,W,'-k');
T=['Radial Velocity of Quadrupole where kR=' num2str(k*R)];
title(T);
e=zeros(2,6);
e(1,:)=Theta;
e(2,:)=W;
e=e';
dlmwrite('rvpoints.xls',e,'\t');
figure

%Makes Angular Velocity points from a Tesseral Quadrupole
S=k^2*d.^2.*Q./(4*pi*R.^2).*(2.*(sin(Theta)).^2-1).*(1-3.*j./k./R-
3./k.^2./R.^2).*exp(j.*(-k.*R));
polar(Theta,S,'-g');
T=['Angular Velocity of Quadrupole where kR=' num2str(k*R)];
title(T);
e=zeros(2,6);
e(1,:)=Theta;
e(2,:)=S;
e=e';
dlmwrite('tvpoints.xls',e,'\t');
figure

% Notice the factor of 1 million in the energy density. That was necessary to get a good
fit.
%Makes Energy Density points from a Tesseral Quadrupole
K=d.^4.*Q.^2.*rho.*k.^4./(32.*pi.^2.*(R).^2).*(k^2.*(cos(Theta)).^2.*(sin(Theta)).^2.*(
2+1./(k.*R).^2+18./(k.*R).^4+81./(k.*R).^6));
U=d.^4.*Q.^2.*rho.*k.^4./(32.*pi.^2.*(R).^2).*((cos(2*Theta)).^2./(R).^2).*(1+3./(k.*R)
.^2+9./(k.*R).^4);
r=1000000*(K+U);
polar(Theta,r,'-b')
T=['Energy Density of Quadrupole where kR=' num2str(k*R)];
title(T);
e=zeros(2,6);
e(1,:)=Theta;
e(2,:)=r;
e=e';
dlmwrite('edpoints.xls',e,'\t');

 19

%Create a set of a thousand points to check it against

M=-j.*k.^3.*d.^2.*rho.*c.*Q.*((cos(theta)).*sin(theta))./(4.*pi).*[1-3./(k.*R).^2-
(j.*3)./(k.*R)].*exp(j.*(-k.*R));
e=zeros(2,1000);
e(1,:)=theta;
e(2,:)=M;
e=e';
dlmwrite('realpresspoints.xls',e,'\t');

W=-j.*k.^3.*d.^2.*Q./(4.*pi.*R).*cos(theta).*sin(theta).*(1-9/(k^2.*R.^2)-
j.*4./(k.*R)+j.*9./(k.^3.*R.^3))*exp(-j*k.*R);
e=zeros(2,1000);
e(1,:)=theta;
e(2,:)=W;
e=e';
dlmwrite('realrvpoints.xls',e,'\t');

S=k^2*d.^2.*Q./(4*pi*R.^2).*(2.*(sin(theta)).^2-1).*(1-3.*j./k./R-
3./k.^2./R.^2).*exp(j.*(-k.*R));
e=zeros(2,1000);
e(1,:)=theta;
e(2,:)=S;
e=e';
dlmwrite('realtvpoints.xls',e,'\t');

K=d.^4.*Q.^2.*rho.*k.^4./(32.*pi.^2.*(R).^2).*(k^2.*(cos(theta)).^2.*(sin(theta)).^2.*(2
+1./(k.*R).^2+18./(k.*R).^4+81./(k.*R).^6));
U=d.^4.*Q.^2.*rho.*k.^4./(32.*pi.^2.*(R).^2).*((cos(2*theta)).^2./(R).^2).*(1+3./(k.*R).
^2+9./(k.*R).^4);
E=1000000*(K+U);
e=zeros(2,1000);
e(1,:)=theta;
e(2,:)=E;
e=e';
dlmwrite('realedpoints.xls',e,'\t');

Sphericalbesselj.m

function f=spherbesselj(n,x)
f=sqrt(pi./2./x).*besselj(n+1/2,x);

Sphericalbessely.m

function f=spherbessely(n,x)
f=sqrt(pi./2./x).*bessely(n+1/2,x);

