
Modeling Insertion Loss of Engine Enclosures

Zac Jensen

A senior thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Dr. Scott D. Sommerfeldt, Advisor

Department of Physics and Astronomy

Brigham Young University

April 2013

Copyright © 2013 Zac Jensen

All Rights Reserved

2

3

ABSTRACT

Modeling Insertion Loss of Engine Enclosures

Zac Jensen

Department of Physics and Astronomy

Bachelor of Science

Acoustic enclosures are commonly used to attenuate the noise radiated from a sound

source. A model to accurately predict the insertion loss of an enclosure can quickly become

complicated for complex configurations and have uncertainties over different frequency

ranges. In many such situations, a reliable, simple method of predicting insertion loss with

reasonable accuracy would be valuable if a quick estimation is needed for a certain

enclosure. An insertion loss model was tested using a Design of Experiments (DOE) approach,

which incorporated a range of apertures, absorptive treatment, and obstructions, with varying

surface areas and positions in order to span a large design space. This paper discusses the

insertion loss measurements of the DOE test configurations and compares the measurements

with an attempted fit of all 36 configurations. Nearly 80% of the configurations fell below an

error of 2.5 dB, and 100% fell below 4.5 dB, which was deemed to provide a reasonable rough

estimate of insertion loss.

This research was sponsored by Caterpillar Inc., under the terms of the Caterpillar Master

Sponsored Research Agreement and contains joint intellectual property. Do not distribute

without the permission of Caterpillar Inc.

4

5

Contents

1 - Introduction ... 7

1.1 Modeling Enclosure Performance .. 8

1.2 Scope .. 8

2 - A Simple Model... 10

2.1 Solid Angle ... 11

2.2 The Fundamental Equation .. 15

2.3 Fit to Experimental Data .. 19

3 - Experimental Methods ... 20

3.1 Design of Experiments ... 20

3.2 Sound Power Measurements .. 24

3.3 Experimental Setup .. 26

4 - Results and Analysis .. 29

4.1 Overall Error Definition ... 29

4.2 Characteristics of the Model .. 30

4.3 Solid Angle Fit ... 36

5 - Appendix ... 41

5.1 References .. 41

5.2 Definitions .. 42

5.3 Diffraction and Directivity ... 43

5.4 DOE and Results .. 47

5.4 Psuedo Code and MatLab Scripts .. 57

6

7

Section 1

Introduction

Acoustic enclosures are often used to reduce noise radiated from a source. Enclosures are

especially useful for attenuating engine noise. In the case of an engine enclosure, there may be

certain operational noise standards or requirements which must be met. The ability to predict

how well an enclosure attenuates noise is valuable in these situations. The prediction can be

even more valuable should there be certain design requirements for the enclosure, such as a

mandatory placement of ventilation (aperture). A system that predicts the performance of an

enclosure allows engineers to optimize an enclosure design to meet all of the necessary design

requirements as well as the noise standards.

Caterpillar, Inc. (CAT) has developed a program called Sonic + which models the

acoustic properties of enclosures. In this work, a simple model was developed for predicting the

sound power radiated from an enclosure, which will be incorporated into Sonic +. The sound

power radiated from the enclosure can be used to calculate insertion loss (IL), which is a

measurement of how well the enclosure attenuates noise. The insertion loss of an enclosure is

defined as the difference between the sound power level of the noise source outside of the

8

enclosure and the sound power level of the noise source radiated by the enclosure with the source

inside (Eq. 2.8). If an enclosure attenuates noise very well, it will have a high insertion loss.

1.1 Modeling Enclosure Performance

There are many methods that exist to model enclosure performance, and more specifically

insertion loss. These methods may be accurate, but they can also take a considerable amount of

computation time. Carter shows that insertion loss can be predicted using finite element

modeling, and that source to aperture distance, aperture size and absorption affect insertion loss

the most for an enclosure configuration [1]. Statistical Energy Analysis (SEA) is an approach

used by Ming and Pan to model insertion loss for two enclosures with varying absorption

properties [2]. They found that the amount of absorption in the enclosure affected the insertion

loss greatly. Their experiment was limited to rectangular boxes, with no variation of source

position or enclosure configuration. A model was developed by Sgard et al. using SEA and

image source methods [3]. Their experiment consisted of two different enclosures, a rectangular

box, and an L-shaped box, with varying source positions, enclosure materials, and an aperture

element opened or closed. The image source method was comparable to other common methods

in predicting insertion loss. The method discussed in this paper uses a ray-tracing approach to

determine the sound power that leaves the enclosure before and after the first reflection. This

approach allows for multiple source positions, apertures, absorption panels, as well as

obstructions inside the enclosure.

1.2 Scope

The goal of the project was to develop and analyze predictions from a simple model of insertion

loss for several enclosure configurations and compare the results to measured insertion loss data.

9

Usage guidelines have been developed for the simple model to help CAT engineers use the

model and understand the confidence levels of the insertion loss predictions. The usage

guidelines are explained in detail in section 4.

The main frequency range of interest here for noise due to a tractor engine is 1 to 8 kHz.

An extension of the model to incorporate lower frequencies was briefly investigated in the early

stages, but was deemed to currently be of secondary concern so it was not fully developed.

Rather, it was decided to focus on developing a satisfactory model without low frequencies

included. Details of the low frequency investigation are given in section 5.3.

10

Section 2

A Simple Model

The model uses concepts associated with ray tracing to determine how much sound power will

be absorbed, reflected or transmitted by any surface within the enclosure. The surfaces of the

enclosure are discretized into elements using a mesh with dimension dx. (For simplicity, square

elements of length and width dx are assumed in the discussion, although the model is not limited

to square elements.) The size used for all of the calculations discussed here was dx=0.2 m,

which is a relatively large mesh size. This was used in order to accelerate calculations of each

configuration, without sacrificing the desired level of accuracy. Using a dx of 0.2 m, an

enclosure calculation only takes a few seconds. A mesh element with a dx of 0.1 to 0.3 m will

provide a similar range of errors, with 0.1 m being slightly more accurate and 0.3 m slightly less

accurate. It was found that the results using a coarse mesh provide very good qualitative results,

so an efficient method of investigation would be to begin with a coarse grid to investigate a

potentially large number of possible enclosure designs, and then to use a finer mesh to further

investigate the top few designs that result from that process.

11

Each element in the model has a corresponding absorption and transmission coefficient, which is

used to determine the amount of sound power absorbed, transmitted and reflected. There are

four types of elements in the enclosure model: apertures, absorption panels, obstruction sides,

and the sides of the enclosure. Solid angles are used to determine the percentage of sound power

that will be incident upon an element.

2.1 Solid Angle

The solid angle is a measure of how much a point (or element) “sees” an object, or how large the

two-dimensional angle is that the object subtends at that point. In spherical coordinates, the solid

angle is measured by integrating over the azimuthal angle and the polar angle of the object [4].

 (2.1)

A point radiating into free space has a total solid angle of 4π, a complete sphere. A point located

on a rigid plane has a solid angle of 2π, half of a sphere. Because the elements used in the

enclosure appear as rectangular elements, an approximation can be used to determine the solid

angle to avoid the integration. For the approximation to work, the point is considered to be at the

origin of a sphere with one corner of the rectangle along the x-axis. Figure 2.1 show the

resulting geometry. The dimensions of the element are a and b, and c is the distance from the

point to the corner of the object.

12

Figure 2.1 – A rectangular object with a corner opposite the origin of the sphere. The dimensions of the rectangle

are a x b, and c is the distance from the corner to the origin. The solid angle subtended by the rectangle is given by

Eq. 2.2.

Using spherical triangles and a few approximations, Khadjavi shows that the solid angle

of the point to the element is approximated by [5]:

 (2.2)

Figure 2.2 shows an example of calculating the solid angle of an element. The source is set at

the origin, and the left corner of the element is at (0, y, 0). The element is discretized into mesh

elements with dimension dx. If the dx does not fit exactly in the dimensions, a rectangle (with

width less than dx) is created to incorporate the rest of the element into a smaller mesh element.

Figure 2.2 shows the process for calculating the solid angle for a mesh element. The solid angle

of the mesh element is approximated by using the solid angles of four rectangles that are added

and subtracted to yield to solid angle for just the mesh element.

13

Figure 2.2 – The solid angle of a mesh element is shown. As long as the source is opposite a corner of the

rectangle, the solid angle of the mesh element is the sum of the solid angles of different rectangles. The complete

solid angle of the source to the entire element is the sum of each of the mesh element solid angles.

The insertion loss model uses two different solid angles, the solid angle of the source to

each respective element, ΩSi (Figure 2.3), and the solid angle from one element to another

element, Ωkj (Figure 2.4). The first solid angle is calculated using the approximation mentioned

above. The source is reoriented and used as a point at the origin. Because obstructions are

included in the enclosure, it is necessary to determine if there is an obstruction between the

source and a mesh element. If there is an obstruction between the source and the mesh element

(i.e. the source can’t “see” the mesh element), the solid angle of that mesh element is not

calculated. The solid angle from the source to an element is then the sum of the solid angles of

all unobstructed mesh elements.

14

Figure 2.3 – The solid angle measured from the source to a mesh element. If there is an obstruction (or another

element) between the source and a mesh element, the solid angle from the source to the obstructed mesh element is

not calculated. The solid angle from the source to an element is the sum of the solid angles from the source to each

unobstructed mesh element.

The second solid angle calculation, element to element, is calculated in a manner similar

to the source to element solid angle, with one main difference. Both the j-th and the k-th

elements are discretized into a mesh. The solid angle is then calculated from the center of the k-

th mesh element to each unobstructed j-th mesh element. These are then summed and the solid

angle is calculated from the center of the next mesh element of the k-th element to each of the

unobstructed mesh elements of the j-th element. The total solid angle from the k-th element to

the j-th element is the sum of each of these mesh element solid angles.

15

Figure 2.4 – The solid angle measured from the k-th element to the j-th element. The approach is similar to the

approach for the solid angle from a source to an element, using the center of the mesh element for the k-th element

as the point for the solid angle.

2.2 The Fundamental Equation

A simple model for insertion loss has been developed by CAT and BYU, and is based on a

fundamental equation to estimate the insertion loss. This fundamental equation appears as Eq.

3.6 and requires that the enclosure geometry is known, as well as the absorption (α) and

transmission (τ) coefficients of each surface.

In the current implementation, it is assumed that there is no reflection when energy

reaches an aperture, so all of the energy at the aperture is transmitted (τ=1 and α=0). Obstruction

elements are assumed to have τ=0. Otherwise, when energy reaches another element, the

transmission through that element can be given by τj, the transmission coefficient of the j-th

element. The ratio of the solid angle from the source to the j-th element (ΩSj) to the total solid

angle of a point (4π) gives the fractional amount of direct-radiated power that will be incident on

the element. Eq. 2.3 determines the direct power transmitted (Πdirect) through all elements on the

first reflection as a fraction of the total sound power of the source (Π).

16

 (2.3)

A reverberant field term is used to estimate the sound power that transmits from the

enclosure after the first reflection. At the first reflection, sound power will be transmitted,

absorbed, or reflected. Eq. 2.4 is the “reverberant” power term, and becomes the power available

for the reverberant field term. It determines the fraction of total sound power (Π) left in the

enclosure after the absorption and transmission of energy through each element on the first

reflection.

 (2.4)

The next part of the reverberant field term determines the fraction of the reverberant

power that transmits out of the enclosure (through absorption or radiation) after the first

reflection. The complete reverberant field term is given by Eq. 2.5, where the three sums are

over all elements (except for the k≠ j term in the third sum).

 (2.5)

This expression assumes that the reverberant energy is a diffuse field. The (1-αk-τk) term

is the fraction of energy that reflects from the k-th element. Skis the surface area of the k-th

element, and S is the total surface area of the enclosure (including apertures). The spatially

averaged absorption coefficient

 and transmission coefficient

 are in the

denominator multiplied by surface area. This fractional energy is then multiplied by Ωkj/2π, the

fraction of solid angle that the k-th element “sees” the j-th element. It is then multiplied by τj the

transmission coefficient of the j-th element. This gives the amount of reverberant energy that

escapes the enclosure through the j-th element. Only one reflection was considered directly in

this model, with all subsequent reflections being lumped together in the reverberant term. Other

17

ray tracing models may follow more than one reflection, but for simplicity this model considers

only the first reflection. It is assumed that this will give the desired accuracy without a

considerable amount of computation time.

The total energy radiated from the enclosure can be found by summing the direct and

reverberant field terms (Πrad = Πdirect + Πreverb).

 (2.6)

At this point, if the source power (Π) is known, then the power radiated from the enclosure (Πrad)

can be found using Eq. 2.6. The physical interpretation of each term is outlined in Fig. 2.5.

Figure 2.5 – The fundamental equation (Eq. 2.6) is shown, and the physical interpretation of each term is outlined.

The power radiated from any single element (besides obstructions) can be calculated by

replacing the sum over the index j with the single element or elements desired. In other words, if

an enclosure has one aperture, and it is necessary to calculate the sound power radiated only

from that aperture (and not the power radiated by transmission through the sides of the

18

enclosure), it can be done by replacing the sum over j elements with one element, which we will

label Ap. Eq. 2.7 is the power radiated from the aperture element, (where N is the total number

of elements). If an enclosure has more than one aperture element, and the power radiated from

all apertures is desired, then ΠAp would be the sum of the power radiated from each aperture. A

similar process can be used for any other element of the enclosure.

 (2.7)

Insertion loss is defined by the difference of the sound power level of the source without

the enclosure and the sound power level of the source inside the enclosure. Because of the rules

of logarithms, this can be manipulated to be the sound power level of the ratio of the total sound

power divided by the sound power radiated out of the enclosure.

 (2.8)

Because there is a source power term (Π) in the sound power radiated from the enclosure (Πrad),

the sound power ratio (

) can be simplified so that the sound power term (Π) cancels out. This

is based on the assumption that the power radiated by the source inside the enclosure is the same

as the power radiated by the source outside of the enclosure. The full formula for the ratio is:

 (2.9)

Insertion loss can then be calculated as:

 (2.10)

19

2.3 Fit to Experimental Data

Eq. 2.10 is the theoretical equation used to predict the insertion loss of an enclosure with a single

source and the elements discussed. A design of experiments (DOE) was performed with a wide

range of enclosure arrangements. Two different methods of fitting the model to the experimental

data were tested.

The first method used assumes that the equation for insertion loss is a quadratic equation,

with a DC term, a linear term and a squared term.

 (2.11)

The constants in Eq. 2.11 were found by fitting the model to the experimental data using a least

squares method (LS). The sum of the squares of the residuals (the difference between the model

and the measurement) is minimized in a least squares fit [6]. This optimizes the curve (in this

case the curve is Eq. 2.11) to fit the experimental data. For a perfect model, the constants should

be a1=0, a2=10, and a3=0. It was desired that the least squares fit should give similar

coefficients.

The second method was a fit in the sound power (Watts) domain instead of the insertion

loss domain (dB). Because Sonic + does all of its calculations in the power domain, it was

decided that this may be a more useful way to fit the data. The fit was developed based on trends

seen in the data, specifically regarding the solid angle of the source to all apertures (ΩSAp) and

the solid angle of the obstructions to apertures (ΩOAp). This method was determined to be

superior to the least squares method of fitting and a more detailed analysis will be given in Sec. 4

of this paper.

20

Section 3

Experimental Methods

3.1 Design of Experiments

The design of experiments (DOE) was developed in order to cover a large range of possible

enclosure configurations. The DOE included a single source and multiple elements: apertures,

absorptions, obstruction sides, and the enclosure walls. The size of the enclosure or the elements

could not change, but the placement of the source and the elements was varied into 24 different

configurations. After the first 24 configurations were measured, it was necessary to include 12

more configurations which were designed to test the trends seen in the first 24 measurements.

Table 3.1 shows the range of parameters covered in the DOE. The solid angle percentage in the

table is defined as , the sum of the fractional solid angle of the same elements. In

other words, if there were three aperture elements, the solid angle percentage would be the sum

of the solid angles to all three apertures, divided by 4π for the fraction, then multiplied by 100 to

get a percentage. Since the obstructions take up a certain volume in the enclosure, the volume

percentage is a sum of the total volume of all obstructions, divided by the volume of the

enclosure, then multiplied by 100. For absorption panels, surface area was used, such that the

21

percentage of absorption surface area was 100 multiplied by the total surface area of all

absorption panels, divided by the surface area of the entire enclosure. Aperture surface area

percentage was calculated likewise.

 Obstruction Absorption Aperture

Solid Angle (Source to Element) % 0% to 50% 0% to 40% 0% to 30%

Volume / Surface Area % 0% to 55% 8% to 22% 4% to 15%

Table 3.1 – The range spanned for each element in two different categories, solid angle source to the element, and

volume or surface area percentage of the element to the entire enclosure.

3.1.1 Element Size and Placement

Enclosure

The enclosure was made out of ¾” MDF. The absorption and transmission coefficients were

obtained from published values for MDF. The dimensions of the enclosure were 1.95 m x 0.745

m x 1.2 m, in order to roughly approximate a typical CAT engine enclosure (see Fig. 3.1).

Figure 3.1 – The experimental enclosure with all five obstructions inside, and three apertures open. The enclosure

was placed on sawhorses 0.91 m from the floor in order to approximate operating position.

22

Apertures

The aperture panels were MDF panels that could be removed from the side, front, and back of

the enclosure. There were two different sizes of apertures. The apertures on the side of the

enclosure were 0.457 m x 1.02 m while the aperture on the front or back of the enclosure was

0.584 m x 0.991 m (see Fig. 3.2). If an aperture was desired at a certain place on the enclosure,

the panel at that spot would be removed. If no aperture was desired at that place, the aperture

panel would be bolted back in to the enclosure. A gasket on the aperture panel served to seal the

panel and minimize leakage through the edges of the panel.

Figure 3.2 – Aperture panels used to close a side aperture (left) and front aperture (right).

Absorption Panels

The absorption panels had dimensions 0.61 m x 1.17 m and were placed on the enclosure walls

(see Fig. 3.3). The absorption coefficients for the absorption panels were experimentally

obtained at BYU.

23

Figure 3.3 – Absorption panel.

Obstructions

The obstructions were also made of ¾” MDF. They were cubes with side dimensions of 0.57 m

(see Fig. 3.4). The obstructions were placed inside the enclosure in varying arrangements. If an

obstruction was stacked on top of another, they were modeled as one obstruction.

Figure 3.4 – Obstruction element.

24

Source

The source used was a dodecahedron source built at BYU. It was necessary for the source to be

small and behave somewhat like a point source (see Fig. 3.5). The dodecahedron was used

because it was small enough to fit into the enclosure around the obstructions, and because CAT

uses similar sources for testing. The source was placed on a tripod-like stand inside the

enclosure, either on the floor of the enclosure or on top of an obstruction.

Figure 3.5 – Dodecahedron a) outside of enclosure and b) inside the enclosure. All source locations are relative to

the center of the dodecahedron.

3.2 Sound Power Measurements

Sound power measurements were taken in a certified reverberation chamber. The measurements

were taken as near as possible to the requirements of ISO 3741:2010 [7]. There were a few

requirements that could not be met because of space restrictions. In the standard, sound power

measurements are calculated by using at least 6 microphones to obtain a spatially averaged sound

pressure level (SPL). The sound power level is then obtained using meteorological conditions of

the measurement, as well as the reverberation time (T60) and dimensions of the room. The

a) b)

25

equation in the standard uses the room and test conditions and adds to or subtracts from the SPL

in decibels. From the rule of logarithms, this is effectively the same as multiplying the spatially

averaged pressure by a constant (χ). In other words, according to ISO 3741, the sound power

level is given by the following equation, where is the spatially averaged pressure:

 (3.1)

Using Eq. 3.1, Eq. 2.8 can be re-written for a different way of calculating insertion loss, given in

Eq. 3.2, where is the averaged pressure radiated from the enclosure.

 (3.2)

For insertion loss measurements, it was necessary to measure the sound power of the

source outside of the enclosure, and then place the source inside the enclosure and measure the

sound power radiated from the enclosure. If the meteorological and room conditions are the same

for both the source and enclosure measurements, then the power coefficient χ is the same for

both cases. This term cancels out in Eq. 3.2 and the insertion loss can be calculated by the

following equation:

 (3.3)

The insertion loss measurements were calculated using Eq. 3.3, as long as the power

coefficient (χ) remained the same during both the outside of enclosure and inside enclosure

measurements. Figure 3.6 shows the SPL of the source outside the enclosure for each of the 36

configurations. The measurements were very uniform, which was expected because the

meteorological and room conditions remained the same. Figure 3.6b shows the 36 SPLs radiated

from each of the enclosure configurations. These measurements were subtracted from the

measurements in Figure 3.6a in order to obtain the insertion loss for each configuration.

26

Figure 3.6 – a) The spatially averaged sound pressure level of the source outside of the enclosure for each enclosure

configuration. b) The spatially averaged sound pressure level radiated from the enclosure for each enclosure

configuration.

3.3 Experimental Setup

3.3.1 Reverberation Chamber

The reverberation chamber has dimensions of approximately 5 m x 6 m x 7 m, with the height as

the longest dimension. The nature of the experiment and the layout of the chamber made space

an issue in the setup. The setup was not able to comply with all of the ISO requirements, but

came as close as possible. The requirements for the source state that it should be placed in

normal working position or on the ground if this is not possible. The source should also be 1.5 m

from hard surfaces (besides the ground). Because the insertion loss measurements measured

both the source outside the enclosure and the source inside the enclosure, the experiment

effectively had two source positions. When the source is outside the enclosure, it needs to be 1.5

meters from all hard surfaces, including the enclosure. When the source is inside the enclosure,

the entire enclosure is considered the source and must be 1.5 meters from hard surfaces. There

was not sufficient space in the chamber for the enclosure to fit and for the dodecahedron to be

b) a)

27

1.5 m away from hard surfaces. One end of the enclosure violated the 1.5 m boundary

requirement by 7.4 cm. This end did not have an open aperture, so it was determined that this

would be the best way to break the standard requirements. Figure 3.7 shows the setup inside the

reverberation chamber.

Figure 3.7 – The layout of the reverberation chamber. The edge of the enclosure is past the 1.5 m requirement by

about 7.4 cm. The red stars represent the six microphones; the arrows represent the relative direction the

microphone is pointed. The bottom right corner represents the origin (0,0,0) with the x-direction to the west and the

y direction to the north.

3.3.2 Microphone Placements

ISO 3741:2010 requires at least six microphones to be randomly placed around the source.

There are several criteria to determine how far from the source each microphone should be to

ensure each microphone is in the reverberant field. Each microphone was placed a distance of at

least 1.7 m away from the source. The microphones also need to be at least half a wavelength

away from each other. At 100 Hz, this distance is 1.75 m and the microphones are

approximately that far apart. The measurements meet the standard from 1000 Hz to 8000 Hz.

The reverberation time (T60) of the chamber was different with the enclosure inside, and so the

28

low frequency validity of the measurements extends to approximately 300 Hz. Only the 1000 to

8000 Hz measurements will be considered in this paper. Figure 3.7 shows the microphone

positions and Table 3.2 shows the microphone distances and angles relative to the dodecahedron

position, without the dodecahedron in the stand.

Dodecahedron (Acoustic Center) X: 1.68 m Y: 3.34 m Z: 1.12 m

Microphone Reference Position X: 1.68 m Y: 3.34 m Z: 1.02 m

-------------- Azimuthal Angle Altitude Angle Distance

Microphone 1 7.5
o

56.5
o

4.18 m

Microphone 2 254
o

70
o

1.98 m

Microphone 3 340
o

59.5
o

3.35 m

Microphone 4 255.5
o

26
o

2.25 m

Microphone 5 301
o

50
o

4.19 m

Microphone 6 355.5
o

78
o

4.72 m

Table 3.2 – Source and microphone positions for reverberation chamber experimental setup. Microphone positions

are azimuthal and altitude angles relative to the dodecahedron stand position, which is X: 1.68 m, Y: 3.34 m, and Z:

1.02 m, about 4 inches lower than the acoustic center of the dodecahedron. The azimuthal angle is 0
o
 facing the

West wall and positive degrees are clockwise from that position (90
o
 is facing the North wall). The altitude angle is

0
o
 when pointed directly at the West wall and 90

o
 when pointed at the ceiling.

29

Section 4

Results and Analysis

4.1 Overall Error Definition

The most important factor in analyzing the data was determining how well the model works

compared to the actual measurements. An overall error term was defined in order to more easily

compare the 36 configurations. A residual was found by subtracting the insertion loss predicted

by the model from the measured insertion loss at each third octave band (Eq. 4.1). An overall

error was then determined by the average of the absolute value of the residuals across the

frequency range of interest (Eq. 4.2, F is the number of third octave bands in the frequency

range). Although the overall error is always a positive value, if the majority (50% or more) of

residual errors over the frequency range were negative, then the overall error value was changed

to a negative number. This made it possible to tell if the model underestimated or overestimated

insertion loss for the most part. Because the large part of the research was to determine how well

the model works compared to measured data, it became important to know trends in the model,

such as over- and underestimation. Figure 4.1 shows the residual and overall error graphically

for configuration 2 (see Sec. 5.3 for a description of the configuration).

30

 (4.1)

 (4.2)

Figure 4.1 – The error measured for the 2
nd

 configuration. The majority of residual error (green) points are

negative, giving a negative overall error (blue). This indicates that the model underestimates insertion loss

compared to the measured values.

4.2 Characteristics of the Model

The theoretical equation for insertion loss may not account for all acoustical effects present in

the enclosure. Because this was the case, it was necessary to fit the predicted insertion loss to the

measured insertion loss. Using Eq. 2.8, the equation for insertion loss was assumed to be in the

form of a 2
nd

 degree polynomial.

 (4.3)

The constants in Eq. 4.3 are found by fitting the model to the experimental data using a least

squares method (LS). If the model worked perfectly, the constants would be expected to be

a1=0, a2=10, and a3=0. Figure 4.2 shows the initial LS fit to the experimental data for the

initial 24 enclosure configurations. The coefficients for this fit were a1= 4.91, a2=-5.28, and

31

a3=15. Figure 4.3 is the distribution of overall errors for these 24 configurations with the least

squares fit.

Figure 4.2 – Least Squares Fit of the initial 24 configurations

Figure 4.3 – Distribution of Errors for the initial 24 configurations

Several parameters of the enclosure were analyzed to see if there were any characteristics

of an enclosure that were common in the configurations with larger errors. One parameter that

seemed to contribute to a large error was a low solid angle from the source to apertures (ΩSAp).

32

Figure 4.4 is the overall error of each configuration with respect to the configuration’s ΩSAp.

Notice that the errors are largest where the ΩSAp is low. More specifically, configurations 23 and

24 (see Sec. 5.4) had very low ΩSAp and underestimated insertion loss considerably. Both of

these configurations had the solid angle of the source to apertures blocked by obstructions, which

contributed to the low ΩSAp. Other configurations, such as 9 and 10, were similar to

configurations 23 and 24 except those had a higher ΩSAp. A hypothesis was created that this

source configuration created an effect where the sound energy is localized to this “cavity” where

the source is located and was not distributed uniformly throughout the enclosure the way the

model predicts. The energy was more likely to reflect off of the surfaces in the cavity and

eventually be absorbed than to reach an aperture by or shortly after the first reflection. This

being the case, the model would overestimate the sound power radiated from the source, thereby

underestimating insertion loss.

Figure 4.4 – Error with respect to ΩSAp for the initial 24 configurations.

33

Figure 4.5 – Error with respect to ΩObAp for the configurations with a ΩSap% ≤ 2%.

An attempt was made to characterize this localized energy effect. Configurations with a

ΩSAp% equal to or less than 2% were considered to have a low ΩSap (see the vertical dashed line

in Fig. 4.4). The solid angle of the obstruction side to apertures (ΩObAp) for these configurations

was also determined, and used as a measurement of the localized energy effect. If the ΩObAp was

high (meaning the obstruction was close to and largely blocked the aperture), then the localized

energy effect was deemed to be present in the configuration. This can be seen from Figure 4.5.

In order to test this hypothesis, 12 configurations were developed in addition to the 24

initial configurations. Six of the twelve configurations have a low ΩSap and varying ΩObAp, while

the other six are similar configurations with a higher ΩSap (see Sec. 5.4, configurations 25 and

30). The entire set was measured and the LS fit was applied to all 36 measurements (see Fig.

4.6). In order to accommodate all 36 configurations, the coefficients changed to a1= -0.361,

a2=14.3, and a3=1.71. These coefficients are much closer to the desired 0, 10, 0 coefficients of a

perfect model.

34

Figure 4.6 – LS fit for all 36 configurations. The coefficients for this fit were a1=-0.361, a2=14.3, and a3=1.71.

These coefficients are much closure to the insertion loss definition, which would have coefficients of a1=0, a2=10,

and a3=0.

Figure 4.7 – Error with respect to ΩSAp for all 36 configurations. Notice the significant underestimation at ΩSap%

less than 2%.

35

Figure 4.8 – Error with respect to ΩObAp for all configurations with a ΩSAp% less than 2%. The majority of these

configurations underestimate insertion loss.

Figure 4.7 shows the error of each configuration with respect to the ΩSap% for all 36 runs,

and Figure 4.8 is similar to Figure 4.5 for all 36 configurations. Figure 4.9 is the distribution of

errors for the LS fit of all 36 configurations. The impact of configurations 25 to 32, which were

meant to be extreme cases, is seen in this figure. The maximum error is much larger for all 36

cases than it was for just the initial 24 cases.

36

Figure 4.9 – Distribution of errors for all 36 configurations using a LS fit.

4.3 Solid Angle Fit

The model calculates the power radiated from the enclosure, and from that power the insertion

loss is calculated. The LS fit is done in the insertion loss domain (i.e. dB scale). Because the

model actually gives sound power information, a fit in the sound power domain was investigated

and proved to be more useful. Since the LS fit of all 36 runs gave coefficients that were near to a

perfect theoretical model, a fit was developed by going back to the original equation for insertion

loss (Eq. 2.8), and including a fit to the

 term. Figures 4.10 and 4.11 show the data when the

coefficients were changed to a1=0, a2=10, and a3=0.

37

Figure 4.10 – Error with respect to ΩSAp% for all 36 configurations with the traditional insertion loss coefficients:

a1=0, a2=10, a3=0.

Figure 4.11 – Error with respect to ΩObAp for all configurations with a ΩSAp% less than 2% with the traditional

insertion loss coefficients: a1=0, a2=10, a3=0.

The fit was modified based on the solid angle of the source to apertures (ΩSAp) and the

solid angle of the obstructions to apertures (ΩObAp). It is basically an attempt to correct for the

underestimation of the model for subspaces of the data and bring the overall error of all the

configurations within the desired range. The errors were found to be largest when the ΩSAp term

38

was low. The idea behind the solid angle fit is to multiply the sound power radiated by the

aperture by a constant in order to decrease the sound power radiated from the enclosure. This

would increase the predicted insertion loss to better match the measurements. The sound power

radiated by the apertures is given in Eq. 2.7. Two constants were used to optimize the fit. The

first constant (C1) is used when a configuration has a ΩSAp% less than 2% and a ΩObAp% less

than 10%.

 (4.4)

The second constant (C2) is applied to configurations with ΩSAp% less than 2% and ΩObAp%

greater than 10%, (i.e. a configuration exhibiting the localized energy effect).

 (4.5)

After the correct constant has been applied to the aperture term, the sound power radiated from

the enclosure is given by the following:

 (4.6)

Insertion loss is then calculated as normal using the sound power term in Eq. 4.6. The

best results were obtained when C1 = 0.2 and C2 = 0.1. Figure 4.12 is the same as Fig. 4.10 but

with the solid angle fit applied to the data. The measurements with low solid angle are now

basically centered on zero, with a much smaller margin of error. Figure 4.13 shows the

distribution of errors, which is much more acceptable as a rough estimate than the previous LS

fit (Fig. 4.9).

39

Figure 4.12 – Error with respect to ΩSAp% for all 36 configurations with the solid angle fit applied (some of the

points overlap).

Figure 4.13 – Distribution of errors with the solid angle fit applied to all 36 configurations.

Figure 4.14 is a visual comparison of the LS fit to the solid angle fit. The solid angle fit

does a much better job of fitting configurations 23 through 28 and 33 and 34, the extreme ΩSAp

cases.

40

This model has been tested for an enclosure with a single source and the basic enclosure

elements discussed. With nearly 80% of the overall insertion loss errors less than 2.5 dB, and

100% less than 4.5 dB, the model is acceptable as a quick and efficient way to estimate insertion

loss for an enclosure. Should an enclosure design be tested with parameters outside of the ranges

in Table 3.1, the outcome of the insertion loss prediction is less certain.

Figure 4.14 – Visual comparison of LS fit to solid angle fit. The solid angle fit does a much better job of fitting the

extreme cases of configurations 23 through 28.

41

Section 5

Appendix

5.1 References

[1] - Carter , Amy Elizabeth, "Design of Partial Enclosures for Acoustical Applications." MS

Thesis, University of Kentucky, Paper 356. http://uknowledge.uky.edu/gradschool_theses/356

(2006).

[2] - Ming, R. and J. Pan, "Insertion loss of an acoustic enclosure." J. Acoust. Soc. Am., 116(6),

3453-3459 (2004).

[3] - Sgard, F., H. Nelisse, et al., "Prediction of the acoustical performance of enclosures using a

hybrid statistical energy analysis: Image source model." J. Acoust. Soc. Am., 127(2), 784-795

(2010).

[4] - Taylor, J. R., Classical Mechanics, (University Science Books, www.uscibooks.com, 2005).

[5] - Khadjavi, A., “Calculation of Solid Angle Subtended by Rectangular Apertures.” J. Opt.

Soc. Am., 58, 1417 (1968).

[6] - Weisstein, Eric W. "Least Squares Fitting." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/LeastSquaresFitting.html

[7] - ISO 3741:2010, Acoustics - Determination of sound power levels and sound energy levels of

noise sources using sound pressure - Precision methods for reverberation test rooms.

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/LeastSquaresFitting.html

42

5.2 Definitions

 - The source power radiated from the enclosure

 - Total sound power of the source when outside the enclosure

 – The direct power that escapes the enclosure without any reflections

 – The total reverberant power that escapes the enclosure

ΩSi – The solid angle of the source to the i-th element. (See Figure B.1)

ΩSi/4π – The fraction of the total solid angle that the source “sees” the i-th element

ΩSAp – Total solid angle of the source to all aperture elements

Ωkj – The solid angle of the k-th element to the j-th element. (See Figure B.2)

Ωkj/2π – The fraction of the total available solid angle that the k-th element “sees” the j-th

element

ΩObAp – Total solid angle of the obstructions to all aperture elements

αi – Absorption coefficient of the i-th element (α=0 for aperture elements)

τi - Transmission coefficient of the i-th element (τ=1 for aperture elements)

S – Total surface area of the enclosure (including apertures)

Si – Surface area of the i-th element

 – Spatially averaged absorption coefficient

 – Spatially averaged transmission coefficient

N – Total number of elements in the enclosure configuration

T60 – Reverberation time

43

5.3 Diffraction and Directivity

5.3.1 Diffraction

Diffraction is the bending of sound around objects that are smaller than its wavelength which, in

the case of enclosure configurations, is most prominent below the frequency range of 1-8 kHz. It

was hypothesized that the inclusion of diffraction in Eq. 2.6 may be necessary to predict the

power radiated by the enclosure at lower frequencies. A simple example of diffraction is shown

in Figure 5.1, which shows a source and a wall element, with an obstruction between them. The

gray color represents the sound pressure from the source on the element, and the brightness

represents the strength. The shadow zone (low sound pressure) is more similar to the

unobstructed solid angle of the source to the element for high frequencies. For low frequencies

the shadow zone is much smaller.

Figure 5.1 – The sound pressure incident on an element with an obstruction between the element and the source.

The gray color represents the sound pressure, brighter being a higher sound pressure. The dark gray area represents

the shadow zone, or areas that the obstruction affects the sound pressure incident on the element.

44

An attempt was made to determine a diffraction correction (κ) that would account for this effect.

The value of κ was determined by a computational experiment, and is given by the following

equations:

 (5.1)

 (5.2)

 (5.3)

Figure 5.2 – Diffraction correction (κ) as a function of frequency.

In Eq. 5.3, f is frequency, which means that x is effectively a 1/3 octave band index

where 100 Hz = 1. Eq. 5.2 gives the value of κ, and Eq. 5.1 shows that κ never goes above 1.

Figure 5.2 shows κ across all frequencies. The total solid angle () was then redefined as the

sum of the unobstructed solid angle () and the obstructed solid angle () multiplied by κ.

 (5.4)

At high frequencies, κ is nearly 0, and thus . This is consistent with the simple

model. For low frequencies, , which means becomes larger, or the obstruction

effectively becomes smaller. This concept is shown in Figure 5.3. Eq. 5.5 is the equation for

radiated power with the redefined total solid angle.

45

 (5.5)

Figure 5.3 – a) Completely unobstructed source, b) completely obstructed source, c) partially obstructed source.

The diffraction correction was found to give larger errors in both the high and low frequency

regions. Because the research was primarily to analyze how well the model works in the 1-8

kHz region, the diffraction correction was not further investigated.

 5.3.2 Directivity

The equation used for radiated sound power here assumes an omni-directional source. A quick

experiment was done to see the effects of directivity on insertion loss for different enclosure

configurations. A compression driver without a horn was used as a more directional source. The

driver was placed in the enclosure on its back, or on its side facing each of the cardinal directions

to see the effect of the directionality on insertion loss. The configurations effected most by the

directivity were the cases with considerable absorption near the source. At frequencies above 2

a) b) c)

46

kHz, differences of up to 10 dB or more are seen between the directions. This was for a very

directional source compared to a dodecahedron; however, more investigation may be warranted.

Figure 5.4 – Insertion loss of the compression driver in different orientations for configuration 17.

North

47

5.4 DOE and Results

The following figures show the enclosure configurations, along with the results from the

measurements and the model. There were 18 enclosure setups (absorption, apertures and

obstructions), each with 2 source positions, totaling 36 different enclosure configurations.

Above the graphs, the total IL levels are noted, IL meaning total insertion loss predicted by the

model (magenta), ILm is the total insertion loss of the measurement (red), and the overall error is

the error discussed in Sec. 4.1.

Configurations 1 and 2

48

Configurations 3 and 4

Configurations 5 and 6

49

Configurations 7 and 8

Configurations 9 and 10

50

Configurations 11 and 12

Configurations 13 and 14

51

Configurations 15 and 16

Configurations 17 and 18

52

Configurations 19 and 20

Configurations 21 and 22

53

Configurations 23 and 24

Configurations 25 and 26

54

Configurations 27 and 28

Configurations 29 and 30

55

Configurations 31 and 32

Configurations 33 and 34

56

Configurations 35 and 36

57

5.4 Psuedo Code and MatLab Scripts

CATSimpleModel.m Pseudo-Code

The CATSimpleModel.m script is the main script used to determine the sound power radiated

from an enclosure. The following is the pseudo-code for the MatLab program. Sonic + has a

method of designing an enclosure, and so for Sonic + users the relevant code will be from the

SolidAngleFunction.m and afterward.

 Define constants used in code: d, dx, frequency (1/3 octave) and frequency band width

(1-8kHz)

 Materials.m Function: Defines absorption and transmission coefficients of materials

used in enclosure

 DefineEnclosureDOE.m: Creates enclosure geometry and determines total volume and

surface area percentages for enclosure. Defines each element and its absorption and

transmission.

o getBlockPanels.m – Breaks a block into 6 panels. Each panel is an element with

dimensions and absorption and transmission coefficients.

o getAbsorberPanels.m – Creates absorption and aperture elements with

appropriate constants and dimensions. Uses MakeCoord.m for the coordinates

and getabsSA.m for surface area.

 SolidAngleFunction.m: Finds solid angles of enclosure geometry and defines important

variables used in the sound power calculation, i.e. ReverbPercent and Theta (see below).

o getSolidAngleObstruction.m – Breaks each element into a mesh, redefines

coordinates so that the source is at the source and determines if there is another

element obstructing the source. Then uses getSolidAng to calculate the solid

angle if there is no obstruction.

 getSolidAng.m – Uses rotaCoord.m to rotate the coordinates of the

element into the x-z plane, then calculates the solid angle of that element

using the solid angle approximations mentioned in section C [6].

o getA2AangObstruction.m – Breaks an element into mesh elements. Then uses

getSolidAngleObstruction.m to find the solid angle from the mesh element center

to an element, then multiplies that solid angle by dx^2 and moves to the next

mesh element.

o Defines OmegaSO, and OmegaWO and calculates the ReverbPercent and Theta

variables.

58

 Parameterize.m: Finds the parameters of the configuration, obstruction, aperture, and

absorption percentages, along with solid angle information. Side2Ap keeps track of the

obstruction to aperture solid angle, which is used to determine which coefficient is

applied to the PI_Ap term.

 Determine the sound power radiated from each element for each frequency. The code is:

PI_rad(j,f)=OmegaSO(j)*Elements(j).tau(f)/(4*pi)+(1-

ReverbPercent(f)).*(Theta(j,f)*Elements(j).tau(f)/(2*pi*(Salphabar1(f)+Staubar1(

f))));

o This corresponds to Eq. C.6, with ReverbPercent = Eq. C.4 (with the source

power () cancelled) and Theta = . These quantities are

calculated in SolidAngleFunction.m.

o In the code above, PI_rad(j,f) is a matrix of the j-th element, and f-th one-third

octave band. The power radiated from any individual element at any given one-

third octave band is given by picking the appropriate j-th and f-th index.

 Once the sound power radiated from the enclosure has been calculated, insertion loss can

be calculated and plotted using

IL=10*log(PI/(PI*PI_rad)=10*log(1/PI_rad)

 Plot the insertion loss and write it to a file

CatSimpleModel.m
%% Simple Model - Function for each of the different properties

clear all; close all;
tic

%% Set Plotting Defaults

set(0,'DefaultAxesFontName','Arial');
set(0,'DefaultAxesFontSize',14);

set(0,'DefaultAxesFontWeight','demi')

set(0,'DefaultAxesLineWidth',1);
set(0,'DefaultLineLineWidth',2.5);

set(0,'DefaultLineMarkerSize',6);

%% Define constants
 Side2ApMat=[];

 Source2AbMat=[];

 d=.001; %Small amount of distance between absorption/obstructions and enclosure walls.

 dx=.2; %Size of grids used in the model.

 % Frequency in 1/3 octave bands

Freq=[31.5;40;50;63;80;100;125;160;200;250;315;400;500;630;800;1000;1250;1600;2000;2500;3150;4000;5000;6300;8000;10000;12500;16000

];

 FreqLow=1000;

 FreqHigh=8000;

 % Creates an index for the frequency band
 for i = 1:length(FreqLow);

 FreqInd = find(Freq>=FreqLow(i) & Freq<=FreqHigh(i));

 end

%% Define Material Constants

 Material='MDF'; %'MDF'
 [aMDF,tauMDF,tauObs,aAbs,tauAbs,aAp,tauAp] = Materials(Material);

%% Simple Model

59

runs=1:36; % Runs through each of the configurations

for l=runs
%% Define Enclosure

 run=l;

 name=['Run ',num2str(run)];
% Standard DOE enclosure configurations

[Elements,apInd,abInd,blockInd,SBlock,VBlock,Sopening,SabSize,Swalls,Xs,X,Y,Z]=DefineEnclosureDOE(d,run,aMDF,tauMDF,tauObs,aAbs,
tauAbs,aAp,tauAp);

 Sopening1 = sum(Sopening); %Surface area of all openings (Matrix of SA in every frequency Bin)
 Sabsize1 = sum(SabSize); %Surface area of all absorbers

 SBlock1 = sum(SBlock); %Surface Area of 4 sides of blocks

 Salphabar1 = ((Swalls -Sopening1-Sabsize1+SBlock1).*aMDF(:,1) + Sopening1.*aAp(:,1) + Sabsize1.*aAbs(:,1)); %S*alphabar
 Staubar1 = ((Swalls - Sopening1-Sabsize1+SBlock1).*tauMDF(:,1)+ Sopening1.*tauAp(:,1)+Sabsize1.*tauAbs(:,1)); %S*taubar

%% Calculate Solid Angles

 [OmegaSO,OmegaWO,ReverbPercent,Theta]=SolidAngleFunction(Xs,Elements,dx,apInd,Freq);

%% Parameters - Calculates parameters of enclosure configuration

 [Side2ApMat1,Source2AbMat1,Side2ApSum]=parameterize(blockInd,apInd, abInd, Elements, Xs,run,VBlock, SabSize, Swalls,

Sopening,OmegaSO,OmegaWO,X,Y,Z);

 Side2ApMat=[Side2ApMat;Side2ApMat1]; % Matrix used to keep track of the obstruction to aperture information

 Source2AbMat=[Source2AbMat;Source2AbMat1]; % Matrix keeps track of source to absorption information

EnclVol= (X*Y*Z); % Enclosure volume

SolidAngleAp(l)=sum(OmegaSO(apInd)); % Solid Angle Source to Aperture
SolidAngleAb(l)=sum(OmegaSO(abInd)); % Solid Angle Source to Absorption

SolidAngleOb(l)=sum(OmegaSO(blockInd)); % Solid Angle Source to Obstruction
SolidAngleEncl(l)=sum(OmegaSO(1:6)); % Solid Angle Source to Enclosure

%% The Equation - (CAT IL Document Section C)

 %%IL= 10*log10(Pi/Pi_rad) , where Pi_Rad_j == Pi*(direct_field_j
 %%+reverberant_field_term) (see CAT Insertion Loss Model Document,

 %%section C)

 PI_rad=zeros(length(Elements),length(Freq));

 for j=1:length(Elements)

 for f=1:length(Freq)
 PI_rad(j,f)=OmegaSO(j)*Elements(j).tau(f)/(4*pi)+(1-ReverbPercent(f)).*(Theta(j,f)*Elements(j).tau(f)/(2*pi*(Salphabar1(f)+Staubar1(f))));

 end

 end

 % If statement for Aperture terms - multiply by fudge factor

 C1=.2; % Offset for low solid angle source to Ap
 C2=.1; % Offset for low solid angle source to Ap and high obstruction to Ap solid angle

 C3=1;

 if SolidAngleAp(run)/(4*pi)*100<2 % OmegaSAp percentage < 2%

 if Side2ApSum/(2*pi)*100 > 10 % OmegaOAp percentage > 10%

 PI_aper=sum(PI_rad(apInd,:),1).*C2; % The sum of aperture terms multiplied by C2
 display(['Run ',num2str(run),'OmegaSAp<2%,OmegaOAp>10%'])

 else

 PI_aper=sum(PI_rad(apInd,:),1).*C1; % The sum of aperture terms multiplied by C1
 display(['Run ',num2str(run),'OmegaSAp<2%'])

 end

 else % If the above conditions are not met, the aperture term isn't changed
 PI_aper=sum(PI_rad(apInd,:),1);

 end

 % Zeros out the aperture terms in the PI_rad matrix

 for i=1:length(apInd)

 PI_rad(apInd(i),:)=zeros(1,length(Freq));
 end

 % Redifines PI_rad matrix with new aperture terms
 PI_rad=[PI_rad;PI_aper];

 % Calculate the ratio of sound power divided by the sound power
 % radiated from the enclosure X1=PI/(PI*PI_rad). The PI terms cancel

 % out of the equation.

 X1=1./(sum(PI_rad,1));

60

 % Coefficients for the insertion loss calculation
 a1=0; a2=10; a3=0;

 % Calculate insertion loss using a polynomial fit
 IL(run,:) = a1 + a2.*log10(sum(X1,1).*C3) + a3.*(log10(sum(X1,1))).^2;

 % Read in the experimental data
 Exp = dlmread('Measurements\Extra12Test-IL-1-5-13.txt');

 Measured(run,:)=Exp(run+1,:);

 % Calculate overall insertion loss and errors

 OAILm(run)=10*log10(length(Measured(run,FreqInd-5))./(sum(10.^(Measured(run,FreqInd-5)./-10))));

 OAIL(run)=10*log10(length(IL(run,FreqInd))./(sum(10.^(IL(run,FreqInd)./-10))));
 resIL(run,:)=IL(run,FreqInd)-Measured(run,FreqInd-5); % Frequency dependent error

 ResErr(run)=mean(abs(resIL(run,:))); % Overall error

 display(['Run ',num2str(run),' -> ',num2str(round(OAIL(run)*10)/10),' dB'])

%% Plotting

 figure1 = figure;

 set(figure1,'Visible','off');

 figuresize(10,8,'inches');
 modelStr = (['Run ',num2str(run)]);

 semilogx(Freq(FreqInd),IL(run,FreqInd),':m+')

 hold on
 semilogx(Freq(FreqInd),Measured(run,FreqInd-5),'--r')

 hold off
 ylabel('Insertion Loss (dB)')

 xlabel('Frequency (Hz)')

 title({[modelStr,', dx= ',num2str(dx),' m'];['IL = ',num2str(OAIL(run),3),' dB, ILm = ',...
 num2str(OAILm(run),3),' dB, Res Error = ',num2str(ResErr(run),3),'dB']});

 legend('IL','Measured IL','Location','SouthEast','Orientation','horizontal')

 saveas(gcf,['Figures\',modelStr,'.png'],'png');

%% Print to file

dlmwrite(['Results\',name,'_SM.txt'],[X1;Freq';IL(run,:)],'newline','pc','delimiter','\t');
end

toc

Materials.m Pseudo-Code

The function uses a switch/case function to define the materials used in the enclosure. At this

point, only one enclosure type was tested, only MDF was used.

Materials.m

function [aMDF,tauMDF,tauObs,aAbs,tauAbs,aAp,tauAp] = Materials(Mat)
%Absorption and Transmission Constants

 switch Mat
 case 'MDF'

 % MDF values

 aMDF = [0.01;0.02;0.025;0.03;0.035;0.04;0.04;0.05;0.05;0.045;...
 0.04;0.05;0.05;0.05;0.05;0.05;0.0543;0.0607;0.0517;0.0642;...

 0.0671;0.0529;0.0632;0.0635;0.0638;0.06;0.055;0.05]; % alpha of MDF

 tauMDF=load('Measurements\taudodec.txt');
 case 'Other' % Use to define another material

 end

tauObs=zeros(28);

61

%Absorption values

 aAbs = [0.01 0.02 0.025 0.03 0.04 0.05 0.055 0.1 0.12 0.19 0.3 0.44 0.58 0.7 ...
 0.8 0.98 1 1 1 1 1 0.99 1 1 0.9 0.9 0.9 0.85]'; %alpha of Absorbers

 tauAbs = tauMDF; %%%%%%%%%%%%%

%Aperture has an absorption of 0, transmission of 1

 aAp = zeros(28,1);

 tauAp= ones(28,1);

return

DefineEnclosure.m Pseudo-Code

This code is not necessary for Sonic + users, since the enclosure geometry is already determined

by Sonic +.

 Size of the enclosure

 Define enclosure sides (Defined as a block facing inward using getBlockPanels)

o Dimensions of the block

o Front Left Corner

o getBlockPanels.m – creates 6 elements for the block, each side of the block is

created as an element.

 MakeCoord.m – creates the coordinates of each panel based on the

direction it is facing.

o Determine surface area of the enclosure.

 Define aperture elements (uses cases for each enclosure configuration)

o apInd creates an index to keep track of the aperture elements

o Determine where the aperture is located [bottom left corner; top right corner]

o getAbsorberPanels.m – creates an aperture element based on geometry. This

function is also used to create absorption elements as they are both assumed to be

two-dimensional.

o Sopening sums the total aperture surface area.

 Define absorption elements

o SabSize is the total absorption surface area.

o abInd creates an index for the elements that are absorption panels.

o Determine where the absorption panel goes.

o getAbsorberPanels.m – creates the absorption panel element

 Define Obstructions

o Size of the obstruction.

o Obstruction placement.

o blockInd keeps track of which elements are obstructions.

o getBlockPanels.m – again creates six elements (every side) for each obstruction.

o Determine the total surface area and volume of the obstructions.

62

 Source Positions

o Each configuration has a different source position, defined with a switch/case

function.

DefineEnclosure.m

function [Elements,apInd,abInd,blockInd,SBlock,VBlock,Sopening,SabSize,Swalls,Xs,X,Y,Z]=...
 DefineEnclosureDOE(d,run,aMDF,tauMDF,tauObs,aAbs,tauAbs,aAp,tauAp)

%Defines a blank matrix from the Aperture and Absorbtion index numbers.

 apInd=[];
 abInd=[];

 blockInd=[];

 Elements=[];
 %Constants

 %Size of Enclosure, looking towards the front of the box (the side with

 %three openings), the origin is the bottom left corner.

 X = 1.95;

 Y = .745;

 Z = 1.2;

% Define Enclosure

 blockDim = [X,Y,Z];
 corner = [0 0 0]; %Front left corner

 %getBlockPanels assumes that the object is parrallel to xy,yz,and zx

 %planes. Breaks enclosure into 6 panels, each a structure with the
 %following fields: corners, center, facing, alpha, SA of panel.

 blockElement = getBlockPanels(corner,blockDim,aMDF,tauMDF,-1);%Last parameter is -1 because the enclosure wall is facing inward.

 %Calls function called getBlockPanels(which takes the information given
 %above - Enclosure dimensions, absorption, and creates a stucture

 Elements=[Elements, blockElement];

 Swalls = (blockDim(1)*blockDim(2)*2 + blockDim(2)*blockDim(3)*2 + blockDim(1)*blockDim(3)*2); %Total surface area of walls

% Define Apertures

 Sopening=0;
 %Left Aperture

 switch run

 case {1,2,3,4,11,12,19,20,35,36}
 apInd=[apInd,length(Elements)+1]; %apInd keeps track of which elements are apertures

 corners = [0.12, d, 0.08; 0.58, d, 1.012];
 %[Bottom Left; Top Right],aperture is treated the same as an absorber in previous codes,

 %should that be the case when using transmission loss? Need to

 %write another similar function getApPanels
 facing = [0 1 0]; %faces from surface to inside of the enclosure

 Elements = [Elements,getAbsorberPanels(corners, aAp, tauAp, facing, d)];

 Sopening = Sopening + (corners(2,1)-corners(1,1))*(corners(2,3)-corners(1,3));% Total SA of openings for each run
 end

 %Middle Aperture

 switch run
 case {1,2,3,4,9,10,11,12}

 apInd = [apInd,length(Elements)+1];

 corners = [0.725, d, 0.08; 1.20, d, 1.012];
 facing = [0 1 0];

 Elements = [Elements,getAbsorberPanels(corners, aAp, tauAp, facing, d)];

 Sopening = Sopening + (corners(2,1)-corners(1,1))*(corners(2,3)-corners(1,3));
 end

 %Right Aperture

 switch run
 case {1,2,3,4,5,6,9,10,11,12,13,14,17,18,23,24,25,26,29,30}

 apInd = [apInd,length(Elements)+1];

 corners = [1.373, d, 0.08; 1.811, d, 1.012];
 facing = [0 1 0];

 Elements = [Elements,getAbsorberPanels(corners, aAp, tauAp, facing, d)];

 Sopening = Sopening + (corners(2,1)-corners(1,1))*(corners(2,3)-corners(1,3));
 end

 %Right Side Aperture

 switch run

63

 case {7,8,9,10,15,16,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36}

 apInd = [apInd,length(Elements)+1];
 corners = [X-d, .095, 0.085; X-d, .685, 1.08];

 facing = [-1 0 0];

 Elements = [Elements,getAbsorberPanels(corners, aAp, tauAp, facing, d)];
 Sopening = Sopening + (corners(2,2)-corners(1,2))*(corners(2,3)-corners(1,3));

 end

% Define Absorption

 thk = .025;
 SabSize = 0;

 % A

 switch run
 case {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36}

 SabSize = SabSize + 0.6*1.18; %Total surface area for absorption

 abInd = [abInd, length(Elements)+1]; %Index for absorption elements
 corners = [0.7, Y-d, 0.0; 1.3, Y-d, Z]; %[Bottom left; top right]

 facing = [0 -1 0]; %Unit vector facing in direction from surface to inside of enclosure

 Elements = [Elements,getAbsorberPanels(corners, aAbs, tauAbs, facing,d)]; %Same as aperture element structures

 end

 % B

 switch run
 case {1 2 5 6}

 SabSize = SabSize + 0.6*1.18;

 abInd = [abInd, length(Elements)+1];
 corners = [1.325-d, Y-.6,0.0; 1.325-d, Y, Z];

 facing = [-1 0 0];
 Elements = [Elements,getAbsorberPanels(corners, aAbs, tauAbs, facing,d)];

 end

 % C
 switch run

 case {1 2 3 4 5 6}

 SabSize = SabSize + 0.6*1.18;
 abInd = [abInd, length(Elements)+1];

 corners = [0.7, Y-.6, Z-d; 1.88, Y, Z-d];

 facing = [0 0 -1];
 Elements = [Elements,getAbsorberPanels(corners, aAbs, tauAbs, facing,d)];

 end

 % D
 switch run

 case {3 4 7 8 21 22 33 34 35 36}

 SabSize = SabSize + 0.6*1.18;
 abInd = [abInd, length(Elements)+1];

 corners = [1.3, Y-d, 0; 1.9, Y-d, Z];

 facing = [0 -1 0];
 Elements = [Elements,getAbsorberPanels(corners, aAbs, tauAbs, facing,d)];

 end

 % E
 switch run

 case {7 8 17 18 19 20 33 34 35 36}

 SabSize = SabSize + 0.6*1.18;
 abInd = [abInd, length(Elements)+1];

 corners = [.1, Y-d, 0; 0.7, Y-d, Z];

 facing = [0 -1 0];
 Elements = [Elements,getAbsorberPanels(corners, aAbs, tauAbs, facing,d)];

 end

 % F

 switch run

 case {17 18}

 SabSize = SabSize + 0.6*1.18;
 abInd = [abInd, length(Elements)+1];

 corners = [.1, d, 0; 0.7, d, Z];

 facing = [0 1 0];
 Elements = [Elements,getAbsorberPanels(corners, aAbs, tauAbs, facing,d)];

 end

 % G
 switch run

 case {17 18 19 20}

 SabSize = SabSize + 0.6*1.18;

64

 abInd = [abInd, length(Elements)+1];

 corners = [d, .145, 0; d, .745, Z];
 facing = [1 0 0];

 Elements = [Elements,getAbsorberPanels(corners, aAbs, tauAbs, facing,d)];

 end
 %H

 switch run

 case {21 22}
 SabSize = SabSize + 0.6*1.18;

 abInd = [abInd, length(Elements)+1];

 corners = [0.7, d, 0.0; 1.3, d, Z];
 facing = [0 1 0];

 Elements = [Elements,getAbsorberPanels(corners, aAbs, tauAbs, facing,d)];

 end

% Define Obstructions

 SBlock=0;

 VBlock=0;

 % Block I

 switch run

 case {1 2 5 6 9 10 13 14 23 24 29 30 31 32}

 blockDim = [0.57,0.57,0.57*2]; % x, y, z ; two blocks on top of each other.
 corner = [0.105 0.08 d];

 blockInd=[blockInd,length(Elements)+1:length(Elements)+6];

 blockElement = getBlockPanels(corner, blockDim, aMDF, tauObs, 1);
 Elements = [Elements,blockElement];

 SBlock = SBlock + (blockDim(2)*blockDim(3)*2 + blockDim(1)*blockDim(3)*2); %Total surface area of blocks
 VBlock = VBlock + blockDim(1)*blockDim(2)*blockDim(3);

 end

 % Block II
 switch run

 case {1 2 3 4 5 6 9 10 11 12 13 14 15 16 21 22 23 24 25 26 27 28 29 30 31 32}

 blockDim = [0.57,0.57,0.57];
 corner = [.715 0.08 d];

 blockInd=[blockInd,length(Elements)+1:length(Elements)+6];

 blockElement = getBlockPanels(corner, blockDim, aMDF, tauObs, 1);
 Elements = [Elements,blockElement];

 SBlock = SBlock + (blockDim(2)*blockDim(3)*2 + blockDim(1)*blockDim(3)*2); %Total surface area of blocks

 VBlock = VBlock + blockDim(1)*blockDim(2)*blockDim(3);
 end

 % Block III

 switch run
 case {1 2 5 6 9 10 23 24 25 26 27 28 33 34 35 36}

 blockDim = [0.57,0.57,0.57*2]; % x, y, z ; two blocks on top of each other.

 corner = [1.325 0.08 d];
 blockInd=[blockInd,length(Elements)+1:length(Elements)+6];

 blockElement = getBlockPanels(corner, blockDim, aMDF, tauObs, 1);

 Elements = [Elements,blockElement];
 SBlock = SBlock + (blockDim(2)*blockDim(3)*2 + blockDim(1)*blockDim(3)*2); %Total surface area of blocks

 VBlock = VBlock + blockDim(1)*blockDim(2)*blockDim(3);

 end
 % Block IV

 switch run

 case {13 14}
 blockDim = [0.57,0.57,0.57];

 corner = [1.325 0.08 d];

 blockInd=[blockInd,length(Elements)+1:length(Elements)+6];

 blockElement = getBlockPanels(corner, blockDim, aMDF, tauObs, 1);

 Elements = [Elements,blockElement];

 SBlock = SBlock + (blockDim(2)*blockDim(3)*2 + blockDim(1)*blockDim(3)*2); %Total surface area of blocks
 VBlock = VBlock + blockDim(1)*blockDim(2)*blockDim(3);

 end

 %Block V
 switch run

 case {17 18 19 20}

 blockDim = [0.57,0.57,0.57*2]; % x, y, z ; two blocks on top of each other (middle).
 corner = [.715 0.08 d];

 blockInd=[blockInd,length(Elements)+1:length(Elements)+6];

 blockElement = getBlockPanels(corner, blockDim, aMDF, tauObs, 1);

65

 Elements = [Elements,blockElement];

 SBlock = SBlock + (blockDim(2)*blockDim(3)*2 + blockDim(1)*blockDim(3)*2); %Total surface area of blocks
 VBlock = VBlock + blockDim(1)*blockDim(2)*blockDim(3);

 end

 %Block XXX Used for when no obstruction is present
 switch run

 case {7 8}

 blockDim = [0.01,0.01,0.01];
 corner = [.05 0.08 d];

 blockInd=[blockInd,length(Elements)+1:length(Elements)+6];

 blockElement = getBlockPanels(corner, blockDim, aMDF, tauObs, 1);
 Elements = [Elements,blockElement];

 SBlock = SBlock + (blockDim(2)*blockDim(3)*2 + blockDim(1)*blockDim(3)*2); %Total surface area of blocks

 VBlock = VBlock + blockDim(1)*blockDim(2)*blockDim(3);
 end

% Source Positions - all in meters
 switch run

 case 1

 % 1

 Xs = [0.984 0.186 0.775];

 case 2

 % 2
 Xs = [0.8 0.567 0.775];

 case 3

 % 3
 Xs = [0.984 0.186 0.775];

 case 4
 % 4

 Xs=[1.778 0.559 0.203];

 case 5
 % 5

 Xs = [1.177 0.186 0.775];

 case 6
 % 6

 Xs = [0.8 0.562 0.775];

 case 7
 % 7

 Xs = [0.997 0.152 0.203];

 case 8
 % 8

 Xs = [0.121 0.537 0.203];

 case 9
 % 9

 Xs = [0.984 0.186 0.775];

 case 10
 % 10

 Xs = [0.8 0.567 0.775];

 case 11
 % 11

 Xs = [0.984 0.186 0.775];

 case 12
 % 12

 Xs = [0.121 0.537 .203];

 case 13
 % 13

 Xs = [0.991 0.356 0.775];

 case 14

 % 14

 Xs = [1.778 0.559 0.775];

 case 15
 % 15

 Xs = [0.984 0.186 0.775];

 case 16
 % 16

 Xs = [.121 0.537 .203];

 case 17
 % 17

 Xs = [0.305 0.305 .203];

 case 18

66

 %18

 Xs = [1.651 0.305 .203];
 case 19

 %19

 Xs = [0.305 0.305 .203];
 case 20

 % 20

 Xs = [1.651 0.305 .203];
 case 21

 % 21

 Xs = [.121 0.537 .203];
 case 22

 %22

 Xs = [0.984 0.186 0.775];
 case 23

 %23

 Xs = [0.984 0.186 0.775];
 case 24

 %24

 Xs = [0.8 0.567 .775];

 case 25

 %25

 Xs = [0.305 0.305 .203];
 case 26

 %26

 Xs = [0.991 0.356 0.775];
 case 27

 %27
 Xs = [0.305 0.305 .203];

 case 28

 %28
 Xs =[0.991 0.356 0.775];

 case 29

 %29
 Xs = [0.991 0.356 0.775];

 case 30

 %30
 Xs = [1.651 0.305 0.203];

 case 31

 %31
 Xs = [0.991 0.356 0.775];

 case 32

 %32
 Xs = [1.651 0.305 .203];

 case 33

 %33
 Xs = [0.305 0.305 .203];

 case 34

 %34
 Xs = [0.991 0.356 0.203];

 case 35

 %35
 Xs = [0.305 0.305 .203];

 case 36

 %36
 Xs = [0.991 0.356 0.203];

 end

return

getBlockPanels.m

function Elements = getBlockPanels(corner, Dim, alpha, tau, facing)
% Break a rectangular block into six panels.

% It is assumed that the block is parallel to xy, yz and xz planes.
% Input:

% Corner: Looking directly at the box, this is the front left

67

% corner. The coordinates with the smallest values.

% Dim: The X,Y,Z dimensions of the block
% alpha: The absorption coefficient of the block material, assuming

% uniform absorption.

% tau: The transmission coefficient of block material, assuming
% uniform transmission.

% facing: 1 if outside of block considered (obstruction), -1 if

% inside of block is considered (enclosure).
% Output:

% Elements: Vector of six element structures.

%% Front Panel

i=1;

Elements(i).corners = MakeCoord([corner; corner+[Dim(1) 0 Dim(3)]]); %Front Left Bottom Corner to Front Right Top Corner
Elements(i).center = mean(Elements(i).corners,1);

Elements(i).facing = [0 -1 0]*facing;

Elements(i).alpha = alpha;
Elements(i).tau = tau;

Elements(i).SA = Dim(1)*Dim(3);

Elements(i).name = 'Front';

%% Left Panel

i=2;

Elements(i).corners = MakeCoord([corner;corner+[0 Dim(2) Dim(3)]]); %Front left bottom corner to rear left top corner
Elements(i).center = mean(Elements(i).corners,1);

Elements(i).facing = [-1 0 0]*facing;

Elements(i).alpha = alpha;
Elements(i).tau = tau;

Elements(i).SA = Dim(2)*Dim(3);
Elements(i).name = 'Left';

%% Rear Panel

i=3;
Elements(i).corners = MakeCoord([corner+[0 Dim(2) 0];corner+[Dim(1) Dim(2) Dim(3)]]); %Rear left bottom corner to rear right top corner

Elements(i).center = mean(Elements(i).corners,1);

Elements(i).facing = [0 1 0]*facing;
Elements(i).alpha = alpha;

Elements(i).tau = tau;

Elements(i).SA = Dim(1)*Dim(3);
Elements(i).name = 'Rear';

%% Right Panel

i=4;
Elements(i).corners = MakeCoord([corner+[Dim(1) 0 0];corner+[Dim(1) Dim(2) Dim(3)]]); %Front right bottom corner to rear right top corner

Elements(i).center = mean(Elements(i).corners,1);

Elements(i).facing = [1 0 0]*facing;
Elements(i).alpha = alpha;

Elements(i).tau = tau;

Elements(i).SA = Dim(2)*Dim(3);
Elements(i).name = 'Right';

%% Top Panel

i=5;
Elements(i).corners = MakeCoord([corner+[0 0 Dim(3)];corner+[Dim(1) Dim(2) Dim(3)]]); %Front left top corner to rear right top corner

Elements(i).center = mean(Elements(i).corners,1);

Elements(i).facing = [0 0 1]*facing;
Elements(i).alpha = alpha;

Elements(i).tau = tau;

Elements(i).SA = Dim(1)*Dim(2);
Elements(i).name = 'Top';

%% Bottom Panel

i=6;

Elements(i).corners = MakeCoord([corner;corner+[Dim(1) Dim(2) 0]]); %Front left bottom corner to rear left bottom corner

Elements(i).center = mean(Elements(i).corners,1);

Elements(i).facing = [0 0 -1]*facing;
Elements(i).alpha = alpha;

Elements(i).tau = tau;

Elements(i).SA = Dim(1)*Dim(2);
Elements(i).name = 'Bottom';

MakeCoord.m

function H=MakeCoord(X)

68

if X(1,1)==X(2,1)

 H=[X(1,1) X(1,2) X(1,3)
 X(1,1) X(2,2) X(1,3)

 X(1,1) X(2,2) X(2,3)

 X(1,1) X(1,2) X(2,3)];

elseif X(1,2)==X(2,2)

 H=[X(1,1) X(1,2) X(1,3)
 X(2,1) X(1,2) X(1,3)

 X(2,1) X(1,2) X(2,3)

 X(1,1) X(1,2) X(2,3)];

elseif X(1,3)==X(2,3)

 H=[X(1,1) X(1,2) X(1,3)
 X(2,1) X(1,2) X(1,3)

 X(2,1) X(2,2) X(1,3)

 X(1,1) X(2,2) X(1,3)];
end

end

SolidAngleFunction.m Pseudo-Code

 Define source position, element information, dx, and frequency

 Calculate the solid angle of the source to each element (OmegaSO)

o getSolidAngleObstructions.m - determines if the path is obstructed

 getSolidAngle.m - calculates the solid angle

 Calculate the solid angle of the k-th element to the j-th element (OmegaWO)

o getA2AangObstruction.m – creates a mesh on the k-th element, and redefines the

center of the mesh element as the origin. Then follows the same procedure as

source to element with the center of the k-th element’s mesh element as the

source. Once the solid angle has been calculated, it is multiplied by the area of

the mesh element, and moves on to the next mesh element.

 Calculate ReverbPercent. In Eq. C.4, the variable ReverbPercent in the code is defined as

.

 Calculate Theta. Theta is a term that has been used in some of the developments of “The

Equation”. It is defined as – the k terms in the numerator of Eq. C.5

SolidAngleFunction.m

function [OmegaSO,OmegaWO,ReverbPercent,Theta]=SolidAngleFunction(Xs,Elements,dx,apInd,Freq)

 clear ('OmegaSO','OmegaSOalpha','OmegaSOtheta')

% Define zero matrices
OmegaSOtau=zeros(length(Elements),length(Elements(1,1).alpha));

OmegaSOnum=zeros(length(Elements),length(Elements(1,1).alpha));

% Calculates the solid angle of the source to the j-th element

 for j=1:length(Elements)

 OmegaSO(j)=getSolidAngleObstruction(Xs,j,Elements,dx);
 end

% Calculates the solid angle of the k-th element to the j-th element

% OmegaWO is also multiplied by the surface area of the k-th element

69

% OmegaWO = Omega_kj*S_k

 OmegaWO=zeros(length(Elements),length(Elements));
 for k=1:length(Elements)

 for j=1:length(Elements)

 OmegaWO(k,j)=getA2AangObstruction(Elements, k, j, dx, apInd);
 end

 end

% Calculates the percentage of reverberant power left in the enclosure
% after the first reflection

 ReverbPercent=zeros(1,length(Freq));

 for f=1:length(Freq)
 for i=1:length(Elements)

 ReverbPercent(f)=ReverbPercent(f)+(OmegaSO(i)*(Elements(i).alpha(f)+Elements(i).tau(f))/(4*pi));

 end
 end

% Calculates a part of the power that leaves the enclosure. This term has

% been called theta in some of the developments.
% Theta=(1-alpha_k-tau_k*Omega_kj*S_k)

 Theta=zeros(length(Elements),length(Freq));

 for j=1:length(Elements)

 for f=1:length(Freq)

 for k=1:length(Elements)

 Theta(j,f)=Theta(j,f)+(1-Elements(k).alpha(f)-Elements(k).tau(f))*OmegaWO(k,j);
 end

 end

 end

getSolidAngleObstruction.m – Pseudo-Code

 Read in variables:

o x0 = source location

o targetInd = ith Element

o Element = Elements structure

o dx = mesh size

 eN = counter for Element size

 XX0 = 4x3 matrix with x0 values

 tol = dx/1000 for boolean operation

 Generate variables for orientation, center, and corners (center and corners are referenced

to x0 position)

 Generate mesh in X,Y,&Z directions. (For single-valued direction, add a repeated value)

 Initialize ang = 0 for adding mesh element solid angles

 IF statement determines if Element faces source (negative value faces inward)

 Loop through x,y,z mesh elements

 Generate corners for ith mesh element

70

 Find center of mesh element

 Generate trigonometric variables for mesh element (more information available in m-file

and illustrations

 Loop through every Element to determine if mesh element is obstructed

 Find center and orientation for Element

 Determine if source sees Element

 Determine if visible Element obstructs mesh element

 If no obstruction for mesh element, calculate solid angle, else return 0 for solid angle

o Use getSolidAng.m to calculate solid angles

 Sum all mesh element solid angles and return value for solid angle of ith Element

getSolidAngleObstruction.m
function ang = getSolidAngleObstruction(x0, targetInd, Elements, dx)

% The function getSolidAngleObstruction recieves four inputs:

% - x0 is the center point of the source in question

% - targetInd is the ith Element in the Elements structure
% - Elements is the structure containing all of the information for each

% element (center, corners,SA,band,etc.)

% - dx is the block size to be used to create the mesh

% The function outputs an array of the solid angle for each element that

% the source can see

eN = length(Elements); %Creates a variable indicating the number of elements in structure Elements

XX0 = ones(4,1)*x0; %Creates a 4x3 matrix with the X,Y,and Z coordinates of source in each respective column

tol = dx/1000; %small offset for boolean in line 99

tFacing = Elements(targetInd).facing; %temporary variable storing the orientation coordinates

tCenter = Elements(targetInd).center-x0; %Redfines Element center with origin defined at x0

tCorners = Elements(targetInd).corners-XX0; %Calculates distance of corners from x0

tX = [min(tCorners(:,1)):dx:max(tCorners(:,1))]; %Creates mesh along x-direction

xN = length(tX);
if (xN == 1 || max(tX)<max(tCorners(:,1)))

 tX = [tX, max(tCorners(:,1))];

 xN = xN + 1;
end

tY = [min(tCorners(:,2)):dx:max(tCorners(:,2))]; %Creates mesh along y-direction
yN = length(tY);

if (yN == 1 || max(tY)<max(tCorners(:,2)))

 tY = [tY, max(tCorners(:,2))];
 yN = yN + 1;

end

tZ = [min(tCorners(:,3)):dx:max(tCorners(:,3))]; %Creates mesh along z-direction

zN = length(tZ);

if (zN == 1 || max(tZ)<max(tCorners(:,3)))
 tZ = [tZ, max(tCorners(:,3))];

71

 zN = zN +1;

end

ang = 0; %Initializes solid angle variable

if (tCenter)*tFacing'<0 %Determines if source can see the element
 for l = 1:xN-1

 for m = 1: yN-1;

 for n = 1:zN-1
 if(tFacing(1)~=0) %Builds corners for ith mesh element

 tCorneri = [tX(l),tY(m),tZ(n);

 tX(l),tY(m+1),tZ(n);
 tX(l),tY(m+1),tZ(n+1);

 tX(l),tY(m), tZ(n+1)];

 elseif(tFacing(2)~=0)
 tCorneri = [tX(l),tY(m),tZ(n);

 tX(l+1),tY(m),tZ(n);

 tX(l+1),tY(m),tZ(n+1);
 tX(l),tY(m), tZ(n+1)];

 elseif(tFacing(3)~=0)

 tCorneri = [tX(l),tY(m),tZ(n);

 tX(l+1),tY(m),tZ(n);

 tX(l+1),tY(m+1),tZ(n);

 tX(l),tY(m+1), tZ(n)];
 end

 tCenteri = mean(tCorneri,1); %Finds center of mesh element

 r = sqrt(tCenteri*tCenteri.'); %Distance of center from origin
 rr = sqrt(tCenteri(1)^2+tCenteri(2)^2); %Distance of X&Y center from origin

 costheta = tCenteri(3)/r; %Z center over r
 sintheta = rr/r; %X&Y center over r

 cosphi = tCenteri(1)/rr; %X center over rr

 sinphi = tCenteri(2)/rr; %Y center over rr
 blockflag = 0;

 for i = 1:eN %Compares ith mesh element to all other elements...

 % and determines if the ith mesh element is obstructed
 facing = Elements(i).facing; %Reads in Element orientation

 center = Elements(i).center-x0; %Finds center of element referenced to source location

 isFacing = center*facing'; % only for panels normal to xy, xz or yz plane.
 if isFacing == 0 %If source doesn't see element, breaks loop

 if (tCenteri*facing'<0)

 blockflag = 1;
 break;

 end

% elseif isFacing < 0
 else

 corners = Elements(i).corners-XX0; %Finds corners of Element referenced to source location

 plane = center.*abs(facing); %Zeroes all center values except facing direction
 if abs(plane(1))>0

 rr1 = plane(1)/cosphi; %(Xi/X)*rr

 r1 = rr1/sintheta; %(Xi/X)*r
 x1 = [plane(1), rr1*sinphi, r1*costheta];

 elseif abs(plane(2))>0

 rr1 = plane(2)/sinphi; %(Yi/Y)*rr
 r1 = rr1/sintheta; %(Yi/Y)*r

 x1 = [rr1*cosphi, plane(2), r1*costheta];

 else
 r1 = plane(3)/costheta; %(Zi/Z)*r

 rr1 = r1*sintheta; %(Zi/Z)*rr

 x1 = [rr1*cosphi, rr1*sinphi, plane(3)];

 end

 if(r1 >= 0 && r1 < r-tol) %Determines if any Element obstructs ith mesh element
 upper = max(corners);

 lower = min(corners);

 tempflag = 1;
 for j = 1: 3

 if (x1(j) < lower(j) || x1(j) > upper(j))

 tempflag = 0;
 end

 end

 if tempflag

72

 blockflag = 1;

 break;
 end

 end

 end
 end

 if ~blockflag

 ang = ang + getSolidAng([0 0 0],tCorneri); %Calculates solid angle of ith mesh element...
 % and sums for total solid angle of ith Element

 end

 end
 end

 end

end

end

getA2AangObstruction.m Pseudo-Code

 Read in variables:

o Elements = Elements structure

o sInd = ith Element

o tInd = jth aperture

o dx = mesh size

 Check if ith Element is also an aperture

 Create variables for ith Element orientation and corners

 Generate mesh in X,Y,&Z directions. (For single-valued direction, add a repeated value)

 Initialize ang variable for solid angle summation

 Loop through x,y,z mesh elements

 Generate mesh element corners and center

 Send variables to getSolidAngleObstruction.m:

o sCenteri = mesh element center

o tInd = jth aperture

o Elements = Elements structure

o dx = mesh size

 getSolidAngleObstruction returns:

o ang = solid angle of unobstucted mesh element to aperture

 multiply ang by surface area of mesh element and sum all solid angles

 Return summation of ang to main program

getA2AangObstruction.m

73

function ang = getA2AangObstruction(Elements, sInd, tInd, dx,apInd)

%Function getA2AangObstruction finds the solid angle of absorbers,
%obstructions, and enclosure walls that can see an aperture. May also be

%useful for finding solid angles of planar sources.

%The inputs are: Elements structure, ith Element, Aperture index, and dx
%The output is the solid angle for each ith Element

if sInd == tInd %Determines if the ith Element is same as jth Element
 ang = 0;

 return

end
for i=1:length(apInd)

if sInd==apInd(i)

 ang=0;
 return

end

end

sFacing = Elements(sInd).facing;

sCorners = Elements(sInd).corners;

tX = [min(sCorners(:,1)):dx:max(sCorners(:,1))]; %Generates mesh in X-direction

xN = length(tX);
if (xN == 1 || max(tX)<max(sCorners(:,1)))

 tX = [tX, max(sCorners(:,1))];

 xN = xN + 1;
end

tY = [min(sCorners(:,2)):dx:max(sCorners(:,2))]; %Generates mesh in Y-direction

yN = length(tY);

if (yN == 1 || max(tY)<max(sCorners(:,2)))
 tY = [tY, max(sCorners(:,2))];

 yN = yN + 1;

end

tZ = [min(sCorners(:,3)):dx:max(sCorners(:,3))]; %Generates mesh in Z-direction

zN = length(tZ);
if (zN == 1 || max(tZ)<max(sCorners(:,3)))

 tZ = [tZ, max(sCorners(:,3))];

 zN = zN +1;
end

ang = 0; %Initializes solid angle variable

for l = 1:xN-1

 for m = 1: yN-1;
 for n = 1:zN-1

 if(sFacing(1)~=0)

 sCorneri = [tX(l),tY(m),tZ(n);
 tX(l),tY(m+1),tZ(n);

 tX(l),tY(m+1),tZ(n+1);

 tX(l),tY(m), tZ(n+1)];
 elseif(sFacing(2)~=0)

 sCorneri = [tX(l),tY(m),tZ(n);

 tX(l+1),tY(m),tZ(n);
 tX(l+1),tY(m),tZ(n+1);

 tX(l),tY(m), tZ(n+1)];

 elseif(sFacing(3)~=0)

 sCorneri = [tX(l),tY(m),tZ(n);

 tX(l+1),tY(m),tZ(n);

 tX(l+1),tY(m+1),tZ(n);
 tX(l),tY(m+1), tZ(n)];

 end

 sCenteri = mean(sCorneri,1);
 ang = ang + getSolidAngleObstruction(sCenteri, tInd, Elements, dx)*dx^2;

 end

 end
end

end

74

getSolidAngle.m – Pseudo-Code

This is the function that performs the actual solid angle calculations. The function redefines the

element into the x-z plane.

 Read in variables

o Center = location of source

o Corners = 4x3 matrix of corners of viewed mesh element

 Call function rotaCoord

o Generate x1, x2, y1, z1, z2

 Find solid angle and return value

getSolidAngle.m

function solidAng = getSolidAng(center,corners)
% Find the solid angle from a point at center to a rectangular whose corners are defined by X, Y and Z.

% center: coordinates of the point, (x,y,z);

% X,Y,Z: the boundaries of the rectangular; corners: (x_1,y_1,z_1;x_2,y_2,z_2;...).

[x1,x2,y,z1,z2] = rotaCoord(center, corners);

solidAng = abs((asin((x1*z1)/(sqrt(x1^2+y^2)*sqrt(y^2+z1^2)))-asin((x2*z1)/(sqrt(x2^2+y^2)*sqrt(y^2+z1^2))))...
 -(asin((x1*z2)/(sqrt(x1^2+y^2)*sqrt(y^2+z2^2)))-asin((x2*z2)/(sqrt(x2^2+y^2)*sqrt(y^2+z2^2)))));

return

function [x1,x2,y1,z1,z2] = rotaCoord(center, corners)

% put center at the origin, rotate the rectangular to a x-z plane.
% Right now only working for rectangulars originally in xy yz,xz planes.

ind1 = 1:4;

ind2 = [4,1:3];
a = sum((corners(ind1,:) - corners(ind2,:)).^2,1);

ind = find(a == 0);

y1 = mean(corners(:,ind)) - center(ind);
ind1 = mod(ind+1,3);

if ind1 == 0

 ind1 = 3;
 ind2 = 1;

else

 ind2 = ind1+1;
end

if corners(1,ind1)== corners(2,ind1)
 b = ind1;

 ind1 = ind2;

 ind2 = b;
end

x1 = corners(1,ind1)-center(ind1);

x2 = corners(2,ind1)-center(ind1);
z1 = corners(1,ind2)-center(ind2);

z2 = corners(4,ind2)-center(ind2);

return

