
CALCULATION OF OPTICAL ABSORPTION SPECTRA

USING A SUPERVISED NEURAL NETWORK

by

Conrad W. Rosenbrock

Submitted to Brigham Young University in partial ful�llment

of graduation requirements for University Honors

Department of Physics and Astronomy

Brigham Young University

April 2013

Advisor: Dr. Bret Hess Honors Representative: Dr. Sean Warnick

ii

ABSTRACT

CALCULATION OF OPTICAL ABSORPTION SPECTRA

USING A SUPERVISED NEURAL NETWORK

Conrad W. Rosenbrock

Department of Physics and Astronomy

Bachelor of Science

Arti�cial neural networks have been e�ective in reducing computation time while

achieving remarkable accuracy for a variety of di�cult physics and materials science

problems. Neural networks are trained iteratively by adjusting the size and shape

of sums of non-linear functions by varying the function parameters to �t results for

complex non-linear systems. For smaller structures, ab initio simulation methods

can be used to determine absorption spectra under �eld perturbations. However,

these methods are impractical for larger structures. Designing and training an arti-

�cial neural network with simulated data from density functional theory may allow

time-dependent perturbation e�ects to be calculated more e�ciently. I investigate the

design considerations of neural network implementations for calculating perturbation-

coupled electron oscillations in small molecules. The neural network structure pre-

sented in this thesis is eventually shown to be �awed because it mishandled the

complex-valued inputs and outputs that it was trained on. As a result, important

complex behavior, required for an accurate approximation of the time-evolution for

the system, was ignored. Despite this, valid theory and design considerations are

discussed in connection with a new complex-valued network structure that may be

adequate to solve the problem.

iii

iv

ACKNOWLEDGEMENTS

Special thanks go to Dr. Hess for his time, patience and otherwise good mentoring. I

would additionally like to thank the donor(s) of the Robert K. Thomas scholarship,

the Copley family for the C. Bryant Copley scholarship, and the Physics Department

for their research assistant support at various times. Lastly, I want to thank my

wife, Helen, for helping maintain my health and the household during those busy

times when I neglected everything else, and for listening intently to problems that

sometimes I didn't even understand.

v

vi

Contents

Title and Signatures Page . i

Abstract . iii

Acknowledgements . v

Table of Contents . vii

List of Figures, Tables and Algorithms . ix

I Introduction 1

1 Arti�cial Neural Networks 5

1.1 Single Neuron Architecture . 6

1.2 Multi-neuron Layer Structure . 7

1.3 Neural Network Architecture . 8

1.4 Function Approximation with Neural Networks 10

1.5 Neural Network Training Algorithm: Backpropagation 13

1.6 Network Training Terminology . 16

II Theory and Methodology 20

2 Theoretical Basis in Density Functional Theory 20

2.1 Schrödinger's Equation for an N-body Problem 20

2.2 Density Functional Theory . 20

2.3 Time-Dependent Density Functional Theory 22

2.4 Derivation of the Neural Network Solution 25

vii

3 Neural Network Implementation 27

3.1 Network Design Overview . 27

3.2 Network Design Considerations . 28

3.3 Programmatic Implementation in Matlab 31

III Results and Conclusions 39

4 Optical Absorption Spectra for Methane 39

4.1 Training, Fine-Tuning and Performance 39

4.2 Final Network Structure . 42

4.3 Predictive Time Evolution . 44

4.4 Discussion . 49

5 Conclusion 53

IV Appendices 58

viii

List of Figures

1 Neural Network as a Function Approximator 6

2 A single neuron with multi-dimensional input 7

3 Dimensionality of a single neuron with multi-dimensional input 7

4 A multi-neuron single layer network. 8

5 Dimensionality of a multi-neuron single layer network. 8

6 An example of a three-layer neural network. 9

7 Network structure for a simple two-layer network with sigmoid and

linear transfer functions and scalar input and output. 10

8 Two-layer network output a2 as x is varied from -2 to 2. 11

9 Network functional behavior as weight and bias parameters are varied. 12

10 Example of over�tting a data by con�guring more free parameters than

necessary. 17

11 Schematic diagram showing the proposed structure of the neural network. 30

12 Enlarged output for <(c1m) from a single network validation test that

was performed for methane. 35

13 Sample output from validation of the dipole expectation value for

methane (see equation 15). 36

14 Sample output from validation of the absorption spectra by performing

a Fourier transform of the dipole expectation value for methane (shown

in �gure 13). 37

15 Agreement between the network's prediction of the expectation value

for the electric dipole moment and DFT simulated data. 41

16 Fourier transform of the expectation value for the electric dipole mo-

ment shown in �gure 15. 41

17 Graphical depiction of �nal network design. Compare with �gure 11. 44

ix

18 Visual validation of the j = 1 states for 100 time steps predicted outside

of the networks' training set. 45

19 Visual validation by point for a prediction horizon of one time step. . 47

20 Expectation value of the electric dipole moment for the �rst 40 time

steps predicted by the network. 48

21 Fourier transform of the dipole expectation values shown in �gure 20. 48

22 Network approximation of c1m. 81

23 Network approximation of c2m. 82

24 Network approximation of c3m. 83

25 Network approximation of c4m. 84

List of Tables

1 Numerical training results from backpropagation training of the network. 39

2 Experimental determination of neuron numbers per layer. 43

List of Algorithms

1 Generic, gradient-descent, backpropagation algorithm for a neural net-

work. The algorithm determines how to adjust the network's free pa-

rameters with respect to each input so that the network's error is re-

duced in the shortest possible time. 15

2 Implementation of a linear propagator to calculate cjm(t+∆) from cjm(t),

using the unitary propagator U(t + ∆t, t), for a system perturbed by

a step-function electric �eld. 24

x

Part I

Introduction

Neural networks have already been shown to solve a variety of di�erential equations in

physics and materials science [11, 12, 20]. Recently, in the area of condensed matter

physics, Kahliullin et al. used a neural network to model phase changes in carbon,

speci�cally graphite and diamond [21]. One of the great advantages of neural networks

is their ability to approximate data from multiple sources, even when their theoretical

roots di�er. For example, Density functional theory (DFT, described in section 2)

alone lacks the ability to correctly predict long range van der Waal forces. Using other

empirical models (e.g. Terso�, Brenner) improves the accuracy of modeled structures

but still ignores certain properties of interest. Behler et al. were able to use a high-

dimensional neural network [22] trained on both empirically-based and ab initio data

to perform a molecular dynamics study of graphite-diamond coexistence.

Just last year, Morawietz et al. constructed a neural network representation of

the potential energy surface for water [23]. The unique properties of water still rep-

resent a signi�cant challenge and many of the existing potentials for water rely on

DFT calculations. Their network's predictions were in excellent agreement with the

reference DFT calculations and enable the molecular dynamics simulations, relying

on the potential, to run many orders of magnitude faster. Neural network imple-

mentations in physics and materials science are becoming more common and it is an

active research area.

In condensed matter physics, an area of active research involves calculating the

behavior of systems in a perturbed or excited state. Methods available for calculat-

ing ground state systems have been well developed and are, in many cases, accurate.

Perturbation theory developed out of a desire to solve di�cult problems using exist-

1

ing solutions that are much easier to calculate. An example of an application from

perturbation theory is the use of accurate, ground-state results to approximate com-

plicated behaviors in a system's excited states. Modeling perturbations instead of

complete, excited systems has allowed these complex behaviors to be approximated

in some cases.

For example, in optical materials science, predicting the optical properties and

behaviors of molecules and systems of molecules is an active topic. The development

of optical sensors, photovoltaic cells and LED technologies depends on a knowledge of

the optical response and other optical properties of the molecules and materials being

used. At the most basic level, electric �elds accelerate charges. When light of a certain

frequency intercepts an atom or molecule, a single electron may be moved by the �eld.

However, the movement of this single electron a�ects each of the other electrons in

the atom via coulombic repulsion. Determining how the original light wave a�ects

subsequent electron motion contributes to our understanding of the molecule's optical

properties.

Due to the complicated nature of solving Schrödinger's equation with the inclu-

sion of all the inter-particle potential energy terms, several approximation schemes

have been developed that o�er approximate solutions to the wave function pertur-

bations. One such method of approximation is DFT and its time-dependent coun-

terpart, time-dependent density functional theory (TDDFT). TDDFT calculations

are computationally expensive and become impractical for systems with hundreds of

atoms. Although, optical properties have already been successfully predicted for small

molecules using TDDFT, large nanostructures still present a signi�cant challenge.

Arti�cial neural networks have been e�ective in reducing computation time for

a variety of di�cult physics and materials science problems with only slight loss in

accuracy. Neural network solutions trained with data from ground-state DFT that are

subsequently adapted to solve the TDDFT problem may be possible supplementary

2

tools to reduce computation time. The network methodology presented in this thesis

is eventually shown to be �awed. Despite this, the theoretical basis for the discussed

methodology remains valid, and the network structure's �aws provide a backdrop for

the discussion of an alternative, complex-valued network structure that may solve the

problem.

3

4

1 Arti�cial Neural Networks

1Arti�cial neural networks are programming constructs that try to mimic the struc-

ture and communication pathways of the brain to solve di�cult problems. They are

primarily used to solve two types of problems:

1. Classi�cation problems where a set of data points correspond to discrete groups.

2. Function-�tting problems where the data points can be represented by a con-

tinuous unknown function.

Networks contain input, hidden, and output layers of neurons. Each neuron has input

�owing into it from the neurons connected to its input side, multiplied by the weight

of the connection (synapse) between them. All of the neuron's weighted inputs are

summed and then evaluated by the neurons transfer function. The transfer function is

usually a non-linear function that truncates large values (positive or negative). This

function's output becomes the input for the next level of neurons [1]. Complicated

neural networks may include multiple layers of hidden neurons.

Since the network implementation used in this thesis uses multiple multi-layer net-

works to �t non-linear functions, I will discuss function-�tting networks exclusively.

A function-�tting network mirrors the functionality of a mathematical function, as

shown in �gure 1. The network accepts the same n-dimensional input as the func-

tion and predicts an approximation to the function (of same dimensionality as the

function's output). The network's prediction is compared to the true output of the

function and an error function (typically a mean-squared error function) determines

how closely the predicted output matches the true output. The network uses the

calculated error to adjust the internal parameters of its neurons and re�ne the pre-

diction.

1The order and elements of discussion presented in this section were adapted from [9].

5

Neural Network

INPUT

True Output

Prediction

ERROR

Non-Linear Function

ΣΔy

Adjust Parameters

Figure 1: Neural Network as a Function Approximator

1.1 Single Neuron Architecture

An arti�cial neural network consists of layers of arti�cial neurons. A single neuron

typically has the following components:

� Inputs: an R-dimensional vector of input values to operate on.

� Adjustable Synapses (Weights): each input value is multiplied by a corre-

sponding weight before being summed and evaluated by the transfer function.

� Adjustable Bias: a shifting value added separately to the weighted inputs

before being evaluated by the transfer function.

� Transfer Function: usually a non-linear function that is evaluated for the

sum of the weighted inputs.

These components are summarized in �gure 2. The mathematical expression for the

input to the transfer function and the result of the neuron's output are respectively:

y = w1x1 + w2x2 + · · ·+ wRxR + b (1)

f(y) = f

(
R∑
i=1

wixi + b

)
= f(~w � ~x+ b) (2)

6

where the subscript indices i = 1.. R refer to the respective components of the

input (~x) and weight (~w) vectors.

Σ �

[1]

!
� (�� +)

"1

"2

"3

"n

#

Figure 2: A single neuron with multi-dimensional input

The dimensionality of the inputs, bias and output for a multi-input neuron is

summarized in �gure 3.

R

�

�

1 x R

1 x 1

R x 1

1

Σ 1 x 1

!

Figure 3: Dimensionality of a single neuron with multi-dimensional input

1.2 Multi-neuron Layer Structure

For complicated functions, a single neuron cannot approximate the function. In

that case, multiple neurons can operate in parallel on the inputs; this introduces the

possibility of approximating S-dimensional vector functions. When multiple neurons

are used, each component of the input vector usually acts as an input to every neuron

in the layer. Additionally, each input-neuron connection has an adjustable weight wj,i

for the ith input connecting to the jth neuron in the layer. A graphical representation

7

of a typical multi-neuron, single layer network is shown in �gure 4. The mathematical

formula for such a network becomes: ~a = f
(

[W].~x+~b
)
for the weight matrix [W]

and vector function f .

�

�

�

 1,1

!1

!2

!3

!R Σ
[1]

Σ
[1]

Σ
[1]

 S,R

"1

"2

"S

#1

#2

#S

$1

$2

$S

Figure 4: A multi-neuron single layer network.

The dimensionality of the inputs, bias and outputs for the one-layer network is

summarized in �gure 5.

R

�

�

S x R

S x 1

R x 1

1

Σ S x 1

�

S

S x 1

!

Figure 5: Dimensionality of a multi-neuron single layer network. Compare with the
dimensionality of the single neuron network shown in �gure 3.

1.3 Neural Network Architecture

Just as single neuron architecture may lack the free parameters to �t an arbitrary

function, sometimes even a multi-neuron, single layer network lacks the complexity

to produce an acceptable approximation. In this case, it may be necessary to have

8

multiple layers of neurons operating in parallel. Each layer has its own input ~x, bias

~b, weight matrix [W] and speci�c transfer function f that follow the general network

formula ~a = f
(

[W].~x+~b
)
. The inputs to the layers do not necessarily need to be

identical, and layers can have di�erent numbers of neurons. I will use superscripts to

di�erentiate between consecutive layers in the same network, e.g. [W1] refers to the

weight matrix in layer 1. As an example, for consecutive layers 1 and 2, the output

vector ~a1 becomes the input vector ~x2. The �nal layer in the network, whose output

vector ~a represents the output of the entire network, is called the output layer. All of

the preceding layers in the network are referred to as hidden layers. Figure 6 shows

the generic structure of a three-layer network.

R

�
�

�
�

S1 x R
R x 1

1

Σ
��

�

S1 x 1

S1 x 1

S1

S1 x 1

!�

�
!

�
!

S2 x S1

1

Σ
�"

"

S2 x 1

S2 x 1

S2

S2 x 1

!"

�
"

�
"

S3 x S2

1

Σ
�#

#

S3 x 1

S3 x 1

S3

S3 x 1

!#

Layer 1 Layer 2 Layer 3

Figure 6: An example of a three-layer neural network.

In the case of the three-layer network displayed in �gure 6, the mathematical

formulas for each layer and the network as a whole are:

� Layer 1: ~a1 = f1
(

[W1].~x+~b1
)

� Layer 2 (using ~a1 as input): ~a2 = f2
(

[W2].~a1 +~b2
)

� Layer 3 (using ~a2 as input): ~a3 = f3
(

[W3].~a2 +~b3
)

Combining these expressions into a single functional yields:

~a = ~a3 = f3
(

[W3].
[
f2
(

[W2].
[
f1
(

[W1].~x+~b1
)]

+~b2
)]

+~b3
)

(3)

This illustrates how successive neural network layers are functions of the previous

layers.

9

1.4 Function Approximation with Neural Networks

To illustrate the approximation features of neural networks we can consider a simple

two layer network [9] with a structure as outlined in �gure 7. The �rst layer utilizes

the sigmoid function f(x) = 1
1+e−x

as its transfer function and has two neurons. The

second layer has a linear transfer function f(x) = x with a single neuron. We will

present a single scalar value as input to the network.

1 x 1

���

�
1 x 1

Layer 1 Layer 2

Σ
[1]

Σ
[1]

 �
2,1

 �
1,1

��!
1 x 1

"��

"�!

Σ
[1]

 !
1,1

 !
1,2

�!

1 x 1

"!

Figure 7: Network structure for a simple two-layer network with sigmoid and linear
transfer functions and scalar input and output.

For someone unfamiliar with neural network theory and implementations, the

abstractions depicted in �gures 6 and 7 can seem daunting. The Matlab script below

shows how the network in �gure 7 would be implemented in code. It illustrates how

simple neural network implementation can be and allows an investigation of the e�ects

of parameter changes on functional behavior.

1 %Example Implementation of a two−layered neural network with sigmoid

2 %and linear transfer functions.

3

4 %Construct the transfer functions for each layer.

5 f1 = inline('1./(1+exp(−(w*x+b)))', 'w', 'x', 'b');

6 f2 = inline('w*x','w', 'x');

7

8 %Set initial values for the weights and biases for each layer.

10

9 w1 = [10 10];

10 b1 = [−10 10];

11 w2 = [1 1];

12 b2 = 0;

13

14 %Initialize some input values to plot

15 x = −2:0.01:2;

16

17 %Determine the outputs from the transfer functions of each neuron in

18 %the first layer.

19 a11=f1(w1(1),x,b1(1));

20 a12=f1(w1(2),x,b1(2));

21 %The output for the second layer combines the outputs from each

22 %neuron in the first layer before applying its transfer function.

23 a2=f2(w2(1),a11)+f2(w2(2),a12)+b2;

Plotting the functional representation of the network using the example bias and

weight values speci�ed in the script yields �gure 8.

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

Scalar Input p

N
e
tw

o
rk

 O
u
tp

u
t
a

2

Figure 8: Two-layer network output a2 as x is varied from -2 to 2.

The two steps in the function output are a result of summing the two sigmoid

functions (neuron transfer functions) from layer 1. The position and steepness of

11

the curves can be adjusted by varying the weights and biases in the various layers.

The e�ect of adjusting the ~w1 weights is quite intuitive since the weights are simply

multiplicative factors in the argument of the sigmoid function and change the steep-

ness of the step. Higher order layers in neural networks are far less intuitive because

their transfer functions operate on functions and are therefore functionals. In �gure

9 the weights and bias for the second layer are varied to show their e�ect on the step

function generated in �gure 8.

a)
−2 −1 0 1 2

−0.5

0

0.5

1

1.5

2

2.5

Scalar Input p

N
e
tw

o
rk

 O
u
tp

u
t
a

2

w
2

1,1
 varied from −1 to 1 in increments of 0.5

b)
−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Scalar Input p

N
e
tw

o
rk

 O
u
tp

u
t
a

2

w
2

1,2
 varied from −1 to 1 in increments of 0.5

c)
−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Scalar Input p

N
e
tw

o
rk

 O
u
tp

u
t
a

2

b
2
 varied from −1 to 1 in increments of 0.5

d)
−2 −1 0 1 2

0.5

1

1.5

2

2.5

3

Scalar Input p

N
e
tw

o
rk

 O
u
tp

u
t
a

2

b
1

2
 varied from 0 to 20 in increments of 4

Figure 9: Network functional behavior as weight and bias parameters are varied: a)
−1 < w2

1,1 < 1 in increments of 0.5; b) −1 < w2
1,2 < 1 in increments of 0.5; c)

−1 < b2 < 1 in increments of 0.5; d) 0 < b12 < 20 in increments of 4.

Qualitatively, we can describe the variations in the �nal function caused by the

parameter changes as follows:

� w2
1,1 and w

2
1,2 a�ect the maximum value and curvature of the sigmoid function

that each multiplies. In the case of w2
1,2 (�gure 9b), careful examination shows

that the sigmoid multiplied by w2
1,1 is indeed una�ected by changes in w2

1,2.

12

While this seems obvious in light of the mathematical construction of the net-

work, the �nal output of the network is quite di�erent than the case of w2
1,1

(�gure 9a), even though an identical transformation was applied to each.

� b2 moves the entire network function up or down (�gure 9c).

� b11 (not shown) and b
1
2 (�gure 9d) shift the sigmoid that each is added to either

left or right. This is easily understood by considering a simple function f(x)

that is shifted by a value d, yielding f(x ± d). Compare this to the network

output formula ~a = f
(

[W].~x+~b
)
.

It has been shown (see [2, 3]) that a neural network with a hidden layer of sigmoid

functions and a linear output layer can approximate any function, making neural

networks universal function approximators. For multivariable functions, the input ~x

becomes a vector whose components are independently approximated. This makes

the approximation of R-dimensional functions possible.

1.5 Neural Network Training Algorithm: Backpropagation

We have seen that neural networks can be universal function approximators. Networks

require an algorithm to determine the correct values for the weights and biases on

the neurons in the shortest amount of time. Typically, a training algorithm will

involve iterative adjustment of neuron parameters by analyzing the error between the

network's prediction and the true function output.

1.5.1 Generic Backpropagation Training Algorithm

The gradient operation from vector calculus forms the basis of the backpropaga-

tion training algorithm. Once we have determined a di�erence (delta) between

the network approximation and the true value, we would like to change the pa-

rameters to reduce the error as quickly as possible. The gradient operator O =

13

(∂
∂x1
x̂1,

∂
∂x2
x̂2,

∂
∂x3
x̂3, · · · , ∂

∂xi
x̂i) �nds the path of steepest descent for a given function

and requires the function to be di�erentiable. While it can be shown (see for example

[7]) that it is always possible to di�erentiate well-behaved functions for which neural

networks are approximators, I will assume the functions we are approximating are

di�erentiable. The algorithm then can be summarized as:

~xk+1 = ~xk − αkOk(f) (4)

Here the vector ~xk represents the weights and biases for the current iteration step

k. In order to calculate the new ~xk+1, we take the gradient of the network's functional

representation with respect to each input to determine how to reduce the error. The

variable αk is a coe�cient that a�ects the learning rate of the algorithm. Supervised

algorithms will adjust αk automatically during training depending on how quickly the

error values are changing. For a multi-layer network the gradient descent algorithm

is implemented in each layer in order:

Once each of the hidden layers has processed the error and adjusted the weights,

the network will be ready to complete another training iteration. This involves com-

puting the network's output using the newly adjusted parameters and then propa-

gating the error back to complete the iteration. In practice, calculating the gradient

becomes more complicated as additional layers are added to the network. An appli-

cation of the chain rule allows the gradient to be calculated for the whole network

with respect to each of the inputs.

∂f

∂wmi,j
=

∂f

∂nmi
× ∂nmi
∂wmi,j

(5)

∂f

∂bmi
=

∂f

∂nmi
× ∂nmi
∂bmi

(6)

14

Algorithm 1 Generic, gradient-descent, backpropagation algorithm for a neural net-
work. The algorithm determines how to adjust the network's free parameters with
respect to each input so that the network's error is reduced in the shortest possible
time.

1. At the Output Layer:

(a) Determine the mean-squared error between the output layer's approxima-
tion and the true function output.

(b) Compute the gradient with respect to each parameter in the layer that
contributed to the output. This isolates neurons according to how much
they each contribute to the total error.

(c) At Each Neuron in the Output Layer:

i. Determine which inputs to the neuron contributed most to the error
at the neuron's output.

ii. Adjust the weights for each of the inputs according to their calculated
error from point 1.(c).i.

iii. Adjust the bias for the neuron.

(d) Feed the error for each of the inputs back to a previous layer (if applicable).

2. At each Hidden Layer (repeated iteratively):

(a) Using the mean-squared error passed back from the next layer,

(b) Follow the steps as outlined in 1.(b− d).

Since we can write the input nmi to a transfer function as

nmi =
Sm−1∑
j=1

wmi,ja
m−1
j + bmi (7)

the partial derivates for an arbitrary layer m can be computed as

∂nmi
∂wmi,j

= am−1j ,
∂nmi
∂bmi

= 1 (8)

1.5.2 Algorithm Selection

Various network backpropagation training algorithms have been developed, including

genetic and particle swarm optimization algorithms (see for example [4, 6, 5]). Each

15

algorithm comes with speci�c bene�ts and best-case applications. Typically there is

a memory-performance tradeo� with algorithms. For example Levenberg-Marquardt

uses standard gradient descent to determine parameter adjustments and is generally

the fastest supervised algorithm. However, it also uses more memory than other,

slower algorithms and is only good for networks with a few hundred adjustable pa-

rameters. For a benchmark comparison of training algorithms applied to real-world

problems see [8].

1.6 Network Training Terminology

A typical function �tting problem using a supervised neural network requires a set of

discrete points at which the function has been evaluated. For multi-variable, vector

functions, the dimensionality of the input and output vectors need not be the same.

The set of input and output vectors, sampled at various points in the function's range,

form the dataset. Usually, the purpose of approximating the function with a network

is to interpolate or extrapolate data points outside of the initial dataset. A neural

network's ability to correctly predict function values for data points that it wasn't

trained on is called generalizability. Ultimately, a good neural network achieves high

generalizability in the shortest possible training time and using the smallest possible

network size (layers and numbers of neurons). This interpolation/extrapolation in-

troduces some additional considerations when designing and implementing the neural

network:

� Over�tting: if too many neurons are speci�ed to approximate a function, the

possibility arises that the mean-squared error of the network's approximation

might appear minimized while the actual approximation is severely de�cient.

Over�tting can usually be resolved by reducing the dimensionality of the hidden

layers (see �gure 10).

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3

4

5

6

7

8

Over tting of Linear Experimental Data with a Higher Order Polynomial

Experimental Data to Fit

Linear Polynomial Fit

9th Order Polynomail Fit

Figure 10: Example of over�tting a data by con�guring more free parameters than
necessary.

� Training Data: training data refers to the data points that are used during

backpropagation training iterations to adjust the neuron parameters. Typically

the training data points are selected from the initial dataset randomly. The

training algorithm attempts to globally approximate these training points as

closely as possible by adjusting parameters. Since the network is being adjusted

to approximate the training data perfectly, the training data is not a good test

candidate for determining the performance of the network. This introduces the

necessity of a validation dataset.

� Validation Data: the initial dataset is split up randomly between training and

validation data. Once the network has matched all the training points during

a training cycle, the network is evaluated using the validation data. If the vali-

dation data is matched within speci�ed error limits, the network is considered

to be trained. If a pre-de�ned number of the validation points fail, the network

returns to the training dataset to try and make further adjustments. If further

17

adjustments do not �x the problem, the network may need to be re-initialized.

� Network Initialization: before the network can begin training, an initial network

approximation is required. If all the weights and biases have default values of

zero, the network is likely going to have a large mean-squared error compared to

the functional value, which may increase training time. Typically, the network's

weights and biases are initialized to random values that are used to calculate

the initial network prediction. This means that network training is not deter-

ministic and could produce a di�erent network each time a new training cycle

is performed (new training includes a re-initialization of the network).

� Performance: network performance is typically measured using the summed,

mean-square error across all the validation data points. Custom error functions

can also be speci�ed that may include speci�c knowledge about the problem

being approximated. Such functions greatly improve the network's performance

and training speed (for example see [11]).

� Validation Checks: when validation data is run through the network to deter-

mine the network's performance, validations checks may be enforced to try and

prevent under/overtraining. A validation check sets a limit on how many vali-

dation data points match before training is stopped. For example, after initial

training, perhaps only two validation points are within acceptable error limits,

so the network returns to iterative adjustments of the parameters. A while later,

perhaps 80% of the validation points are within the error limits; if the network

is con�gured to accept 80% validation as acceptable, training could technically

end. However, the network has not yet determined if another training iteration

would match more of the validation points. The number of consecutive valida-

tion checks that need to pass before training will end is con�gurable. That way

the network will continue optimizing to match more validation points. If the

18

value is set too high, the network might overtrain and lose generality.

� Minimum Gradient Limit: each time that parameters are adjusted to reduce the

error, the network calculates its new prediction and a new error is calculated.

The di�erence between last iteration's error and the current error is called the

gradient value. If the gradient value doesn't change enough during an iteration,

training will be terminated since it isn't making any progress.

19

Part II

Theory and Methodology

2 Theoretical Basis in Density Functional Theory

2.1 Schrödinger's Equation for an N-body Problem

For a problem involving N bodies, Schrödinger's equation takes the form of:

ĤΨ =
[
T̂ + V̂ + Û

]
Ψ =

[
N∑
i

− ~2

2mi

O2
i +

N∑
i

V (~ri) +
N∑
i<j

U(~ri, ~rj)

]
Ψ = EΨ (9)

V (~ri) represents an external potential and U(~ri, ~rj) represents an interaction po-

tential between each of the N bodies in the system. Analytically, this equation

becomes impossible to solve exactly for N > 2. Various approximation schemes have

bypassed this problem. One such approximation, density function theory (DFT) was

developed by Hohenburg and Kohn and later enhanced by Kohn and Sham.

2.2 Density Functional Theory

2Density Function Theory reduces the dimensionality of the N -body problem by

rephrasing the problem in terms of an average electronic density n(~r) = 〈ρ(~r)〉.

Kohn and Sham used the electronic density to recast Schrödinger's equation for non-

interacting particles in terms of a new e�ective potential veff (~r) = v(~r)−eφ(~r)+vexc(~r)

where φ is the electrostatic potential and vexc(~r) is an �exchange-correlation� potential

de�ned as vexc(~r) = ∂Eexc[n(~r)]
∂n(~r)

. This new, e�ective, �Kohn-Sham potential� in�uences

the now non-interacting electrons in a �ctitious �Kohn-Sham system�. The Kohn-

2For a thorough treatment of DFT, aimed at an undergraduate student level, consult [14].

20

Sham potential bears close resemblance to a mean-�eld theory [15]. Using this form

of Schrödinger's equation and n(~r) =
∑N

i=1 |ψi(~r)|2, they formulated what are known

as the Kohn-Sham equations [16]. The equations allow n(~r) to be calculated using a

suitable estimate for the exchange correlation energy functional Eexc[n(~r)] , a known

potential v(~r), and the number of particles N . The Hamiltonian is also recast as a

functional of the average density, H[n(~r)], which in turn allows the recalculation of a

new set of {ψ1(~r), ψ2(~r), ..., ψi(~r)}. A new averge electron density n(~r), and hence

H[n(~r)], can then be calculated from the new set of ψi states. This iterative process

facilitates a self-consistent calculation of the ground state energy for a system of N

particles3.

Once the N -body problem has been rephrased in terms of the electronic den-

sity n(~r), calculating the dynamics of systems becomes a problem of �nding suit-

able approximations for the exchange-correlation energy functional Eexc[n(~r)]. Kohn

and Sham [16] suggested a �Local Density Approximation� (LDA) for calculating

Eexc[n(~r)] that has produced results within 1% of experimental values for many prob-

lems, and that produces better results than Hartree-Fock [13]. Additional re�nements

that have had some success include local spin density (LSD) [17] (which treats n(~r)

for localized spins separately as n ↑ (~r) and n ↓ (~r)) and generalized gradient ap-

proximations (GGA) [18] which take into account the rate of change of local densities

in a way that is consistent with the Kohn-Sham equations (direct gradient opera-

tions con�ict with a step in the derivation of the equations making an approximation

necessary).

3An alternate derivation of DFT theory using principles from thermodynamics is presented
by Argaman ([13]). In this case the problem involves a Hohenburg-Kohn free energy functional
FHK [n(r)] that is used to create a self-consistent set of equations. Argaman's derivation is recom-
mended as a short and elegant alternative.

21

2.3 Time-Dependent Density Functional Theory

The evolution of the electronic system in time necessarily involves time-dependent

electron densities n(~r, t). Time dependence in the average electron density, n(~r, t),

extends the e�ective Kohn-Sham potential to also be time-dependent.

2.3.1 Computational Solution for TDDFT using Propagators

Because the Schrödinger equation is linear, it is possible to de�ne a linear �evolution�

operator U(T, t) that transforms the initial vector for the nth state ψn(0) at time t = 0

into its value ψn(T) at time t = T . Tsolakidis et al. published a TDDFT solution to

an electric �eld perturbation problem that uses a linear, unitary propagator. Their

solution is of interest because the data used to train the neural networks is generated

using such an algorithm [25]. Additionally, the neural network solutions to the optical

excitation problem will use the results from Refs. [24] and [25] to determine whether

the network propagation was successful. Tsolakidis solution has been reproduced and

adapted below.

TDDFT problems are solved by �nding the time-dependent solution to the Kohn-

Sham equation,

i
∂Ψ

∂t
= HΨ (10)

which allows the wave function to be calculated using a time-dependent Hamiltonian:

H =
1

2
∇2 + Vext(~r, t) +

ˆ
ρ(~r′, t)

|~r − ~r′|
dr′ + Vexc[ρ](~r, t) (11)

Notice that the Hamiltonian is a function of the time-dependent density matrixρ(~r, t).

Equation 10 is evaluated for each time step in the simulation to obtain Ψ. The wave

function Ψ can be written as a linear combination of orthogonal basis functions Φm,

such that Ψj = Σ∞m=1c
j
mΦm. The coe�cients cjm of the occupied wave functions can

22

then be used to construct a new density matrix

ρ(t) = Σici(t) (12)

The formal solution of equation 10 is:

ψn(T) = U(t, 0)ψn(0) =

{
∞∑
k=0

(−i)k

k!

ˆ t

0

dτ1 · · ·
ˆ t

0

dτkH(τ1) · · ·H(τk)

}
ψn(0) (13)

After splitting the interval [0, T] into discrete steps ∆t for computation, the prob-

lem becomes one of solving for ψn(t + ∆t) = U(t + ∆t, t)ψn(0), which reduces to

ψn(t+ ∆t) = exp {−iTH }ψn(0) in the case of a time-dependent Hamiltonian. Using

Z = τH0

2i~ , a Crank-Nicholson approximation to the propagator is

U(t+ ∆t, t) =

[
1− Z +

Z2

2
− Z3

6

]−1 [
1 + Z +

Z2

2
+
Z3

6

]
(14)

The computational implementation takes the place of the propagator U in the

equations. With prior knowledge of the ground-state Hamiltonian H0 = H(0) (which

is available from solving for E0 using standard DFT) and the initial wave function

ψn(0), it is possible to calculate ψn(t + ∆t). For systems with many particles, a ψn

will be propagted for each of the states, regardless of whether it is occupied.

2.3.2 TDDFT Calculation of of the Optical Response under a Step-Function

Electric Field

Using the method from the previous section, it is possible to calculate the evolution

of the electronic system in time for an electric �eld perturbation of a given frequency.

Although the method could be repeated many times for each frequency required, it

is easier to solve the system with a step function �eld, which can be written as an

in�nite sum of di�erent frequencies. Once the system has been solved, the optical

23

response for each frequency can be obtained via a Fourier Transform of the electronic

dipole moment's expectation value, which is de�ned as

〈z 〉 = 〈Cj | z |Cj〉 (15)

for the matrix Cj containing the cjm(t) for all m and t. This sample algorithm

demonstrates a possible implementation of the linear propagator to solve for the

optical response of a system:

Algorithm 2 Implementation of a linear propagator to calculate cjm(t+∆) from cjm(t),
using the unitary propagator U(t+ ∆t, t), for a system perturbed by a step-function
electric �eld.

1. Solve the system with a small perturbation H(1) = − ~E · ~r using standard DFT
(for the applied electric �eld before t = 0). This provides ψ(0) for the remaining
steps in the propagation algorithm.

2. For each time step in the propagation:

(a) Solve equation 10 to obtain ψn(t).

(b) Calculate the new ρ(t) from the cjm values of the overlapping orbitals (equa-
tion 12).

(c) Compute a new H[ρ(t)] (equation 11)

3. Repeat step 2 until t = T .

4. Calculate the dipole moment of the electron system 〈z 〉 (equation 15).

5. Calculate FT (〈z 〉) to obtain the optical response for all frequencies present in
the step function.

Using such a method, Tsolakidis et al. were able to correctly model the optical

absorption spectrum of C60 [24], a large molecule. While the solution works, cal-

culating H[ρ(t)] is computationally expensive because it involves a matrix inverse

(equation 14). If a neural network is able to �nd a functional representation for U

using knowledge of changes in ρ(t), we could avoid the matrix inverse.

24

2.4 Derivation of the Neural Network Solution

Returning to neural network theory, we know that the output of a network layer k can

be written as yki =
∑Sk−1

j=1 wki,ja
k−1
j +bki (Equation 7). It is now my intent to show that

the problem at hand can be written in this form using a linear propagator U(T, t),

as discussed in the previous sub-section, and by making appropriate approximations.

At that point a simple comparison will lead to the theoretical structure for the neural

network.

Since each state can have a maximum of two electrons with equal energy, we

only need to propagate 1
2
Nelectrons states in the basis of {ψ(0)

m }, the eigenstates of the

ground state Hamiltonian H0. Each perturbed state ψ
(1)
j = Σmc

j
mψ

(0)
m will be a vector

of length Norbitals (the number of eigenstates of the H0 matrix). In that {ψ(0)
m } basis,

the cjm coe�cients for ψ
(0)
j will be close to 1. The cjm for m 6= j will have smaller

values that are only the result of the static, perturbing �eld.

For a small timestep τ , the cj vector evolves according to the linear propagator

U(t) ≈ U (0)U (1) for the system (see equation 13). As shown in the previous sections,

U (0) ≈ exp
[
τ
i~H(t)

]
for H(t) = H0[ρ0(t)] +H1[δρ(t)] +H1[Eext(t)]. Assuming H0 to

be diagonal and working from that basis:

cj(t+ τ) = U(t)cj(t) ≈ U (1)

. . .

eβEm−1,0cjm−1(t)

eβEm,0cjm(t)

eβEm+1,0cjm+1(t)

. . .

and β =

τ

i~

If we model only the ψ
(1)
j states, each one can be coupled under the perturbing

�eld H1(t) to all the states ψ
(0)
m . As mentioned above, the cjm of ψ

(0)
m for j 6= m will

have small values. Coupling between these states is second order in E and will be

25

ignored. The perturbation H1 to the Hamitonian is linear in ~E. For linear response,

then, there will be two di�erent behaviors:

1. ψ
(1)
j couples to all ψ

(0)
m .

cjj(t+ τ) ≈
∑
m

Ujm(t) eβEm,0cjm(t) (16)

2. ψ
(0)
m with values of cjm close to 1 couple only to ψ

(1)
j but not to each other.

cjm(t+ τ) ≈ eβEm,0cjm(t) + Umj(t) e
βEj,0cjj(t) (17)

Using the notation of equation 17, the tiny, second order perturbation in E that is

being ignored is Umn → 0 for n 6= j. In the limit of zero perturbation, U becomes the

identity matrix.

Comparing equations (16) and (7) for the neural network's output shows that the

problem we are solving can be written in neural network form. The operator Ujm is

a functional of all cjm (represented by the matrix Cj). If all the cjm are presented to

the network as inputs, it is possible that the functional nature of the neural network

may approximate the linear operator Ujm.

yki =
Sk−1∑
j=1

wki,jf
2
(

[W2].
[
f1
(

[W1].~c+~b1
)]

+~b2
)k−1
j

+ bki (18)

cjj(t+ τ) ≈
∑
m

Ujm(Cj) eβEm,0cjm(t) (19)

26

3 Neural Network Implementation

3.1 Network Design Overview

Because the Ujm ↔ U∗mj operator functionals feature in both cases, it should be

possible to combine eqs. (16) and (17) into a single network that calculates diagonal

and o�-diagonal values of U at the same time. Taking the dimensionality of the

network inputs into account, we have to operate under certain contraints:

� Neural networks can only accept 2D matrices as inputs/outputs. The columns

are reserved for the cjm(t) values at di�erent time steps. The rows will be

occupied by each of the {cjm} for all j and m.

� Since the network must train with multiple time steps, the dimensionality of our

input space is actually Nprop ×Nbasis ×Ntimesteps, where Nprop is the number of

states in {ψ(1)
j } with c

j
j close to 1, Nbasis is the number of eigenstates in {ψ(0)

m },

and Ntimesteps is the number of time steps in the simulated DFT data that will

be used to train the network.

� We have to reduce the dimensionality of the system by creating multiple neu-

ral networks, one for each propagated state j. Each network will approxi-

mate the evolution of a single cj = {cjm} using all the cj values as input

(since the evolution of any single state depends on all of the states). This

means that we will need Nprop neural networks each with input dimensional-

ity Nprop ×Nbasis rows and Ntimesteps columns. Although we could theoretically

approximate all of our cj vectors with a single network that has output of

dimensionality Nprop × Nbasis rows and Ntimesteps − 1 columns, in practice this

results in an overdetermined network that is unable to converge well.

� Since the Ujm terms depend on all the cjm terms, we will need to transform the

training data to form input/output targets for each neural network that take

27

the cj terms of the other propagated states into account.

In light of these constraints, the planned vector evolution method using the neural

network requires:

� Eigenvalues En,0 from the H0 matrix.

� An initial matrix of coe�cients cj(t) of size Nbasis×Ntimesteps for the each of the

Nprop states j, which will be used to train the network.

Once the network training is completed, the network should be able to predict new

values for c(t+ τ) for a single time-step per calculation. An outside loop will feed the

newly calculated c(t+ τ) values back into the network to continue propagation.

Examining equations (18) and (19), we draw the following conclusions (see �gure

11):

� The network outputs (de�ned as Y) should be the di�erence between the next

time step and the phase-shifted current time step. Phase shifting here refers

to the multiplication of a single cjm(t) by the natural complex phase factor

e
τ
i~Em,0 . This is the di�erence between propagating with H = H0 +H1 vs. only

propagating with H = H0. If there were no perturbation, this phase shift would

produce the natural, unperturbed oscillation in c(t+ τ).

� The network weights and biases will be adjusted to determine the operator

functions Ujm(t).

� The network inputs (and therefore the inputs to the sigmoid operator functions)

are the eβEm,0 phase-shifted cjm(t) terms.

3.2 Network Design Considerations

In order to accomodate the constraints on network dimensionality, we will need to

transform the initial matrix of cj vectors to match the proposed network inputs. This

28

transformation involves two operations:

� Phase shift each of the o�-diagonal cjm(t) terms by its corresponding eβEm,0 en-

ergy term from the H0 eigenvalues. Since this phase shift is logically equivalent

to the phase shift for the cjj(t) terms of the network outputs, this phase shift

can be done to the entire Cj matrix.

� Subtract each eβEj,0 phase-shifted element of cj(t) from its value at the next time

step cj(t + τ) to form the network outputs. This will be done for each of the

propagated states j. Programmatically, this is equivalent to cj(2..Ntimesteps) −

cj(1..Ntimesteps − 1) eβEj,0 .

� This transformation will have to be reversed after the network has been trained

and produces actual output.

The number of neurons in a hidden layer is equal to the number of sigmoid functions

used in the approximation. Using too many neurons slows down the training with no

gain (and perhaps loss due to over�tting). The number of neurons will have to be

adjusted by trial and error, after making a good estimate, by plotting the oscillations

of some of the {ψ(1)
j } states in each propagated state. Taking this uncertainty into

account, we will refer to Nneurons as the number of neurons that will be selected by

experimentation.

Because the o�-diagonal terms are so close to zero, if we use a single layer in the

network, the mean-squared error calculation ignores the accuracy of the {ψ(0)
m } basis

states with cjm values close to 0. This is overcome by introducing a separate layer for

each of the cjj(t + τ) terms and having all the m 6= j inputs connected to that layer.

The Nprop layers are then connected by a �nal �super-layer� that approximates the

target output of the neural network. The super layer combines the sigmoid function

approximations of the Ujm operators using a linear transfer function. This structure

is summarized in �gure 11.

29

Figure 11: Schematic diagram showing the structure of the neural network and how
the input and output matrices are calculated. One such network will be created for
each of the propagated states.

30

3.3 Programmatic Implementation in Matlab

4Although the end goal is to solve optical absorption spectra for large nanostructures,

methane was selected for proof of concept. It is small and has only a few {ψ(1)
j } and

{ψ(0)
m } states making it ideal for experimentation.

The neural network implementation needs to have the following functionality:

� Parsing of the data generated using density functional theory and transforma-

tion into the relevant inputs and outputs. Implemented by DFT class.

� Initialization of neural network structure as outlined in �gure 11, con�guration

of inputs/outputs and the ability to train the network. Implemented by PNet

class.

� Evolution of the trained network to predict future time steps, plotting of net-

work performance, and validation of network results and expectation values.

Implemented by QVE class.

� Analysis of network predictions to test conformity to known physics principles

such as orthonormality and symmetrization requirements. Implemented in An-

alyzer class.

3.3.1 Matlab Neural Network Toolbox

Mathworks provides a neural network toolbox that is actively developed to keep up

with the current state of neural network theory. The toolbox allows the creation and

training of custom neural networks with many con�gurable parameters and custom

layer and neuron structures. The PNet class constructs a custom neural network

using the NN toolbox's net class and methods according to the structure in �gure

11.

4Well commented source code for important functions in the network implementation in Matlab
is provided in Appendix A.

31

3.3.2 Methods and Discussion of DFT Class

The DFT class handles all the data importing and transformation of the TDDFT

data that the networks will be trained on. The class constructor accepts:

� A data �le with the values of the cj vectors for all the basis states.

� The energies of the ground-state Hamiltonian

� The value of the timestep τ (in seconds) that was used in the computational

simulation that generated the data �le.

� The number of time steps to use as the initial dataset for the neural networks

(includes both training and validation data).

� The number of states {ψ(1)
j } with values close to 1 that will be propagated in

the cj evolution.

The class also has built-in values for methane, which can be automatically loaded by

specifying the molecule chemical code as the only argument to the constructor.

During the initialization routines of the constructor, the data �le is parsed and

the network inputs and outputs are created using the transformations described in

the previous section. Since the networks require cell-matrices, the network inputs and

outputs are also boxed into the correct format for the PNet class. Many of the values

required for the network training are also required for the preparation of the network

inputs/outputs, the DFT class exposes these as public properties so that the other

classes can use them without explicit re-initialization. Additionally, the DFT class

also has methods that can reverse-transform network-predicted data. This facilitates

comparison to the original DFT data that the networks were trained on.

32

3.3.3 Methods and Discussion of the PNet Class

The PNet class accepts an instance of the DFT class in its class constructor and

uses its properties to construct the separate neural networks for the propagated states

j. The class stores the initialized networks as publicly accessible properties so that

other classes can interact with them and initiate evaluation or retraining. Once the

networks have been initialized, the train() method can be called to begin a Levenberg-

Marquardt training of the network parameters. Since �ne-tuning neural networks can

require many iterations, and since training takes longer for larger networks, the class

also implements properties and methods to train a single network independently. This

allows minor changes to network structure to be tested and validated more quickly.

For its trained networks, the PNet class has methods to evaluate the network for

given inputs and to step all the networks forward by a single timestep. Since all the

networks require all the cj values in order to approximate the next time step, the

networks are each stepped forward a single time step before combining their several

outputs into a single input for the next time step. The new input is then fed into

each of the networks and the process is repeated.

For molecules with orthonormal states, the class optionally implements Gram-

Schmidt orthonormalization between the evolution of time steps. The orthonormal-

ization removes small numerical errors in the approximation that would otherwise

compound as further steps are propagated.

3.3.4 Methods and Discussion of the QVE Class

QVE is a wrapper class for PNet and DFT that contains an instance of each and

handles all validation of the networks' predictions. QVE validates the networks'

performance at two levels:

1) Visual comparison of the charge oscillations for speci�c basis states (ψ
(0)
m sub-

script m) within a given propagated state (ψ
(1)
j superscript j). This check compares

33

the network's predictions with known, valid, data obtained via density functional the-

ory (the target comparison data is provided by the DFT class from its parsed data

sets). The graphing methods plot a limited number of the cjm states in subplot form

for a given propagated state j. They are most useful in comparing the performance

of the various j-state neural networks relative to each other. A sample plot of such

a test is presented in �gure 12. Usually, separate plots are generated for the real,

imaginary and complex magnitudes of the cjm values, Figure 12 shows only the real

part for clarity.

34

0 100 200 300 400 500
−1

−0.5

0

0.5

1

Real Parts for m = 1

Time (fs)

c
j m

DFT Data

Network

0 100 200 300 400 500
−1

−0.5

0

0.5

1
x 10

−3 Real Parts for m = 2

Time (fs)

c
j m

DFT Data

Network

0 100 200 300 400 500
−5

0

5
x 10

−5 Real Parts for m = 5

Time (fs)

c
j m

DFT Data

Network

0 100 200 300 400 500
−1

0

1

2
x 10

−7 Real Parts for m = 8

Time (fs)

c
j m

DFT Data

Network

Figure 12: Enlarged output for <(c1m) from a single network validation test that was
performed for methane. The m in the title of each plot refers to the subscript of
cjm, the �c-vector� being plotted. For m = 1, the values are extremely close to unity,

con�rming the assumption made in the derivation that the ψ
(1)
j states for m = j

would have the largest occupation (i.e. values close to 1). In this case it is clear that
the network approximated the data well. Once a visual check has been performed,
the numerical performance values obtained during network training can be considered
valid.

35

2) Calculation of the expectation value of the dipole matrix for the entire system,

which is then compared with published data for the molecule. Errors in just one or

two of the states cjm can have a powerful in�uence on the correctness of the dipole

expectation. Although the visual checks in step 3.3.4 are helpful when �ne-tuning

the network structure, ultimately the correctness of the dipole expectation value

determines the performance of the network. Small errors in the dipole expectation

value may be acceptable if they do not a�ect the peak frequency drastically (obtained

via Fourier transform). If the expectation value is severely wrong, individual neural

networks can be examined using the tests in part 1 to determine which network is

at fault. Sample output from the dipole expectation value and absorption spectra

validation are presented in �gures 13 and 14 respectively.

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

6

8
x 10

−4

Time (fs)

Dipole Moment Expectation Value

DFT Expectation

Network Expectation

Figure 13: Sample output from validation of the dipole expectation value for methane
(see equation 15).

36

0 1 2 3 4 5 6

x 10
17

0

1

2

3

4

5

6

7

8

x 10
−3 Fourier Transform of Dipole Expectation Values

Frequency (ω)

DFT Spectral Analysis

Network Spectral Analysis

Figure 14: Sample output from validation of the absorption spectra by performing
a Fourier transform of the dipole expectation value for methane (shown in �gure
13). Even though the networks' prediction for the expectation value was slightly o�,
the prominent frequencies are su�ciently close that the network might be considered
successful.

The �rst validation check performed on a set of networks ensures that they are

able to faithfully reproduce the data they were trained on. If the networks are unable

to predict the correct values within ≈ 1
1000

for the data they were trained on, the

prediction of time steps outside of the training range is typically poor. This initial

check also ensures that the Fourier transform of the expectation value is exact for the

prominent frequencies.

If the initial validation check against the training data seems successful, the QVE

class initiates a predictive time evolution, one step at a time using PNet methods.

The data predicted by the networks for the extrapolated time steps is then checked

for consistency at the network level (test 1) and then at the expectation value level

(test 2). If the networks can correctly predict the prominent frequencies of the dipole

expectation value, the predictive time evolution is considered successful.

37

3.3.5 Methods and Discussion of the Analyzer Class

The analyzer class validates both network predictions and the initial dataset from

density functional theory to determine if basic physical principles are being followed.

The methods of this class are not called automatically by any of the other classes.

When network predictions have passed theQVE class' validation tests, theAnalyzer

class' methods can be applied to see if/how the networks' prediction deviates from

physics. Possible tests that can be performed using this class are:

� Orthonormality: performs simple dot products between each of the cj to make

sure they are orthogonal. Checks whether |cj| = 1 for all time steps in the

networks' prediction.

� Symmetry: for states known to be symmetrical, Analyzer can determine which

of the two network approximations is better. Depending on the size of the

molecule being approximated with the neural networks, it may be better to

approximate only one of many symmetrical states. While there is an obvious

gain in computational time, having two separate approximations for the same

state may be bene�cial if one of them is determined to be a better approximation

and is used exclusively for the predictive time evolution.

3.3.6 Sample Network Approximation Script

The following Matlab script shows an example of approximating the absorption spec-

tra of methane using the classes dicussed in this section.

1 %Create a QVE object for methane (ch4). The 'all' parameter ensures

2 %that all networks will be created and initialized.

3 q = QVE('ch4','all');

4 %Train all the neural networks.

5 q.nets.train;

6 %Perform a step−by−step evolution of the next 500 steps.

38

7 ev500 = q.nets.evolve(500);

8 %Visually validate the networks' prediction

9 q.evvalid(ev500)

Part III

Results and Conclusions

4 Optical Absorption Spectra for Methane

4.1 Training, Fine-Tuning and Performance

The network was trained on the �rst 500 fs of simulation data acquired using density

functional theory.

4.1.1 Numerical Training Results

Numerical results of the backpropagation training for each of the networks is displayed

in table 1. The average training time for a network was 231.36 seconds. The total

training time for all networks was 1853 seconds. This training was carried out on a

single core 1.65 GHz CPU.

Neural Network Training Time (s) Performance (MSE)

<(c1m) 230.2 6.37× 10−3

=(c1m) 230.8 5.79× 10−3

<(c2m) 230.8 8.75× 10−4

=(c2m) 231.8 8.27× 10−4

<(c3m) 231.9 2.43× 10−5

=(c3m) 231.0 2.53× 10−5

<(c4m) 234.1 6.69× 10−4

=(c4m) 232.4 7.56× 10−4

Table 1: Numerical training results from backpropagation training of the network.

39

4.1.2 Graphical Validation of Individual States

As explained in sections 1.5 and 1.6, training data is randomly sub-divided into three

categories:

� Training: data that the network will use exclusively to alter weights and biases.

� Validation: data used by the backpropagation algorithm to determine when

training is complete and to prevent overtraining.

� Test: data used to measure the performance of the network. These samples

are compared to the network's prediction and then a mean squared error is

calculated that represents how closely the network's prediction matches the

true output being approximated.

Graphical validation involves evaluating the network's prediction for the entire train-

ing data set (includes training, validation and test data) and comparing that predic-

tion to the original training data obtained using DFT. Graphical validation for each

of the {ψ(1)
j } states being propagated can be viewed in Appendix B. Although the

validation plots for the training data seem good, section 4.3 shows a fundamental �aw

in this network structure that these plots failed to highlight.

4.1.3 Dipole Expectation Value and Optical Absorption Spectra

Ultimately, we are after the expectation value of the electric dipole moment, calculated

as 〈z 〉 = 〈Cj | z |Cj〉 (see equation 15). The network's predicted values for the training

data shown in �gures 22 through 25 (in Appendix B) was evaluated for the electric

dipole moment matrix for methane. The same operation was also performed on the

corresponding DFT simulated data and plotted with the network's prediction in �gure

15. The plot con�rms that the network is able to approximate the expectation value of

the electric dipole moment almost exactly for the data it was trained on. Performing

40

a Fourier transform on 〈z 〉 con�rms that the frequencies contained in the network's

prediction matches DFT data well for the training set, see �gure 16.

0 50 100 150 200 250 300 350 400 450 500
−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Time (fs)

Dipole Moment Expectation Value

DFT Expectation

Network Expectation

Figure 15: Agreement between the network's prediction of the expectation value for
the electric dipole moment and DFT simulated data. Compare �gure 13 which used
a di�erent network structure and only reached a MSE of 10−3 for the training data.

0 1 2 3 4 5 6

x 10
17

0

1

2

3

4

5

6

7

8

x 10
−3 Fourier Transform of Dipole Expectation Values

Frequency (ω)

DFT Spectral Analysis

Network Spectral Analysis

Figure 16: Fourier transform of the expectation value for the electric dipole moment
shown in �gure 15. See caption of �gure 15.

41

Examining these validation �gures seems to indicate that the network's approxi-

mation of the data it was trained on is faithful to the DFT data.

4.2 Final Network Structure

The following adjustments resulted from experimentation with the network structure:

1. Real and imaginary parts of the cjm values were approximated using separate

networks. The pre-packaged network training algorithms provided with the

Matlab neural network toolbox could not handle backpropagation training with

complex values. Since the evolution of the cjm values physically depends on the

phase information contained in the imaginary part, both real and imaginary

parts were presented as inputs to all of the neural networks.

2. Experimentally, the networks were unable to approximate the cjm outputs well

when the imaginary parts of all the cjm vectors were used. The �nal network

design approximated the phase evolution by only using the imaginary parts of

cjm for the j value being approximated. For example, if j = 1 is approximated

for <(c1m), the network would use as input <(cjm)∀ j and =(c1m) (only for j = 1).

3. Since the complex phase physically shifts the waveform, the network approxi-

mation for the imaginary part =(cjm) was connected directly to the output layer.

The summation of inputs to the �nal layer would include this approximation as

a linear addition to the other network inputs, mathematically equivalent to a

functional shift in the independent parameter.

After experimentally determining this network structure, the number of neurons in

each layer was determined. Table 2 shows the experimentally-determined optimal

number of neurons in each respective layer. The layer names are described below:

� Primary: the primary layers connect directly to the network inputs (excluding

42

the inputs containing complex phase). These layers are functional approxima-

tions of the cjm vector evolution for each respective j.

� Parent: the primary layers' outputs become inputs to the parent layers. Every

primary layer's output is connected to the input of every parent layer.

� Output: the output layer connects to the target output that the network is

trying to approximate. Its inputs are the outputs of the parent layers. The

parent layers and output layer together represent the Ujm linear propagator.

The number of neurons in the output layer is �xed by the dimensionality of the

target outputs being approximated, i.e. Nbasis.

� Phase: the phase layer connects directly to the input containing complex phase,

=(cjm), bypasses the parent layer and connects directly to the output layer.

Network Layer Optimal Nneuron

Primary 12
Parent 4
Phase 4

Table 2: Experimental determination of neuron numbers per layer.

The optimal number of neurons Nneuron is the result of a trade-o� between a lower

mean squared error (MSE) and additional time required to the train the network.

For example, in the case of the primary layer of the network, having Nneuron = 24

reduced the MSE by approximately 3 × 10−3, but took 2.3× longer to train. Since

the �nal performance of the network was on the order of 10−3 in the case of j = 1

(see table 1), it was not worth the additional training time to reduce the MSE by

so little. Similar ratios (of Nneuron to time increase) were calculated for each of the

layers. In all cases, the MSE reduction was small compared to additional training

time. This suggests that a network's structure (at least in this case) may be more

important than the adjustment of the number of neurons.

43

A graphical representation of the �nal network structure is shown in �gure 17.

This network structure is shown to be fundamentally �awed in section 4.3.

Figure 17: Graphical depiction of �nal network design. Compare with �gure 11.

4.3 Predictive Time Evolution

The trained neural network presented in �gure 17 was used to predict cjm values

outside of the trained data set. Using a single step propagation, each of the 8 networks

was advanced by one timestep to predict cjm(t + 1). The predicted values were then

recombined and presented as input to each of the networks in order to produce cjm(t+

2). This single-step process was repeated for 100 timesteps. Visual validation of this

prediction is shown in �gure 18. Examination of the �gure shows that the network was

reasonably successful at predicting the �rst 40 time steps, after which the prediction

became unstable.

During the time steps in which the approximation had the right magnitude, it

still seems that the network has no knowledge of the oscillatory nature of the data.

The training validation plots seemed to produce the correct absorption spectra, but

44

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
1

−
0
.50

0
.51

R
e
a
l P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
505

1
0
x
1
0
−
3

R
e
a
l P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
505

1
0
x
1
0
−
4

R
e
a
l P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
1012
x
1
0
−
6

R
e
a
l P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
1

−
0
.50

0
.51

Im
a
g
 P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
0
.0
10

0
.0
1

0
.0
2

Im
a
g
 P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
4

−
202
x
1
0
−
4

Im
a
g
 P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
1
0

−
505
x
1
0
−
7

Im
a
g
 P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0
.9
9
9
91

1
.0
0
0
1

A
b
s
P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0

0
.0
0
5

0
.0
1

0
.0
1
5

A
b
s
P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0

0
.51
x
1
0
−
3

A
b
s
P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0

0
.51

1
.5
x
1
0
−
6

A
b
s
P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

F
ig
u
re

18
:
V
is
u
al

va
li
d
at
io
n
of

th
e
j

=
1
st
at
es

fo
r
10
0
ti
m
e
st
ep
s
p
re
d
ic
te
d
ou
ts
id
e
of

th
e
n
et
w
or
k
s'
tr
ai
n
in
g
se
t.

45

prediction outside the training range is dismal. Since the network is supposed to

represent the Ujm linear propagator it is instructive to examine instead a validation

plot (called propagator plot hereafter) that shows the network's prediction with a

single time step prediction horizon. A prediction horizon of 1 means that for each

known, true value from DFT, only 1 future time step is predicted. Thus, for the plot

in �gure 19, each DFT point is only used to predict one other point. A propagator

plot for the �rst 50 time steps from �gure 18 is displayed in �gure 19. Examining the

�gure reveals a serious problem with the way that the network is propagating the cjm

coe�cients. Although as a whole the mean squared error is small, it appears that even

though the network can globally predict the right wave form, for a single time step, the

propagation is completely wrong. It is obvious that for a prediction horizon greater

than 1, a correct prediction is not possible. The slopes of the network predictions for

the propagator are wrong with few exceptions (for example t ∈ (10, 20) for <(c12) and

=(c15)). In other words, the network does not represent the linear propagator Ujm

even for the training data.

4.3.1 Optical Absorption Spectra Prediction

Despite the obvious shortcomings of the prediction, the predicted expectation value

of the electric dipole moment is surprisingly close. In �gures 20 and 21 the dipole

expectation value and the Fourier transform of the expectation values is shown. Even

though the dipole expectation deviates severely toward the end of the predicted pe-

riod, the frequency components in the Fourier transform of the prediction still matches

the DFT data. Considering the observations in the previous section, it is likely that

the problem is not so severe because the network's prediction for the training data

was only o� by a phase shift. In any case, whatever closeness it resembles to the true

system is a matter of chance since the network is not a true functional representation

of Ujm.

46

0
1
0

2
0

3
0

4
0

5
0

−
1

−
0
.50

0
.51

R
e
a
l P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

−
505

1
0
x
1
0
−
4

R
e
a
l P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

−
505
x
1
0
−
5

R
e
a
l P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

−
1

−
0
.50

0
.51
x
1
0
−
7

R
e
a
l P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

−
1

−
0
.50

0
.51

Im
a
g
 P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

−
505
x
1
0
−
4

Im
a
g
 P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

−
505
x
1
0
−
5

Im
a
g
 P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

−
1

−
0
.50

0
.51
x
1
0
−
7

Im
a
g
 P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

11111
A
b
s
P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

23456
x
1
0
−
4

A
b
s
P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

0246
x
1
0
−
5

A
b
s
P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0

2
0

3
0

4
0

5
0

45678
x
1
0
−
8

A
b
s
P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

F
ig
u
re

19
:
V
is
u
al

va
li
d
at
io
n
b
y
p
oi
n
t
fo
r
a
p
re
d
ic
ti
on

h
or
iz
on

of
on
e
ti
m
e
st
ep
.
T
h
e
p
lo
t
u
se
s
th
e
sa
m
e
d
at
a
as

�
gu
re

18
,
b
u
t

on
ly

fo
r
th
e
�
rs
t
50

ti
m
e
st
ep
s.

T
h
e
li
n
es

sh
ow

th
e
sl
op
e
of

th
e
n
et
w
or
k
's
p
re
d
ic
ti
on

fo
r
cj m

(t
+

1)
fo
r
ea
ch

D
F
T

p
oi
n
t.

T
h
e

sl
op
e
of

th
e
n
et
w
or
k
's
si
n
gl
e
ti
m
e
st
ep

p
re
d
ic
ti
on
s
sh
ow

s
it
s
�
aw

ed
re
p
re
se
n
ta
ti
on

of
th
e
U
jm

li
n
ea
r
p
ro
p
ag
at
or
.

47

0 100 200 300 400 500 600
−20

−15

−10

−5

0

5
x 10

−4

Time (fs)

Dipole Moment Expectation Value

DFT Expectation

Network Expectation

Figure 20: Expectation value of the electric dipole moment for the �rst 40 time steps
predicted by the network.

0 1 2 3 4 5 6

x 10
17

0

1

2

3

4

5

6

7

8

x 10
−3 Fourier Transform of Dipole Expectation Values

Frequency (ω)

DFT Spectral Analysis

Network Spectral Analysis

Figure 21: Fourier transform of the dipole expectation values shown in �gure 20.

48

4.4 Discussion

The greatest di�culty with a single-step time propagation is that slight errors in a

single time step carry easily and tend to make the entire prediction unstable. That

is why it is essential that the network truly represent the linear propagator Ujm. In

section 2, a sample implementation from Tsolakidis [24] used a linear propagator to

solve the optical excitation problem. Their solution also only calculated a single step

per iteration but was successful for a prediction horizon of in�nity. Their success

indicates that the theory of the linear propagator is a valid way to solve the problem.

It is clear then, that the problem with the ��nal� network implementation presented

in section 4.2 is that it was not a true representation of Ujm.

The current network implementation from section 4.2 is able to correctly predict

a phase-shifted wave form for the training data cjm across all j and m (albeit only for

a prediction horizon of 1). This does grant some con�dence that a network structure

for Ujm could be found. Because the network is o� by a phase shift, the most likely

culprit is the lack of complex information as network inputs. In section 4.2, the

approximation was suggested that some of the complex data, for other j states not

being propagated, could be ignored. This was clearly a false assumption. The network

theory in section 2 requires a complex matrix Ujm as a linear propagator. Two possible

options for taking this limitation into account are 1) to create, from scratch, a neural

network implementation that can handle complex inputs and outputs [26] or 2) to

simultaneously train the real and complex parts for each j state in a single neural

network.

Option 1 would provide the most �exibility since equality comparers and algo-

rithms could be changed to handle the complex values as required. Additionally, the

network would more fully represent a functional of the complex linear propagator.

Books with C++ code excerpts for various algorithms (example [4]) could provide an

excellent starting point for ready-made network implementations and speed up the

49

network creation process. One great disadvantage is that existing Matlab classes and

functionality would become obselete. Additionally, Method 2 could end up converging

with minimal changes to the network structure and perhaps be a better option. It

could also turn out that implementation of the gradient descent training algorithms

for complex networks are more complicated, decreasing code maintainability. To that

problem, however, Szilagyi does present a complex learning rule [26] that may be

suitable.

Option 2 has the problem that the Matlab neural network toolbox cannot handle

complex valued inputs, weights and biases. As such, the network treats the real and

imaginary parts of the inputs, weights and biases as equivalent. Thus, the real and

imaginary parts of the inputs are presented to the network as exclusively real, and

important phase information contained in the theory of imaginary numbers becomes

lost (and is perhaps irretrievable). If weights and biases were allowed to be complex

(method 1), multiplication by weights during network training would constitute a

phase shift and could immediately solve the phase problem present in the current

design. While experimenting with the structure of the �nal network presented in

section 4.2, various schemes and structures were attempted that approximated real

and imaginary parts separately, in parallel, within a single network. None of those

attempts were able to converge with errors smaller than 10−1. When the original

(�awed) validation plots (for example �gures 22 through 25) seemed to indicate con-

vergence for the training data despite the lack of all complex information, it seemed

that perhaps the network had managed to approximate the phase changes through

its complex functional nature. Valid plots for the expectation values of the dipole

matrix (equation 15) added to the false sense of accomplishment. Reviewing the

convergence di�culties of managing the complex numbers as groups of real numbers

suggests that option 2 is not likely to succeed, even with additional adjustments and

experimentation.

50

4.4.1 Possible Steps for Remediating the Flawed Propagator Network

At this stage, it would be best to return to an extremely simple (toy) model such as

a two state system with H0 equal to the identity matrix (though still time-dependent

on the cjm), and a small electric �eld perturbation. A correct network approximation

to Ujm will most likely require Method 1 discussed above. An existing neural network

code base from [4] could be modi�ed with the suggestions in [26] to handle complex

inputs, weights and transfer functions as well as network training. Visual validation

plots would use propagator plots (like �gure 19) exclusively. This should help identify

the actual progress of the network as a functional representation of Ujm instead of

the global approximation in a single time step prediction horizon. A correct neural

network solution should accept, as complex inputs, all of the cjm values and train

toward complex targets.

Most of the decisions outlined in section 3 (relating to the neural network struc-

ture) remain valid since they were based in the theory of section 2. As mentioned

above, the fatal approximation was ignoring some of the complex parts of cjm values

and attempting to train the network's real and imaginary parts separately. Those

changes were only implemented during the experimentation stage (deviating from

the proposed network structure in �gure 11). A good starting point for the complex

network implementation would still be the network structure presented in section 3

and summarized in �gure 11.

4.4.2 General Notes Regarding Network Experimentation

The �nal network structure (�gure 17) was quite successful at approximating the

global wave form over a single time step prediction horizon (o� only by a phase

factor). Thus, even though it didn't solve the linear propagator problem, it was

optimized to minimize the error in plots like �gs. 22 through 25 (in Appendix B). It

is therefore still instructive to consider improvements to the network training process

51

that will likely need to be implemented in the new complex network.

The predicted results in �gure 18, though wrong, are interesting in that the pre-

diction remained stable across multiple maxima and minima for 40 time steps before

deviating. Once the deviation started, it carried quickly. The deviations were most

likely caused by the j = 1 networks that only achieved a perfomance of order 10−3,

an entire order of magnitude o� from the other networks. Although a single network

structure across all the j states and networks would be preferable for code mainte-

nance, it may be necessary to maintain a separate structure for �problem� states such

as j = 1. As discussed with table 2, it is possible to boost the numbers of neurons

(and network performance) in the various layers at the cost of computation time in

the training algorithm. Since the other networks j 6= 1 performed well, it seems

unnecessary to introduce such changes into their network structures.

As the number of inputs and layers in the network increases, the combinations

of possible hidden layer connections and neuron counts goes up dramatically, in-

creasing the experimentation time required to have the network converge on a good

approximation. Although some parts of the network structure can be predicted by

comparison with the physics behind the system (as discussed in section 3.1), there is

still a lot of room for experimentation and parameter adjustment. Because the net-

work is approximating a complex, non-linear function as a linear functional of a sum

of sigmoid functionals, there is not a unique network solution to the problem. This

introduces the necessity of experimentation in network structure and the number of

neurons in the various layers. As the network design becomes more complicated and

training time increases, adjusting parameters and experimenting with their results

takes longer. Ideally, experimentation with numbers of neurons and connections be-

tween layers could be scripted and run in parallel on a supercomputer. A program

could be written to manage the combinations of parameters tried and analyze their

performance without intervention.

52

The network design and training for the methane approximation was all performed

on a single-core, 1.65 GHz CPU. One of the great advantages of neural networks and

the methodology presented in this thesis is that they lend themselves well to par-

allelism on a supercomputer. Only the single-step propagation requires interaction

between the various networks, allowing each network to be trained on separate pro-

cessors. Since the results at this point are incomplete, it is not possible to make an

accurate comparison with the CPU time required to produce the full-length DFT

simulation that the networks are trying to approximate. The trained neural networks

take approximately 1.1 MB of memory for the methane case. Taking both memory

and CPU into account, the neural network methodology remains a possible avenue for

improving the computation time involved in an optical absorption spectra calculation,

if a complex-value network can be found to approximate Ujm.

4.4.3 Additional Considerations for the New Complex-valued Network

The linear propagator Ujm is supposed to be unitary. This preserves the orthogo-

nality of the states during propagation. An additional validation check that should

be performed should be the application of Ujm (represented by the neural network

functional) onto a unit matrix to determine the network's matrix value. That matrix

could then be compared to theoretical expectations for Ujm to determine if it is a

close �t. The orthonormality functions in the Analyze class should also be applied

routinely to network predictions as part of the validation.

5 Conclusion

The ability of neural networks to approximate arbitrary functions was applied to

a complex, non-linear, electric-�eld perturbation problem. Although the network

methodology used to approximate the perturbation seemed e�ective at approximat-

53

ing the data on which it was trained, closer examination revealed a fundamental �aw

in the network's structure. The network structure that was determined by experimen-

tation ignored important complex information because of limitations in the Matlab

neural network toolbox. The networks trained real and imaginary parts separately

and didn't use all the complex information available in the approximation. Addi-

tionally, the complex information that was used lost important phase information.

These factors, relating to the complex cjm values, resulted in a network that was not

an approximation to the linear propagator.

Creating a new, complex-valued neural network using the same theoretical basis

and theoretically motivated network structure may be able to approximate the linear

propagator. While most of the proposed network structure from this thesis would

remain valid, the existing code base will be inadequate. New network classes and

a complex training algorithm could be adapted from existing, third-party code and

publications about complex networks. This would reduce the amount of time required

to create a new code base from scratch.

54

References

[1] Swingler, K. �Applying Neural Networks: A Practical Guide�, London:
Academic Press Limited, 1996. 5

[2] Hornik, K. M.; Stinchcombe, M. and White, H. �Multilayer feedforward
networks are universal approximators,� Neural Networks, vol. 2, no. 5, 359�366
(1989) 13

[3] Hecht-Nielsen, Robert �Kolmogorov's Mapping Neural Network Existence
Theorem�, Proc. I987 IEEE International Conference on Neural Networks,
IEEE Press, New York, III (11-13), 1987. 13

[4] Masters, Timothy �Advanced algorithms for neural networks: a C++
sourcebook�, Wiley, 1995. 15, 49, 51

[5] Gudise, V.G.; Venayagamoorthy, G.K. "Comparison of particle swarm
optimization and backpropagation as training algorithms for neural networks,"
Swarm Intelligence Symposium, 2003. SIS '03. Proceedings of the 2003 IEEE ,
pp. 110- 117, 24-26 April 2003 15

[6] Van Rooij, A. J. F.; Johnson, R. P. and Jain, L. C. �Neural Network Training
Using Genetic Algorithms� World Scienti�c Publishing Co., Inc., River Edge,
NJ, USA. 1996. 15

[7] Hecht-Nielsen, "Theory of the backpropagation neural network,"
International Joint Conference on Neural Networks, 1989. IJCNN., pp.593-605
vol.1. 14

55

[8] Mathworks, Neural Network Toolbox Documentation, �Multilayer Training
Speed and Memory�, Accessed December 2012.
<http://www.mathworks.com/help/nnet/ug/speed-and-memory-comparison-
for-training-multilayer-networks.html>
16

[9] Hagan, Martin T.; Demuth, Howard B. and De Jesús, Orlando �An
introduction to the use of neural networks in control systems�, International
Journal of Robust and Nonlinear Control, 2002. pp. 959-985. 5, 10

[10] bssaonline.org, �Adapting the Neural Network Approach to PGA
Prediction�, Accessed December 2012.
<http://www.bssaonline.org/content/102/4/1446/F4.expansion.html>

[11] Quito, Marcelino Jr.; Monterola, Christopher; Saloma, Caesar �Solving
N-Body Problems with Neural Networks�, Phys. Rev. Lett. 86.4741, 2001. 1, 18

[12] Monterola, Christopher; Saloma, Caesar �Solving the nonlinear Schrodinger
equation with an unsupervised neural network�, Optics Express vol 9, pg 72-84,
2001. 1

[13] Argaman, N. and Makov, G. �Density Functional Theory - An
Introduction,� American Journal of Physics, pp. 69-79, 2000. 21

[14] Burke , K. et al. �The ABC of DFT�, Irvine: University of California, 2007.
20

[15] Marques, M. et al. �Time-dependent density functional theory�, Berlin:
Springer, 2006. 21

56

[16] Kohn, W. and Sham, L.J. �Self�consistent equations including exchange
and correlation e�ects,� Phys. Rev. 140, A1133�1138 (1965). 21

[17] Vosko, S.H.; Wilk, L. and Nusair, M. �Accurate spin�dependent electron
liquid correlation energies for local spin density calculations: a critical
analysis,� Can. J. Phys. 58, 1200�1211 (1980). 21

[18] Perdew, J.P. et al. �Atoms, molecules, solids, and surfaces: applications of
the generalized gradient approximation for exchange and correlation,� Phys.
Rev. B 46, 6671�6687 (1992) 21

[19] Castro, Alberto; Rubio, Angel et al. �The Octopus Manual�, v 4.0.1.
Accessed December 2012.
<http://www.tddft.org/programs/octopus/wiki/index.php>

[20] Van Milligen, B. Ph.; Tribaldos, V.; Jiménez, J. A. �Neural Network
Di�erential Equation and Plasma Equilibrium Solver� (1995) 1

[21] Khaliullin, Rustam Z. et al. �Graphite-diamond phase coexistence study
employing a neural-network mapping of the ab initio potential energy surface�
(2010) 1

[22] Behler, J and Parrinello, M �Atom-centered symmetry functions for
constructing high-dimensional neural network potentials� (2007) 1

[23] Morawietz, Tobias; Sharma, Vikas and Behler, Jörg �A neural network
potential-energy surface for the water dimer based on environment-dependent
atomic energies and charges� J. Chem. Phys. 136, 064103 (2012) 1

57

[24] Tsolakidis, Argyrios; Daniel Sa´nchez-Portal and Richard M. Martin
�Calculation of the optical response of atomic clusters using time-dependent
density functional theory and local orbitals� Phys. Rev. B 66, 235416 (2002)
22, 24, 49

[25] Hess, Bret C; Jensen, Daniel S and Okhrimenko, Ivan G �Spatial
distribution of electron densities during optical excitation of C60� J. Phys.:
Condens. Matter 22 (2010) 22

[26] Szilagyi, Miklos N . �Neural Networks with Complex Activations and
Connection Weights� Complex Systems 8 (1994). 49, 50, 51

Part IV

Appendices

Appendix A: Selected Function Listing for Network

Implementation

Note: in some of the larger �les, code that is not relevant to the network implemen-

tation was removed. Examples of these removals are property de�nitions, getters and

setters, numerical constants, �le paths, and exception generators. Since class de�ni-

tion �les are usually exclusively constructed of these items, they have been excluded.

The reader may assume that references to the class object, its properties and methods

exist, even though they are not included.

DFT Class

Network Input Creation Function cminput.m

58

1 function cminput(obj)

2 %CMINPUT Prepares the input matrices for network training

3 %PARAMETERS − retrieved from properties of referenced object

4 % rdata: the real part of the c−vector values for all propagated

5 % states and time steps in the simulation.

6 % idata: the imaginary part of the c−vector values for all

7 % propagated states and time steps in the simulation.

8 % energies: the eigenvalues of the H0 basis {psi_m^0}

9 % tau: the time step of the simulation

10 %DESCRIPTION

11 % Creates cell arrays for the real and imaginary parts of the input

12 % dataset for each of the propagated states. Returns the actual

13 % input matrix that can be used to train the networks. The returned

14 % matrix has dimensions nbasis*nprop rows x ntimesteps − 1 cols.

15 %OUTPUTS − Values changed in the referenced object

16 % rins: the real part of the combined network inputs

17 % iins: the imaginary part of combined network inputs

18 %METHOD

19 % Because the data is supplied as alternating real and imaginary

20 % columns, the import script returns separate real and imaginary

21 % datasets. The script combines the datasets and then multiplies by

22 % the exp(i*energy) phase factor. It is important to use the

23 % complex numbers because the phase factor involves multiplication

24 % with i.

25

26 %Get the combined real and imaginary data.

27 combdata = obj.cdata;

28 %Extract the real and imaginary parts of the combined cell array

29 obj.rins = cell(obj.nprop,obj.timesteps−1);

30 obj.iins = cell(obj.nprop,obj.timesteps−1);

31

32 for k=1:obj.nprop

33 %Now phase shift each of the c−vectors from the imported

59

34 %cdata matrix for pstate j and bstate m

35 for m=1:obj.timesteps−1

36 value = obj.shiftm(combdata{k}(:,m))';

37 obj.rins{k,m} = real(value);

38 obj.iins{k,m} = imag(value);

39 end

40 end

41

42 %Combine the real and imaginary matrices into a single matrix

43 %so that all complex data is presented as input to the network

44 obj.ains = vertcat(obj.rins,obj.iins);

45 end

Network Output Creation Function cmoutput.m

1 function cmoutput(obj)

2 %CMOUTPUT Prepares the output matrices for network training

3 %PARAMETERS − retrieved from properties of referenced object

4 % rdata: the real part of the c−vector values for all propagated

5 % states and time steps in the simulation.

6 % idata: the imaginary part of the c−vector values for all

7 % propagated states and time steps in the simulation.

8 % energies: the eigenvalues of the H0 basis {psi_m^0}

9 % tau: the time step of the simulation

10 %DESCRIPTION

11 % Creates cell arrays for the real and imaginary parts of the input

12 % dataset for each of the propagated states. Returns the actual

13 % output matrix that can be used to train the networks. The

14 % returned matrix has dimensions nbasis x ntimesteps − 1.

15 %OUTPUTS − Values changed in the referenced object

16 % routs: the real part of the combined network outputs

17 % iouts: the imaginary part of combined network outputs

18 %METHOD

19 % Because the data is supplied as alternating real and imaginary

60

20 % columns, the import script returns separate real and imaginary

21 % datasets. The script combines the datasets and then multiplies

22 % steps 2:ntimesteps by the exp(i*energy) phase factor and

23 % subtracts them from the 1:ntimesteps matrix.

24

25 %Prepare a temporary vector of the exp(i*energy) terms that need

26 %to be multiplied by timesteps 2:ntimesteps

27 expenergy = exp(obj.tau/(1i*obj.hbar)*obj.energies);

28

29 %Get the combined real and imaginary data.

30 combdata = obj.cdata;

31 comblhs = cell(obj.nprop,1);

32 combrhs = cell(obj.nprop,1);

33

34 %Get the LHS and RHS of matrix V constructed (see figure 11)

35 for k=1:obj.nprop

36 comblhs{k} = combdata{k}(:,2:obj.timesteps);

37 combrhs{k} = combdata{k}(:,1:obj.timesteps−1);

38 end

39

40 %Now phase shift the diagonal elements of the combrhs matrix.

41 %Since all c−vectors for basis state 1 are all in the same row,

42 %we only need to multiply that row by the phase factor.

43 occind = obj.occupied;

44 %The indices of the mostly occupied states in each cell matrix

45 for k=1:obj.nprop

46 index = occind(k);

47 combrhs{k}(index,:) = expenergy(k)*combrhs{k}(index,:);

48 end

49

50 %Finally, we need to subtract the mostly occupied states at

51 %1:ntimesteps−1 from the corresponding ones in 2:ntimesteps

52 couts = cell(obj.nprop,1);

61

53 for k=1:obj.nprop

54 couts{k} = comblhs{k};

55 couts{k}(:,:) = couts{k}(:,:)−combrhs{k}(:,:);

56 end

57

58 %Transform the complex outputs to the nn required format

59 couts = obj.box(couts);

60 %Now we just need to separate the real and imaginary parts,

61 %initialize the cell arrays in the DFT object.

62 obj.routs = cell(obj.nprop,1);

63 obj.iouts = cell(obj.nprop,1);

64

65 for k=1:obj.nprop

66 %initialize a temporary cell array to hold the outputs.

67 temprouts = cell(1,obj.timesteps−1);

68 tempiouts = cell(1,obj.timesteps−1);

69

70 %Get the real and imaginary parts of the calculated nn outputs.

71 for m=1:obj.timesteps−1

72 temprouts{1,m} = real(couts{k,m});

73 tempiouts{1,m} = imag(couts{k,m});

74 end

75

76 %Set the outputs of the actual DFT object.

77 obj.routs{k} = temprouts;

78 obj.iouts{k} = tempiouts;

79 end

80 end

Network Output Reverse Transformation Function rtransform.m

1 function rapprox = rtransform(obj,netapprox,index)

2 %RTRANSFORM Reverse transforms network output data to a c−matrix

3 %PARAMETERS

62

4 % netapprox: the cell matrix of network predicted outputs for

5 % c_m^j of j = index.

6 % index: the zero−based index of the jth {psi_j^(1)} state.

7 %DESCRIPTION

8 % In order to train the network, the DFT data was transformed to

9 % match the network structure from the theory (see figure 11).

10 % Before we can compare this data to DFT predicted values, it

11 % needs to be reverse transformed. According to theory,

12 % c(t+tau) = Y(t) + exp(energy)*c(t)

13

14 %Prepare a temporary vector of the exp(i*energy) terms that

15 %need to be multiplied by timesteps 2:ntimesteps

16 expenergy = exp(obj.tau/(1i*obj.hbar)*obj.energies);

17

18 %Get the combined real and imaginary data.

19 combdata = obj.cdata;

20 combrhs = combdata{index}(:,1:obj.timesteps−1);

21

22 %Now phase shift the diagonal elements of the combrhs matrix.

23 %Since all c−vectors for basis state 1 are all in the same row,

24 %we only need to multiply that row by the phase factor.

25 %Find the indices of the states in each cell matrix with c_m^j

26 %values that are close to 1.

27 occindex = obj.occupied(index);

28 combrhs(occindex,:) = expenergy(index)* ...

29 combdata{index}(occindex,1:obj.timesteps−1);

30

31 %Finally, we need to add the {psi_j^(1)} states at

32 %1:ntimesteps−1 to the corresponding ones in 2:ntimesteps

33 %to undo the initial subtraction that was done.

34 rapprox = netapprox+combrhs;

35 end

63

Propagated State j Phase Shiftor shiftj.m

1 function cjout = shiftj(obj,cjin)

2 %SHIFTJ Phase shifts a c−matrix for a {\psi_j^(1)} state.

3 %PARAMETERS

4 % cjin: the matrix of c−vectors(rows) by time−steps(columns)

5 % for state j.

6 %DESCRIPTION

7 % Calls shiftm() on each c−vector in the specified input matrix

8 % to produce the LHS input for the network (see figure 11).

9 dsize = size(cjin);

10 cjout = zeros(dsize(1),dsize(2));

11

12 for k=1:dsize(2)

13 cjout(:,k)=obj.shiftm(cjin(:,k));

14 end

15 end

Basis State m Phase Shiftor shiftm.m

1 function cshifted = shiftm(obj, cvector)

2 %SHIFTM Phase shifts a c_m^j vector by exp(energy) term.

3 %PARAMETERS

4 % cvector: the c_m^j vector associated with a specific state

5 % and time−step that is being propagated.

6 %DESCRIPTION

7 % Prepares an input c_m^j vector that includes the occupation of

8 % all the {psi_m^(0)} states for the propagated {psi_j^(1) state

9 % by including the natural (unperturbed) oscillating term

10 % exp(tau/i*hbar*energy(m))

11 cshifted = exp(obj.tau/(1i*obj.hbar)*obj.energies).*cvector';

12 end

64

PNet Class

Network Approximation Function approx.m

1 function ntransform = approx(obj,index,ains)

2 %APPROX Evaluates the network for the specified input.

3 %PARAMETERS

4 % index: the zero−based index of the {psi_j^(1)} being propagated

5 % ains: (optional) the cell matrix of all complex inputs to

6 % evaluate. The matrix dimensionality should be nprop*nbasis rows

7 % with as many columns as timesteps that need to be evaluated. If

8 % unspecified, the training data set is used.

9 %DESCRIPTION

10 % This function simulates the network for the specified j index

11 % and returns the reverse−transformed complex approximation. The

12 % specified inputs to evaluate are normalized to be of order 1 in

13 % all rows using mapminmax(). After the network has predicted an

14 % output, it is reverse−normalized using mapminmax() again before

15 % being passed to the DFT class' rtransform function.

16 if (nargin > 2)

17 rapprox = sim(obj.trnets{index},mapminmax(ains));

18 iapprox = sim(obj.tinets{index},mapminmax(ains));

19 uiapprox = mapminmax('reverse',iapprox{1}, ...

20 obj.inormalizations{index});

21 urapprox = mapminmax('reverse',rapprox{1}, ...

22 obj.rnormalizations{index});

23 napprox = urapprox + 1i*uiapprox;

24 ntransform = obj.DFT.rtransform(napprox, index);

25 else

26 rapprox = sim(obj.trnets{index},mapminmax(obj.DFT.ains));

27 iapprox = sim(obj.tinets{index},mapminmax(obj.DFT.ains));

28 uiapprox = mapminmax('reverse',iapprox, ...

29 obj.inormalizations{index});

65

30 urapprox = mapminmax('reverse',rapprox, ...

31 obj.rnormalizations{index});

32 napprox = cell2mat(urapprox) + 1i*cell2mat(uiapprox);

33 ntransform = obj.DFT.rtransform(napprox, index);

34 end

35 end

Network Creation Function createnets.m

1 function createnets(obj)

2 %CREATENETS Creates all neural networks for c_m^j vector data

3 %DESCRIPTION

4 % Creates a two neural networks (one real, one imaginary) for

5 % each of the propagated {psi_j^(1)} states in the object's

6 % DFT training data.

7 %INPUTS − retrieved from object reference

8 % ains: the combined real and complex inputs to train with.

9 % routs: the real targets that the networks will approximate.

10 % iouts: the imag targets that the networks will approximate.

11 %OUTPUTS − altered in the referenced object.

12 % rnets/inets: cell arrays for the real and imaginary networks

13 % being created.

14

15 %Initialize the cell arrays for the real and imaginary networks

16 %and training data.

17 obj.rnets = cell(obj.DFT.nprop,1);

18 obj.rtrain = cell(obj.DFT.nprop,1);

19 obj.inets = cell(obj.DFT.nprop,1);

20 obj.itrain = cell(obj.DFT.nprop,1);

21

22 %Iterate through each of the states and create a network for

23 %the occupied states. The netinit function takes care of all

24 %the initialization etc.

25 for k=1:obj.DFT.nprop

66

26 obj.rnets{k} = obj.initnet(obj.DFT.ains, ...

27 obj.DFT.routs{k},k,1);

28 obj.inets{k} = obj.initnet(obj.DFT.ains, ...

29 obj.DFT.iouts{k},k,0);

30 end

31

32 %Also initialize the cell arrays that will hold the

33 %trained networks.

34 obj.trnets = cell(obj.DFT.nprop,1);

35 obj.tinets = cell(obj.DFT.nprop,1);

36 %Set the initialization flag so that training can continue.

37 obj.initialized = 1;

38 end

Single-step Time Evolution Function evolve.m

1 function approx = evolve(obj,timesteps,firststep)

2 %EVOLVE Steps the simulation forward in time predictively

3 %PARAMETERS

4 % timesteps: the number of timesteps to predict outside of the

5 % training data.

6 % firststep: the initial c_m^j vector that will be presented to

7 % the network.

8 %DESCRIPTION

9 % Uses the initial (i.e. t = 0) c−vector for the real and

10 % imaginary network training data and then steps the networks

11 % forward in time (one step at a time) to predict timesteps.

12

13 %Initialize the approximation that is being returned and get

14 %the first timestep from the training data

15 approx = cell(obj.DFT.nprop,1);

16 for k=1:obj.DFT.nprop

17 approx{k} = zeros(obj.DFT.nbasis,1);

18 end

67

19

20 %Initialize the variable that will hold the network

21 %approximation from the previous step.

22 papprox = cell(obj.DFT.nprop,1);

23

24 %See if we are starting from step 1 automatically, or if we

25 %have a training start variable.

26 if (nargin < 3)

27 for k=1:obj.DFT.nprop

28 papprox{k} = obj.DFT.cdata{k}(:,1);

29 approx{k}(:,1) = papprox{k};

30 end

31 else

32 for k=1:obj.DFT.nprop

33 papprox{k} = firststep{k};

34 approx{k}(:,1) = papprox{k};

35 end

36 end

37

38 %Now just iterate for the specified number of timesteps

39 expenergy = exp(obj.DFT.tau/(1i*obj.DFT.hbar)* ...

40 obj.DFT.energies);

41 occupied = obj.DFT.occupied;

42 timetotal = 0;

43

44 for k=1:timesteps

45 tstart = tic;

46 %Calculate the network's approximation

47 napprox = obj.pstep(papprox,expenergy,occupied, k);

48

49 %The network approximation is a cell variable. We need to

50 %set the value of the final approximation for this timestep

51 %one cell at a time because of how the matrices are setup.

68

52 for m=1:obj.DFT.nprop

53 approx{m}(:,k+1) = napprox{m};

54 end

55

56 %Finally, overwrite the value of papprox to be the value%

57 %that we just calculated

58 papprox = napprox;

59 telapsed = toc(tstart);

60 timetotal = timetotal + telapsed;

61 fprintf('Simulated t = %g\t%g seconds\tTotal Time: %g\n', ...

62 k, telapsed, timetotal);

63 end

64 end

Generic Network Initialization Function initnet.m

1 function net = initnet(obj,input,output,index,real)

2 %INITNET Initializes a new neural network

3 %PARAMETERS

4 % input: the combined complex input to the network.

5 % output: the target output being approximated.

6 % index: the zero−based index of the {psi_j^(1)} to approximate

7 % real: boolean, specifies whether the network is being setup

8 % for the real or imaginary parts of the complex inputs.

9 %DESCRIPTION

10 % Prepares a custom network as shown in section 4.2, figure 17.

11 net = network;

12 nstates = obj.DFT.nprop;

13

14 %Initialize the number of inputs and layers

15 net.numInputs = 2*nstates;

16 net.numLayers = nstates*2 + 2;

17

18 %Connect the inputs to the layers. Each of the bound states

69

19 %will be connected to its own layer within the network. These

20 %layers will be summed into the super layer

21 for k=1:nstates

22 if (real)

23 net.inputConnect(k,k)=1;

24 else

25 net.inputConnect(k,k+nstates)=1;

26 end

27 net.layerConnect(nstates+1+k,1:nstates)=1;

28 end

29

30 %Connect up the additional real/imag layer for the state

31 %being calculated.

32 if (real)

33 net.inputConnect(nstates+1,index+nstates) = 1;

34 else

35 net.inputConnect(nstates+1,index) = 1;

36 end

37

38 %Connect each of the state layers to its parent and the parents

39 %to the super layer.

40 net.layerConnect(net.numLayers,nstates+1:nstates*2+1)=1;

41 %Set a bias on the parent and super−layers to shift the result

42 net.biasConnect(nstates+1:net.numLayers) = 1;

43 %Now connect up the final super−layer to the output so that

44 %we can train against it

45 net.outputConnect(net.numLayers)=1;

46

47 %Now we need to choose the number of neurons to train with.

48 %These values are altered over repeated trainings to find the

49 %optimal number for performance and training time.

50 for k=1:nstates

51 net.layers{k}.size = 12;

70

52 net.layers{k}.transferFcn = 'tansig';

53 net.layers{k}.initFcn = 'initnw';

54

55 net.layers{k+nstates}.size = 4;

56 net.layers{k+nstates}.transferFcn = 'tansig';

57 net.layers{k+nstates}.initFcn = 'initnw';

58 end

59

60 %Set additional imag/real layer settings

61 net.layers{nstates+1}.size = 4;

62 net.layers{nstates+1}.transferFcn = 'tansig';

63 net.layers{nstates+1}.initFcn = 'initnw';

64

65 %Now before we can train we need to specify the initialization,

66 %training, peformance and dividing functions for the networks

67 net.adaptFcn='adaptwb';

68 net.initFcn = 'initlay';

69 net.performFcn = 'mse';

70 net.trainFcn = 'trainlm'; %

71 net.divideFcn = 'dividerand'; % Divide data randomly

72 net.divideMode = 'sample'; % Divide up every sample

73

74 %Divide the data so that there is some test and validation

75 %data from the set (see section 4.1.2)

76 net.divideParam.trainRatio = 50/100;

77 net.divideParam.valRatio = 25/100;

78 net.divideParam.testRatio = 25/100;

79

80 %Prepare the network with the example input dimensions and

81 %types. Next, set the example output of the network

82 %(i.e. the c(t+tau) vectors that will be trained against to

83 %initialize it.

84 fprintf('Configuring network for specific inputs and output\n');

71

85 net = configure(net,mapminmax(input),mapminmax(output));

86

87 %Now we just need to initialize the network

88 fprintf('Performing network initialization for training\n\n');

89 net = init(net);

90

91 %Set the training parameters so that a window isn't opened

92 net.trainParam.showWindow = false;

93 net.trainParam.showCommandLine = true;

94 net.trainParam.show= 1;

95 net.trainParam.max_fail = 10;

96 %Train for 50 time steps.

97 net.trainParam.epochs = 50;

98 end

Single Step Time Propagator pstep.m

1 function next = pstep(obj,previous,expenergy,occupied)

2 %PSTEP Simulates the next timestep using all the neural networks.

3 %PARAMETERS

4 % previous: the previous step's combined complex input.

5 % expenergy: the exp(i*energy) phase shifting terms.

6 % occupied: a vector indicating which indices in the inputs

7 % correspond to {psi_j^(1)} values close to 1.

8 %DESCRIPTION

9 % The neural network for the j = 1 propagated state can only

10 % predict the c−vector for the next timestep for the j = 1

11 % state. Same goes for the other j = 2..nprop states. However,

12 % in order to predict the next step, each neural network requires

13 % the previous timesteps of ALL the propagated states (i.e. a

14 % vector of nprop*nbasis length). This method simulates the next

15 % timestep for each of the networks and then joins the results

16 % into a new vector of length nprop*nbasis that represents the

17 % input for the next timestep.

72

18

19 %Initialize the resulting vector to be the right length

20 approx = zeros(obj.DFT.nbasis,obj.DFT.nprop);

21

22 %Initialize variables for the previous values so we can

23 %separate the real and imaginary parts

24 aprevious = cell(2*obj.DFT.nprop,1);

25 for k=1:obj.DFT.nprop

26 %Perform the phase shift according to the equations in

27 %figure 11.

28 transf = obj.DFT.shiftm(previous{k})';

29 aprevious{k} = real(transf);

30 aprevious{k+obj.DFT.nprop} = imag(transf);

31 end

32

33 mprevious = mapminmax('apply',aprevious,obj.anormins);

34 %Step each of the networks forward in time.

35 for k=1:obj.DFT.nprop %1,2,3,etc.

36 %We need to perform a mapminmax on the input vectors

37 %to normalize their values to be of order 1 for all rows.

38 ntr = obj.trnets{k}(mprevious);

39 netrapprox = mapminmax('reverse',ntr, ...

40 obj.rnormalizations{k});

41 nti = obj.tinets{k}(mprevious);

42 netiapprox = mapminmax('reverse',nti, ...

43 obj.inormalizations{k});

44

45 %Get the complex network approximation

46 netapprox = netrapprox{1} + 1i*netiapprox{1};

47

48 %Finally, we need to add the mostly occupied states from

49 %the previous timestep to the corresponding ones in new

50 %timestep to undo the initial subtraction that was done.

73

51 occindex = occupied(k);

52 combrhs = previous{k};

53 combrhs(occindex) = expenergy(k)*combrhs(occindex);

54 approx(:,k) = netapprox + combrhs;

55 end

56

57 %This orthonormalization seemed to blow up on the smaller size

58 %scales (starting with 1e−4)

59 %orthon = obj.gramschmidt(approx);

60 orthon = approx;

61 next = cell(obj.DFT.nprop,1);

62

63 for k=1:obj.DFT.nprop

64 next{k} = orthon(:,k);

65 end

66 end

QVE Class

Expectation Value Calculator expectation.m

This is the programmatic implementation of equation 15. The dipole matrix function

in the DFT class (referenced in this script) extracted the dipole matrix for methane

from a text �le.

1 function expect = expectation(obj, cdata)

2 %EXPECTATION Calculates the expectation value for the c−matrix.

3 %DESCRIPTION

4 % The expectation value for a system is psi* z psi where z is

5 % the dipole matrix for the molecule obtained from

6 % DFT.dipolematrix()

7 %INPUTS

8 % cdata: the complex cell array representing the psi

9 % probability matrices for each of the {psi_j^(1)} states.

74

10 %OUTPUTS

11 % expect: the expectation value <z>(t) as a function of time.

12

13 %Get the dipole matrix

14 dipole = obj.DFT.dipolematrix();

15 dsize = size(cdata{1});

16 expect = zeros(dsize(2),1);

17

18 for k=1:dsize(2)−1

19 zexpsum = 0;

20 for m=1:obj.DFT.nprop

21 zexpsum = zexpsum + cdata{m}(:,k)'*dipole*cdata{m}(:,k);

22 end

23 %Set the value for this timestep to the sum of the expectation

24 %values of the propagates states.

25 expect(k) = zexpsum;

26 end

27 expect = real(expect);

28 end

Multiple State Plotter plotstates.m

This code produced the �awed validation plots (included in Appendix B). Although

these plots did show how closely the network could predict values for training data,

the prediction was only for a single time step prediction horizon and masked the

failure of the network to approximate Ujm.

1 function plotstates(obj,states,targets,maxsubplots, ...

2 dolegend,arrowplot,ts)

3 %PLOTSTATES Shows real, imag and abs validation plots

4 %PARAMETER

5 % states: the network−predicted c_m^j values.

6 % targets: the DFT calculated data that the network was trying

75

7 % to approximate

8 % maxsubplots: the max number of vertical plots in the figure.

9 % dolegend: specifies whether the legend will be generated.

10 % arrowplot: specified whether to produce a propagator plot.

11 % ts: specifies the number of time steps in the data to plot.

12 %DESCRIPTION

13 % The plotstate function visually compares the states and their

14 % targets for each of the states that have values greater than

15 % 1e−15. This function performs those same plots repeatedly for

16 % the real, imaginary and magnitude curves on the same figure.

17

18 oscil = cell(3,1);

19 plots = cell(3,1);

20 %oscil holds a flag indicating whether the basis state will

21 %be plotted or not. We need to determine how many of the

22 %states actually have values and only plot those.

23 for r=1:3

24 oscil{r} = zeros(obj.DFT.nbasis,1);

25

26 switch r

27 case 1

28 lstates = real(states);

29 case 2

30 lstates = imag(states);

31 case 3

32 lstates = abs(states);

33 end

34

35 for k=1:obj.DFT.nbasis

36 if max(lstates(k,:)) > 1e−12

37 oscil{r}(k) = 1;

38 end

39 end

76

40

41 %Determine how many plots and figures will be made.

42 %Plots has the indices of the basis states with values

43 %large enough to be plotted.

44 plots{r} = find(oscil{r});

45 end

46

47 if (nargin < 4)

48 maxsubplots = obj.maxsubplots;

49 end

50

51 plotcount = 0;

52 for r=1:3

53 rplot = length(plots{r});

54 if (rplot > plotcount && rplot <= maxsubplots)

55 plotcount = rplot;

56 else

57 plotcount = maxsubplots;

58 end

59 end

60

61 figure

62 for r=1:3

63 %Determine which part of the states is being graphed

64 switch r

65 case 1

66 lstates = real(states);

67 ltargets = real(targets);

68 case 2

69 lstates = imag(states);

70 ltargets = imag(targets);

71 case 3

72 lstates = abs(states);

77

73 ltargets = abs(targets);

74 end

75

76 %For this figure, create the relevant number of subplots

77 %and include the target data on the same graph if it is

78 %specified

79 for k=1:plotcount

80 %We can only plot the values if we have indices for

81 %that plot num.

82 if (length(plots{r}) >= k)

83 subplot(plotcount,3,2*(k−1)+k+(r−1))

84 dft = lstates(plots{r}(k),:);

85 if nargin == 7

86 tc = ts;

87 else

88 [tr, tc] = size(dft);

89 end

90 plot(1:tc,dft(1:tc),'r.')

91

92 switch r

93 case 1

94 title(sprintf('Real Parts for m = %g',

95 plots{r}(k)))

96 case 2

97 title(sprintf('Imag Parts for m = %g', ...

98 plots{r}(k)))

99 case 3

100 title(sprintf('Abs Parts for m = %g', ...

101 plots{r}(k)))

102 end

103

104 %Only plot the targets if they were provided

105 if (nargin > 2 && ~arrowplot)

78

106 hold on

107 plot(ltargets(plots{r}(k),:), 'g−')

108 hold off

109 elseif (arrowplot)

110 pts = ltargets(plots{r}(k),:);

111 hold on

112 for l=1:tc−1

113 y1 = dft(l);

114 y2 = pts(l);

115 line([l, l+1],[y1,y2],'Color','Green', ...

116 'LineWidth',2);

117 end

118 hold off

119 end

120 if (dolegend)

121 legend('DFT Data', 'Network', ...

122 'Location', 'SouthEast')

123 end

124

125 xlabel('Time (fs)')

126 ylabel('\bf{c^{j}_{m}}')

127 end

128 end

129 end

130 end

Appendix B: Visual Validation of {ψ(1)
j } States

The following series of plots allows visual validation of the network's prediction over

training data. The following �gures (22, 23, 24, and 25) were generated by evaluating

the network's prediction for the entire training dataset. As discussed in section 3.3.4,

79

they provide a visual con�rmation that the mean-squared errors reported numerically

during the training correspond to an actual approximation of the target function.

Figures have been produced for each of the j states in the system since typically

each of them would have to be checked before a decision can be made about the

network's performance. Section 4.3 highlighted a �aw in the network design that was

not apparent by examining these plots. As such, in future network interations, they

will be replaced by a propagator plot (for example, �gure 19).

80

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51

R
e
a
l P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51
x
1
0
−
3

R
e
a
l P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
505
x
1
0
−
5

R
e
a
l P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51
x
1
0
−
7

R
e
a
l P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51

Im
a
g
 P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51
x
1
0
−
3

Im
a
g
 P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
505
x
1
0
−
5

Im
a
g
 P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51
x
1
0
−
7

Im
a
g
 P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

11111
A
b
s
P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

23456
x
1
0
−
4

A
b
s
P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

0246
x
1
0
−
5

A
b
s
P
a
rt
s
fo
r
m
 =
 5

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

0

0
.51
x
1
0
−
7

A
b
s
P
a
rt
s
fo
r
m
 =
 8

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

F
ig
u
re

22
:
N
et
w
or
k
ap
p
ro
x
im

at
io
n
of

c1 m
.

81

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
2

−
1 0 1 2
x 1
0
−
1
1

R
e
a
l P
a
rts fo

r m
 =
 2

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.5 0

0
.5 1
x 1
0
−
8

R
e
a
l P
a
rts fo

r m
 =
 3

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.5 0

0
.5 1

R
e
a
l P
a
rts fo

r m
 =
 4

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1 0 1 2
x 1
0
−
1
2

R
e
a
l P
a
rts fo

r m
 =
 6

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
2

−
1 0 1 2
x 1
0
−
1
1

Im
a
g
 P
a
rts fo

r m
 =
 2

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.5 0

0
.5 1
x 1
0
−
8

Im
a
g
 P
a
rts fo

r m
 =
 3

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.5 0

0
.5 1

Im
a
g
 P
a
rts fo

r m
 =
 4

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
5 0 5
x 1
0
−
4

Im
a
g
 P
a
rts fo

r m
 =
 7

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
.7
4

1
.7
6

1
.7
8

1
.8
x 1
0
−
1
1

A
b
s P
a
rts fo

r m
 =
 2

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

7
.4

7
.4
5

7
.5

7
.5
5
x 1
0
−
9

A
b
s P
a
rts fo

r m
 =
 3

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1 1 1 1
A
b
s P
a
rts fo

r m
 =
 4

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

0
.5 1

1
.5
x 1
0
−
1
2

A
b
s P
a
rts fo

r m
 =
 6

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

F
igu

re
23:

N
etw

ork
ap
p
rox

im
ation

of
c
2m
.

82

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51
x
1
0
−
3

R
e
a
l P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51

R
e
a
l P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
2

−
1012
x
1
0
−
1
1

R
e
a
l P
a
rt
s
fo
r
m
 =
 3

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
2

−
1012
x
1
0
−
1
1

R
e
a
l P
a
rt
s
fo
r
m
 =
 4

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51
x
1
0
−
3

Im
a
g
 P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.50

0
.51

Im
a
g
 P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
2

−
1012
x
1
0
−
1
1

Im
a
g
 P
a
rt
s
fo
r
m
 =
 3

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
2

−
1012
x
1
0
−
1
1

Im
a
g
 P
a
rt
s
fo
r
m
 =
 4

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

23456
x
1
0
−
4

A
b
s
P
a
rt
s
fo
r
m
 =
 1

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1111
A
b
s
P
a
rt
s
fo
r
m
 =
 2

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
.5
2
4

1
.5
2
6

1
.5
2
8

1
.5
3
x
1
0
−
1
1

A
b
s
P
a
rt
s
fo
r
m
 =
 3

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
.7
6
5

1
.7
7

1
.7
7
5
x
1
0
−
1
1

A
b
s
P
a
rt
s
fo
r
m
 =
 4

T
im
e
 (
fs
)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

F
ig
u
re

24
:
N
et
w
or
k
ap
p
ro
x
im

at
io
n
of

c3 m
.

83

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
2

−
1 0 1 2
x 1
0
−
1
1

R
e
a
l P
a
rts fo

r m
 =
 2

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.5 0

0
.5 1

R
e
a
l P
a
rts fo

r m
 =
 3

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.5 0

0
.5 1
x 1
0
−
8

R
e
a
l P
a
rts fo

r m
 =
 4

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
4

−
2 0 2
x 1
0
−
4

R
e
a
l P
a
rts fo

r m
 =
 6

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
2

−
1 0 1 2
x 1
0
−
1
1

Im
a
g
 P
a
rts fo

r m
 =
 2

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.5 0

0
.5 1

Im
a
g
 P
a
rts fo

r m
 =
 3

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
1

−
0
.5 0

0
.5 1
x 1
0
−
8

Im
a
g
 P
a
rts fo

r m
 =
 4

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−
5 0 5
x 1
0
−
4

Im
a
g
 P
a
rts fo

r m
 =
 6

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
.5

1
.5
1

1
.5
2

1
.5
3

1
.5
4
x 1
0
−
1
1

A
b
s P
a
rts fo

r m
 =
 2

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1 1 1 1 1
A
b
s P
a
rts fo

r m
 =
 3

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

7
.4

7
.4
5

7
.5

7
.5
5
x 1
0
−
9

A
b
s P
a
rts fo

r m
 =
 4

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
.5 2

2
.5 3
x 1
0
−
4

A
b
s P
a
rts fo

r m
 =
 6

T
im
e
 (fs)

c
j

m

D
F
T
 D
a
ta

N
e
tw
o
rk

F
igu

re
25:

N
etw

ork
ap
p
rox

im
ation

of
c
4m
.

84

Index

Complex input approximation, 42

Complex value networks, 50

Dipole moment expectation, 24

Electric �eld perturbation, 22, 25, 28

Electron density functional, 20

Exchange correlation energy, 21

Kohn-Sham equation, 20, 22

Linear propagator

approximations, 26

de�ned, 23

implementation, 24

network representation of, 28, 30, 43,

46

Network implementation

layers de�ned, 42

Network Training

data, 17, 32, 40

optimal neuron counts, 43

Neural Networks

biases, 13

convergence, 27, 50

error function, 5, 15, 41

functional representation, 9, 30

general uses of, 5

hidden layers, 9, 15, 16, 52

initialization, 18

input constraints, 27, 28

notation, 9

parameter adjustment, 12, 17

performance, 18, 35, 39, 43, 52

transfer function, 5, 15

universal approximators, 13

validation, 18, 34, 38, 45, 51

weights, 5, 12, 15

Propagator plot, 46

Transformation of inputs/outputs, 28, 58,

60, 62

85

	Title and Signatures Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures, Tables and Algorithms
	I Introduction
	Artificial Neural Networks
	Single Neuron Architecture
	Multi-neuron Layer Structure
	Neural Network Architecture
	Function Approximation with Neural Networks
	Neural Network Training Algorithm: Backpropagation
	Network Training Terminology

	II Theory and Methodology
	Theoretical Basis in Density Functional Theory
	Schrödinger's Equation for an N-body Problem
	Density Functional Theory
	Time-Dependent Density Functional Theory
	Derivation of the Neural Network Solution

	Neural Network Implementation
	Network Design Overview
	Network Design Considerations
	Programmatic Implementation in Matlab

	III Results and Conclusions
	Optical Absorption Spectra for Methane
	Training, Fine-Tuning and Performance
	Final Network Structure
	Predictive Time Evolution
	Discussion

	Conclusion

	IV Appendices

