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ABSTRACT

SPATIAL AND TEMPERATURE DEPENDENCE OF MAGNETIC DOMAIN

MEMORY INDUCED BY EXCHANGE-COUPLING

Joseph A. Nelson

Department of Physics and Astronomy

Bachelor of Science

Exchange-bias [CoPd]/IrMn thin films with perpendicular magnetization have

shown evidence of magnetic domain memory [1]. Using cross-correlation metrol-

ogy on x-ray resonant magnetic scattering data, together with magnetometry

measurements performed here at BYU, we have quantified this memory, and

have determined its dependence on field cycling (field magnitude across the

magnetic hysteresis loop). We have also studied how this domain memory

changes with spatial scales and with temperature. We find the domain mem-

ory to be over 95% at the spatial scale corresponding to the average domain

periodicity. This memory remains strong even after repeated field cycling, and

decreases very little with increasing temperature, remaining over 90% at tem-

peratures as high as 220K. Finally, we find evidence for a spatial superstruc-

ture in the memory, and suggest that this behavior results from an interaction

between disorder-induced memory and exchange-bias-induced memory.
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Chapter 1

Introduction to Magnetic Domain

Memory

1.1 Motivation

The areal storage density of magnetic recording media has been increasing exponen-

tially every year for over fifty years. The annual increase rate has never been below

25%, and has been over 60% per year since 1991 [2]. Increased memory demands for

internet, intelligence, bioinformatics, and even mobile devices require continuously

higher memory storage density. These demands have led to the investigation of the

properties of thin magnetic films. In such films, when the thickness of magnetic layers

is finely adjusted, the magnetization tends to prefer perpendicular orientation rather

than in-plane [3]. Such systems exhibit ferromagnetic domains, i.e. regions where

magnetic moments are aligned as explained in the next section. The size of these

domains is a crucial parameter for the potential storage density of the material, and

make thin films attractive objects of study.

Apart from storage density requirements, the greatest challenge facing the data

1



1.2 Ferromagnetism, Hysteresis, and Memory 2

storage industry is the sensitivity of magnetic media to degradation by external fields.

Because of this sensitivity, long-term archival data storage, which is required by law

for many industries, has become very expensive to upkeep. To protect against possible

degradation, most archives must be removed, read, and re-recorded every few years.

This process is very labor-intensive, time consuming, and expensive. This has led to

the search for magnetic systems which have intrinsic magnetic memory, or ability to

reproduce a former morphology after saturation by an external field.

1.2 Ferromagnetism, Hysteresis, and Memory

The atoms of ferromagnetic materials, such as Cobalt, Iron, or Nickel, have intrinsic

magnetic spins. The magnetic coupling between spins is so strong that they tend to

align, creating a powerful net spin. Many spins aligned together form domains [4].

Although each of these domains has a net magnetization, neighboring domains will

tend to align anti-parallel to each other to minimize energy. In thin films, in the

absence of an external magnetic field, these domains form intricate labyrinth-like

patterns as represented in Fig. 1.1, so that the net magnetization is zero. If the film

is defect-free, these patterns are completely random.

Ferromagnetic materials are known best for their profoundly nonlinear responses

to an applied magnetic field, which allows them to form permanent magnets. The

magnetization of a ferromagnetic material is dependent not only on the applied field,

as in diamagnetic or paramagnetic materials, but also upon the history of the material.

Its response to a full field cycle is thus known as ferromagnetic hysteresis. Bulk

measurements of net magnetization can be conducted with a variety of magnetometry

techniques. We have used BYU’s recently acquired vibrating sample magnetometer

(VSM) for all of our magnetization measurements.
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Figure 1.1 Ferromagnetic Domains (a) In Ferromagnetic Materials, the
spins tend to form large regions of like spin called domains. In our films,
these domains are typically on the order of hundreds of nanometers and tend
to prefer perpendicular magnetization. (b) A typical ferromagnetic domain
pattern in a perpendicularly magnetized thin film. This image is ten microns
by ten microns, and was obtained by magnetic force microscopy at BYU
(courtesy Andrew Westover). Because there was no external field during
demagnetization of this sample, the domain pattern is isotropic. Although
the direction of the domains are random, they exhibit relatively constant
periodicity in all directions.
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Figure 1.2 Vibrating Sample Magnetometer The functional compo-
nents of a vibrating sample magnetometer (VSM). A sample, shown in blue,
is placed within detecting coils, shown in black, and vibrates vertically, de-
picted by yellow arrows. The vibration of the sample induces a voltage in
the detection coils that is proportional to its magnetic moment. The entire
apparatus is placed inside of a superconducting solenoid, whose field is par-
allel to the direction of vibration, shown in green. Thus the response of the
sample’s magnetization to applied field can be measured.

The VSM technique utilizes Faraday’s law of induction to measure magnetization.

The sample is placed inside of a coil of wire and vibrates up and down (in and out

of the coil), as depicted in Fig. 1.2. The changing magnetic flux caused by this

vibration induces a sinusoidal voltage in the wire, whose amplitude can be measured

very accurately. Because a constant applied field will not change the voltage produced,

magnetization can be measured with an in-situ applied field.

An example of a VSM measurement on our [Co/Pd]/IrMn system is shown in

Fig. 1.3. In this measurement, we can observe four principle features unique to fer-

romagnetic materials, labelled with letters in the figure. Beginning at the star, where

the system is saturated in the positive direction, as the external field is decreased,

the sample follows the descending branch indicated by the green arrow. Point A

corresponds to nucleation, where domains antiparallel to the field first begin to form.
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Figure 1.3 Ferromagnetic Hysteresis Ferromagnetic hysteresis loop of
our [Co/Pd]/IrMn sample at room temperature measured using VSM. The
magnetization of a ferromagnetic sample is dependent not only on the applied
field, but also on the history of the sample. Beginning at the star, the sample
follows the descending branch, indicated by the green arrow, to points A,
nucleation; B, remnance; C, coercive point; and D, saturation. The ascending
branch (not labelled), is the mirror image of the descending branch.

At point B, the external field is zero, but there is still some magnetization; this is

called remnance, and is what makes permanent magnetization possible. As the field

continues to decrease (now in the reverse direction), the sample reaches the coercive

point (point C), at which there are equal domains parallel and antiparallel to the

field, and thus no net magnetization. Finally, the field saturates the sample at point

D, so that the entire sample is magnetized parallel to the reversed field. From this

point, if we increased the field back to its original value at the star, the sample would

follow the nonlabelled ascending branch of the hysteresis loop, as indicated by the

arrow. These two branches are symmetrical.

Because our films are very smooth (meaning that they have very few structural
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defects), at saturation, they are magnetically uniform. In the absence of defects,

the location of nucleating domains is mostly random. Therefore, in such films, all

previous domain patterns are lost just as data coding regions are lost when a strong

magnet comes near a hard disk. Thus, every time a sample is cycled through its

hysteresis loop, the domain pattern is different. However, it has been found that

if a film presents some structural defects, the formation of domain patterns is less

random; in fact, the greater the structural disorder of a sample, the less the domain

patterns change from cycle to cycle. This tendency to “remember” a previous domain

pattern has been termed disorder-induced magnetic domain memory [5]. In a film

with very high memory, data stored in magnetic domains could not be erased by an

external field.

1.3 Exchange-Bias Films

Structural defects like large grains produce relatively low memory, and are difficult

to control. For this reason, films were developed in which antiferromagnetic (AFM)

layers are interspersed between ferromagnetic (FM) layers (see Fig. 1.4).

Anti-ferromagnetic materials are similar to ferromagnetic materials in that they

are composed of particles with intrinsic spin. In ferromagnetic materials, neighboring

spins tend to align parallel with one another, while in antiferromagnetic materials

these spins tend to anti-align with one another, creating a net spin of zero in the

bulk of the material. However, on the outer layers of particles, uncompensated spins

form which are not cancelled out locally. Below a certain temperature, called the

blocking temperature, or TB, these uncompensated spins interact strongly with the

spins of ferromagnetic atoms near the interface between the two materials [6], [7].

This interaction is referred to as exchange-coupling [8]. Above TB, the uncompensated
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Figure 1.4 Exchange-bias Multilayer An example of an exchange-bias
multilayer. In our [[Co(4Å)/Pd(7Å)]12IrMn(24Å)]4 films, an antiferromag-
netic Ir/Mn alloy layer is periodically inserted into a repeating ferromagnetic
Co/Pd multilayer. Exchange coupling occurs at the interface between the
ferromagnetic and antiferromagnetic layers, causing uncompensated spins in
the antiferromagnetic material very near the interface.

spins tend to align with the spins in the neighboring FM layer. Below TB, however,

the AFM spins are frozen in place and are affected little by external fields. Thus,

when the sample is cooled, the domain pattern in the FM layer is imprinted into the

AFM layer, and will not change with external fields.

A simple test to measure this exchange-coupling interaction is to cool the sam-

ple below TB in the presence of a saturating external field. Indeed, this is the way

exchange-coupling was first observed [8]. In this case, called field cooling (FC), the

domain configuration to be imprinted in the AFM material is uniform in the direc-

tion of the external field, so that when measurements are taken below the blocking

temperature, the external field felt by the FM layer is modified by the saturated

AFM layer. This field bias causes a horizontal shift in the sample’s hysteresis loop,

as shown in Fig. 1.5. Thus, films which display this kind of interaction are called

exchange-bias (EB) films.

Slightly more complex is the zero-field cooling (ZFC) state. Here, domains in



1.3 Exchange-Bias Films 8

Figure 1.5 Field-Cooled Exchange-Bias (a) The major hysteresis loop
following field cooling. (b) a zoomed-in region of the loop shown above, mak-
ing the horizontal bias more clear. The sample was cooled in the presence of a
saturating magnetic field of 10 000 Oe (1T), and the hysteresis loop was mea-
sured at 100K. The entire hysteresis loop has shifted to the left by 140 Oe (14
mT) because uncompensated spins in the saturated antiferromagnetic layers
modify the effective field experienced by the ferromagnetic layers. Lower
temperatures would enhance the EB by decreasing thermodynamic effects,
and a greater bias would be observed at lower temperatures.
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Figure 1.6 Zero-Field Cooled Exchange-Bias Zero-field cooled (ZFC)
magnetization loop (red), shown with a loop taken above TB (blue).
Exchange-coupling causes a plateau in the magnetization after the coercive
point is reached, as well as an increased saturation point.

the FM layer imprint onto the AFM layer as the sample is cooled. Because of the

interaction between the FM and AFM layers, the sample’s FM spins try to remain

aligned with the uncompensated spins in the AFM layer as long as possible to min-

imize energy. This causes a plateau in the hysteresis loop near the coercive point.

This also increases the saturation point of the sample. Then, as the field is reversed,

when new domains nucleate after saturation, they will continue to align with the

uncompensated spins in the AFM layer. Thus, below TB, the pattern formed by the

domains will ideally be the same each field cycle.

We have studied a [[Co(4Å)/Pd(7Å)]12IrMn(24Å)]4 multilayer made at Hitachi

[9]. In these films, the thickness of Co and Pd have been optimized to obtain the best

EB effect in the direction perpendicular to the film [10]. We measure the magnetic
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domain memory of this system as a function of temperature, applied field, repeated

field cycling, and spatial scale.



Chapter 2

X-ray Correlation Technique

2.1 X-Ray Resonant Magnetic Scattering (XRMS)

X-ray resonant magnetic scattering (XRMS) is a recently developed advanced tech-

nique to investigate microscopic domain morphologies [11]. Our XRMS measurements

were performed by K. Chesnel [1] at the Advanced Light Source at Lawrence Berkeley

National Labs, Ca. In our experimental setup, illustrated in Fig. 2.1, a sample is

placed in a variable in-situ magnetic field (H) and irradiated by spatially coherent

x-rays tuned to the magnetic resonance energy [12]. When the x rays irradiate the

sample, they undergo Bragg-like scattering and the signal is recorded on a CCD cam-

era. A blocker is also used to prevent saturation and damage of the detector by direct

light.

This scattering process is analogous to a Fourier transform of the domain pattern

in the sample, but because we are only able to detect intensities, the phase of the

transform is lost [13]. This makes manual reconstruction of the domain pattern itself

very difficult. Scattering patterns live in the reciprocal space (quantified by the

vector Q, or the distance to the origin on the CCD image). Qualitatively, a peak at

11
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Figure 2.1 X-ray Resonant Magnetic Scattering Experimental
Setup In our X-Ray resonant magnetic scattering (XRMS) setup, tempo-
rally coherent x-rays from a synchrotron source were tuned to the magnetic
resonance frequency of the sample by a monochromater, and made spatially
coherent by use of a 20 µm pinhole (spatial filter). These coherent x rays
illuminated the sample (not shown to scale), in the presence of an applied
field (H) and produced Bragg-like scattering in the far field, which was de-
tected by a CCD camera. The pattern produced is unique to the domain
pattern irradiated by the x-rays. Our isotropic domain patterns create a ring
shape in the scattering space A blocker was used to prevent saturation and
destruction of the CCD by direct light.
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Figure 2.2 Typical XRMS Image An XRMS image taken after demagne-
tization at zero field. The ring shape indicates an isotropic domain pattern.
The average periodicity of the domain pattern is given by the radius of this
ring, and the coherence length of the pattern by its width. Here, the radius
of the ring is about 310 pixels, which corresponds to an average periodicity
of about 380 nm.

a distance Q from the origin indicates a periodic signal whose periodicity is inversely

proportional to Q, and the direction of this periodic signal is given by the angular

position of the peak. The scattering images contain more than one kind of scattering.

Four main elements are present in every image, seen in Fig. 2.2: high-intensity charge

scattering (both coherent and incoherent), concentrated at the center of the image

(mostly blocked by the blocker); incoherent magnetic scattering, which forms the disc

or ring shaped envelope; coherent magnetic scattering, which produces speckles [14];

and low-intensity noise.

The charge scattering will not change at all throughout the hysteresis loop, be-

cause the structure of the film does not change during magnetization, but rather

the orientation of the spins within the lattice. It will only change, and then only

marginally, with a change in temperature.
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The incoherent magnetic scattering produces the disk or ring, and the radius of

this ring is a measure of the long-range periodicity of the domain pattern. In the

example shown, the radius of the ring is about 310 pixels, which corresponds to a

periodicity of about 380 nm in the real space. This long-range periodicity is related

to the net magnetization of the film. Thus, at a given point of the hysteresis loop,

the incoherent magnetic scattering will be the same. The width of the ring is also

instructive, and is related to the correlation length of the domain periodicity, or the

average distance over which domains tend to be aligned parallel with one another.

The coherent magnetic scattering, on the other hand, which produces the speckle

pattern, relates to the short-range disorder of the domains, i.e. the exact shape of the

domains themselves. Thus, although the incoherent scattering is instructive regarding

long-range periodicity, the speckles (and only the speckles) are unique to the exact

shape of the domains in the irradiated portion of the sample. The speckle pattern,

then, can be thought of as the fingerprint of the domain pattern.

2.2 Speckle Isolation

The proportion of incoherent scattering to coherent speckle scattering is an indication

of the spatial coherence of the beam. In our case, coherence ranged from about 10-

20% [15], depending on the quality of the incident light, so that the intensity of the

incoherent scattering is much greater than that of the speckle pattern. Thus, any

quantification of the similarity between scattering patterns will be dominated by the

incoherent scattering, which does not change from cycle to cycle at a given point in

the hysteresis loop. However, this incoherent scattering may be manually removed to

leave the pure speckle behind (see Fig. 2.3).

Our first isolation step utilizes scattering images taken with an applied field higher
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Figure 2.3 Speckle Isolation A vertical slice of the scattering image shown
in Fig. 2.2. The blue line shows the image before speckle isolation. The red
line is a result of smoothing the blue line, approximating the scattering that
would result if the light were completely incoherent. This is subtracted from
the original image to isolate the pure speckle, shown in green.

than the sample’s saturation field. In these images, all domains in the sample have

saturated in one direction, so the magnetic portion of the scattering is concentrated

about Q=0, behind the blocker. Using these as reference images, we can remove

much of the non-magnetic signal from the rest of our images. However, because the

intensity of x ray source was not constant over the course of the experiment, this does

not eliminate all of this non-magnetic signal.

Next, we can manually remove regions of the image behind the blocker that are

affected by charge scattering. This charge scattering will change each time the CCD,

blocker, or sample are moved between experiments. These regions are basically zeroed

out.

Our final task in isolating the pure speckle signal is the removal of the incoherent

magnetic scattering. Because this signal does not change for a given field value, we do

not want to include it in our correlation calculation. A useful algorithm was written
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Figure 2.4 Blocker Fitting (a) A raw scattering image as detected. (b)
The same scattering image after fitting the regions behind the blocker to the
envelope. This is now ready to smooth to fit the incoherent envelope more
accurately than the image with the blocker. Using this method, we were
able to improve the resulting speckle patterns, seen in (c) without blocker
correction, and (d) with blocker correction. This enables us to use more of
the image, which results in more statistics and a better ability to analyze
data near the center of the image.
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by Brian Wilcken to successively smooth the image with a small averaging box until all

speckles were removed to obtain the approximate incoherent envelope (for a complete

description see [15]). This envelope was then subtracted from the image, ideally

leaving behind pure speckle, as shown in Fig. 2.3. However, because of the artificially

low region created by the blocker, this averaging program underestimates the envelope

near the blocker, which results in unusable regions in the pure speckle image near

the blocker. Brian’s solution was to eliminate these areas from the calculation, but

in order to have the best statistics possible and extend Q-selective measurements

(discussed in the next section) near the center of the image, these areas needed to be

included.

This problem occurred because averaging the values of the envelope with the low

values behind the blocker brought the envelope estimation down near the blocker. My

solution was to fit the values behind the blocker with two independent orthogonal 1-

dimensional polynomial fits prior to smoothing. This fit is shown in Fig. 2.4(b).

When smoothing is performed, the envelope is always surrounded by regions of the

same magnitude, eliminating the artificial boundary created by the blocker. The

smoothing fit is performed, and blocker region is then removed again so that our

blocker fit never directly becomes part of the results. This seems to allow for greater

statistics and lower radius measurements, as seen in Fig. 2.4(d)

We are now ready to quantify the similarity between domain patterns by compar-

ing their respective speckle patterns.

2.3 Speckle Cross-Correlation

In order to quantify the similarity between two speckle patterns, we have used cross-

correlation metrology. In one dimension, the cross-correlation between two functions,
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a(x) and b(x), shifted by ∆x = n, is defined by

[a ⊗ b](n) =
∫

∞

−∞

a∗(x)b(x + n)dx,

where * indicates the complex conjugate. For our special case of two-dimensional,

real, discrete images, the cross-correlation becomes

[A ⊗ B](n, m) =
∑

x

∑

y

A(x, y)B(x + n, y + m),

where each sum is over all values of x and y in the frame of the images, and the

complex conjugate has been left off because the images are real. Physically, this

means that two images are superimposed upon one another (with a horizontal shift

n and a vertical shift m), the overlapping pixels are all multiplied together, and the

products are summed up to give the cross-correlation at that shift. This is then

repeated for all possible shift values, creating a matrix of cross-correlation results as

a function of shift. If A and B are very similar, a peak will form around the zero shift

value (n=m=0) because essentially every value is being squared (See Fig. 2.5). This

is especially prominent if the intensity in A and B is centered about zero so that there

are positive and negative values. The more similar the two images are, the higher the

integration of the correlation will be.

As a side note, since we are dealing with images that each have about one million

pixels, this result is very useful, but also extremely computationally expensive (the

complexity is of order NN). However, we can use Fourier Transforms to speed up the

process because

F ([A ⊗ B]) = F ∗(A) × F (B),

where F indicates the Fourier transform. If we were to calculate the cross-

correlation by this method, the complexity would change from NN to log N , and

our computations become orders of magnitude simpler.
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Figure 2.5 Cross-correlation A typical cross-correlation result. The
maximum of the peak is at the zero-displacement region (n=m=0), indi-
cating positive correlation between the images it was taken from. (a) is a
two-dimensional view of the correlation, while in (b) it is visualized three-
dimensionally.

Since this correlation result is highly dependent upon the average intensity of each

image, it is difficult to compare correlation results. For example, two high-intensity,

very different images may produce a higher cross-correlation result than two extremely

similar low-intensity images. To solve this problem, we define a normalized value ρ [16]

ρ ≡

∑

[A ⊗ B]
√

∑

[A ⊗ A]
∑

[B ⊗ B]
,

where the sum is carried out under the peak. The factors in the denominator are

called autocorrelations, and are simply the cross-correlation of an image with itself.

Clearly, if B and A are exactly the same image, ρ will have a value of 1. If there is no

correlation whatsoever, ρ will be near zero. Thus, ρ provides an intuitive, quantitative

measure of the similarity between two images.

We have used return-point memory (RPM) as our measure of the memory of our

system. In RPM, correlations are performed between an image taken at a given point

of the hysteresis loop and an image taken after returning to the same point after a (or

multiple) cycle(s) through the full loop. Thus, if an image were taken at point C of
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Fig. 1.3, the RPM would be given by the value of ρ between this image and an image

taken after going to point D, up to the star, and back to point C again. Thus, we are

quantifying the similarity between the domain patterns when the net magnetization

is exactly the same.

2.4 Q-selective analysis

2.4.1 Reciprocal Space

So far, we have only discussed correlating whole images with one another, allowing

for ’global’ statistical domain memory to be measured; however, understanding the

inverse relationship between spatial scales in the scattering space and the real space

allows us to extract spatial information as well. For example, a speckle spot near the

center of the scattering contains information about periodicity of domains on a larger

scale than a speckle farther from the center of the scattering. For this reason, the

scattering is said to be in reciprocal space.

Generally, Q represents the scattering vector from the origin, or center of the

scattering (where undeflected light would hit the screen), and the region of interest.

Small Q then corresponds to a large spatial scale in the real space, while large Q

correspond to a small spatial scale. In our scattering geometry, the light is scattered

in transmission, as shown in Fig. 2.6. Therefore, the relationship between Q and

distance in the real space is given by

Q =
2π

p
=

2π

λ
sin θ

,

where p represents the periodicity of domains in the real space, λ represents the
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Figure 2.6 Transmission Geometry The scattering vector (Q) can be
determined from the scattering angle θ and the wavelength of light. Theta
is experimentally measured by d, the distance between the scattering feature
and the center of the scattering on the detector, and L, the distance from the
sample to the detector. We are dealing with very small angles, so theta ≈
d/L.

wavelength of the radiation (1.6 nm in this study), and θ is the scattering angle.

This is equivalent to Bragg’s law in transmission. Experimentally, the angle θ is

determined by the small angle approximation, θ ≈ d/L. This, combined with the

definition of Q, gives us the useful relationship

p =
λ

sinθ
≈

λL

d

.

Because Q is related to d by a simple proportionality constant 2π/λL, we will

simply refer to the distance d as Q in the remainder of this thesis.

Because the distance from the center of the image indicates a spatial scale, if

we select only speckles within a given range of Q from each image and perform

correlations between these isolated rings (see Fig. 2.7), we could measure the memory

at the spatial scale indicated by the Q-vector. By iterating over all values of Q, we

can determine the spatial dependency of memory.
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Figure 2.7 Isolated Ring One isolated ring from the speckle pattern.
Correlations of isolated rings is specific to the spatial scale given by the
radius of the ring (Q).

2.4.2 Q-selective Method

To calculate Q, we must first know where the origin of the scattering is; the center of

the scattering is not necessarily the central pixel of each scattering image. To find the

center of each image, I smoothed several representative images until no hint of speckle

remained, then fit this to an ellipse. In general, ellipses with very slight eccentricity

fit the data better than circles, probably because there was a slight tilt to the CCD

camera when recording the data. Once the center of the scattering is determined, the

next task is to choose an appropriate width of each ring ∆Q, which will determine

our ultimate spatial resolution. The smaller ∆Q is, the better our spatial resolution

will be, but the statistics of each point will be less. Thus, there is a trade-off between

spatial resolution and statistical reliability. In fact, our choice of normalization using

autocorrelation has a subtle dependence on the size of the area correlated that we
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have not yet taken into account.

Our coefficient of memory, ρ, was normalized by dividing each cross-correlation

by the square root of the autocorrelations of each image. Our scattering data, like

all measurements, contains random noise. Because this noise is random, it will be

different for each image, and will tend to cancel itself out of all cross-correlation

results. However, when an image is correlated with itself, as in autocorrelation, the

noise is squared at zero shift, producing a sharp peak in the autocorrelation at the zero

displacement pixel (ZDP)(see Fig. 2.8). This peak becomes much sharper at larger

Q-values. It is difficult to estimate the noise level in our images, so we do not know

how much of the signal at zero shift is a result of similarity between speckle patterns

and how much is a result of noise. As ∆Q becomes small, the autocorrelation peaks

become sharper, and the peak integration is increasingly dominated by the ZDP (See

Fig. 2.10).

Three possible corrections were considered to eliminate this noise, as shown in

Fig. 2.9. First, we could simply remove the ZDP entirely. This would eliminate the

uncertainty in the contribution of the noise, but makes the very wrong assumption

that the signal at the ZDP is entirely due to noise. As a more sophisticated approach,

we can fit the peak, with the ZDP removed, to a Gaussian or Lorentzian shape, and

replace the central pixel with the fitted value. This would have much less of our real

signal removed, but at high Q, where the signal is much lower and the peaks are

much sharper, the fit tends to overestimate the central pixel by orders of magnitude,

effectively zeroing out ρ in several regions of otherwise usable data. Also, it will make

the cross-correlation algorithm much more complicated, and because the fitted data

point may be higher or lower than the actual signal at that point, we would not know

whether we are underestimating or overestimating our value of ρ. As a compromise

between these two approaches, a nearest-neighbor fit on the ZDP has been adopted,
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Figure 2.8 Narrowing Autocorrelation Peaks Two autocorrelation re-
sults of peaks at (a) Q = 225 pixels and (b) Q = 450 pixels. The autocorre-
lation peaks become sharper, and thus more influenced by the central pixel,
as the radius increases due to a decreased signal-to-noise ratio.

Figure 2.9 Autocorrelation ZDP Correction Options Three possi-
ble corrections for the zero displacement pixel. (Red) The data is fit to a
lorentzian shape with the central pixel removed, and the fitted value is used
to replace the ZDP. (Green) The nearest neighboring point to the ZDP is
used to approximate the ZDP. (Black dotted) The ZDP is simply removed.
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in which the central pixel is approximated by the highest neighboring value. This

simple approach is computationally cheap, keeps most of the value of the central

pixel, and always slightly underestimates the autocorrelation, and because ρ divides

by this autocorrelation, we obtain an upper estimate on the value of ρ.

We have chosen to use the neighbor fit corrected data in conjunction with the

uncorrected data to form an upper and lower limit for ρ. Because we are dividing by

the autocorrelation, an overestimation in autocorrelation results in an underestima-

tion in ρ, while an underestimation in the autocorrelation causes an overestimation of

ρ. Thus, with both an underestimation (no ZDP correction) and an overestimation

(neighbor-fitted ZDP) of ρ, we obtain absolute upper and lower limits of ρ, and have

a better idea of the uncertainty at each point due to the ambiguity of the ZDP signal.

A typical example is shown in Fig. 2.11.

As can be seen from the figure, the difference between the corrected and uncor-

rected values is very small compared to the other features of the graph. I therefore

will report only the nearest-neighbor corrected values in the remainder of this thesis.
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Figure 2.10 Fraction of ZDP in Autocorrelation Fraction F of the
ZDP contribution to the autocorrelation signal in an image taken after de-
magnetization at 30K, H=0. F is plotted as a function of radius from the
center of the scattering (Q) for several different values of ∆Q, as well as
for the whole-image autocorrelation. As Q increases, F also increases. This
is due to the width of the ring truncating the width of the autocorrelation
peak. An increase from 4 to 10, and 10 pixels to 15 pixels provide significant
reductions in F, and thus the role played by the ZDP, but after 15 pixels
the decrease in F is counterbalanced by the loss in resolution in Q. We have
therefore chosen to use a constant 15 pixels as ∆Q in our analysis.
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Figure 2.11 ZDP Uncertainty A plot of ρ as a function of Q in the
coercive region at T=175K. The upper and lower limits of ρ due to uncer-
tainty in the zero-displacement pixel are indicated by an uncorrected value
of ρ giving the lower limit (blue), and the nearest-neighbor correction of the
autocorrelation (AC) giving the upper limit (black dotted).



Chapter 3

Results and Discussion

3.1 “Global” Domain Memory Correlations

We first looked at the “global” degree of correlation by cross-correlating full images.

We were able to quantify the memory ρ as a function of magnetic field at different

temperatures, as shown in Fig. 3.1. The speckle images used here (and throughout

this thesis) were obtained after performing demagnetization above 300K, followed

by zero-field cooling down to 20K, and then up to the final indicated temperature.

We followed the major hysteresis loop, collecting scattering images at several key

field values. In general, three full major loops were imaged at each temperature.

This process was repeated at 30K, 60K, 120K, 175K, 220K, which are below TB, and

335K, which is above TB, to see how the temperature affected the ability of the frozen

AFM layer to act as a template for domain nucleation.

The memory below TB has a very reproducible shape as a function of H. The

field begins at positive saturation, and follows the descending branch of the major

hysteresis loop. At nucleation, when domains begin to form along the descending loop,

the memory is low, then as we continue to decrease the field, the memory increases to

28



3.1 “Global” Domain Memory Correlations 29

Figure 3.1 Whole-Image Correlations Magnetic domain memory at
30K, 60K, 120K, 175K, 220K, and 335K. The blocking temperature TB of
the AFM layer is 275K, and when below this temperature, the memory is very
high. The general response of the memory to applied field is very consistent
throughout this temperature range. At nucleation and saturation fields, the
memory is very low, increasing to a plateau in the coercive region. Above
TB, the correlation measured is much lower than at cooler temperatures.
In addition, because our correlation algorithm becomes much less accurate
for low memory measurements, the actual memory in the system at high
temperature may be much lower than shown.
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a maximum value about the coercive field, which is always over 0.9 when below TB.

As the field continues to move along the descending branch toward saturation, the

correlation decreases. The ascending branch exhibits a symmetrical behavior. Above

TB, however, we see a different shape and much lower maximum in the memory1. This

behavior can be explained by the specific memory mechanism used in these samples.

After cooling below the blocking temperature, TB, the domain pattern that was

present in the sample when it was cooled is frozen in the AFM layer at the FM/AFM

interface. The uncompensated spins in the AFM then are able to act as a template

for domain formation for the FM layer because it is energetically favorable for the

FM spins at the boundary to align with the very small field created by the template.

This exchange coupling is what makes such high memory possible.

Although domains will always lie along the AFM template, during nucleation,

there are many energetically equivalent locations for nucleation, as shown in Fig. 3.2.

Because of this, the nucleation of domains is very random at first. Then, as more

area is filled with domains, there is much more of a chance for domains to be in

the same location if they lie upon the template. This is why very high memory is

observed, about 0.95, near the coercive point. As these domains widen during the

propagation phase, and the number of domains decreases, the memory stays strong

and eventually decreases at higher fields because the domains likely disappear in a

random way, just as they nucleate in a random way. This plateau in the memory

1Although our correlation program is good at quantifying memory in highly correlated images,

when correlation is low it becomes less accurate. This high temperature series, for example, had

a single pronounced peak in the autocorrelation, but no clear central peak in the cross-correlation.

However, because a good deal of signal was present in the cross-correlation space that was being

interpreted as a central cross-correlation peak, we decreased the size of our peak integration area

for both autocorrelation and cross-correlation in this series to show better how low the correlation

actually is.
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Figure 3.2 Exchange-bias Nucleation Sketch of magnetic domains nu-
cleating (a) and propagating toward the coercive point (b). In both sketches,
the FM layer lays on top and the AFM lays below. From Karine Chesnel et
al. [1]

corresponds to the same plateau seen in the hysteresis of this system in Fig. 1.6.

Finally, at saturation, there are no domains left, and no signal left in the scattering,

so no memory is observed.

We hoped that the memory of our samples would decrease very little as temper-

ature was increased towards TB around 275K. When we plot the maximum in the

memory at each temperature, it seems to stay very robust as temperature increases,

and remains over 0.90 at 220K (see Fig. 3.3). The significant decrease in memory

at 335K, which does not follow the slight decreasing trend of the memory at lower

temperatures, is evidence that there is a phase transition. Thus, the high memory

we observe below TB is indeed induced by this exchange-coupling interaction.
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Figure 3.3 Temperature Dependence The maximum correlation value
ρ at each temperature. From 30K to 220K, the maximum memory of the
system is over 0.9, and remains very high throughout this temperature range.
Above TB, the memory drops to about 0.19.
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3.2 Q-selective Correlation

This same data set was analyzed using a Q-selective approach. In this procedure, each

line plotted previously becomes a 2-dimensional (Q,H) map detailing the dependence

of memory on spatial scale (Q) as well as field (H) as seen in Figs. 3.4, 3.5, 3.6, and

3.7. Memory in these maps follows the same general field dependence that we saw

previously, but also contains several important features that are spatially dependent.

We have plotted four maps for each sub-TB temperature, corresponding to images

separated by one full hysteresis loop and two full hysteresis loops, for the ascending

and descending branches respectively. These all have a similar overall appearance.

We also plot our results for 335K, above TB, and note that it has a very different

appearance.

To better understand the features present in the low-temperature maps, we will

first compare our correlation map with a map of the intensity of the speckle signal

at the same H and Q values, as shown in Fig. 3.8. These patterns have three main

differences: first, the overall shape of the intensity in(Q,H) space is very different than

that of the memory. Starting from the bottom left corner of the map, the intensity

seems to follow a general up and to the right directivity along the first diagonal. In

other words, when the field increases, the Q at which the maximum intensity occurs

also increases. This means that the domain periodicity progressively decreases to

reach a minimum value at about 400 nm. The memory, on the other hand, appears

to follow a down-right directivity, where an increase in applied field is accompanied by

a decrease in the Q at which correlation is a maximum. This means that correlation

occurs at low Q, or larger scales, when H increases. Secondly, the intensity of the

scattering signal is narrower in (Q,H) space than the correlation in that signal which

extends over a much wider region. Finally, the intensity has a single peak in (Q,H)
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Figure 3.4 (Q,H) map at 30K (Q,H) map of correlation (RPM) as a
function of field and Q at 30K. ρ is displayed on the color axis, with red
representing the highest memory and blue the lowest. For each temperature,
we can plot four maps, representing the correlation coefficient between images
on the ascending branch (a) one loop and (b) two loops apart. Plots (c)
and (d) represent the same on the descending branch of the hysteresis loop,
with (c) plotting the memory at one loop separation and (d) at two loops
separation. We observe a maximum in the memory at Q* = 300 pixels.
Secondary peaks to the right and left of the main peak are also observed.
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Figure 3.5 (Q,H) map at 60K, 120K (Q,H) maps of correlation (RPM)
as a function of field and Q at 60K and 120K. We observe peaks in the same
locations as those observed at lower temperatures.
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Figure 3.6 (Q,H) map at 175K, 220K (Q,H) maps of correlation (RPM)
as a function of field and Q at 175K and 220K. We observe peaks in the same
locations as those observed at lower temperatures, and these seem even more
pronounced as we increase in temperature.
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Figure 3.7 (Q,H) map at 335K (Q,H) map of correlation (RPM) as a
function of field and Q at 335K. At this temperature, which is above TB, the
peaks observed at lower temperatures do not appear to be present.
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space, while the correlation seems to have multiple peaks.

On the other hand, the map at high temperature, shown in Fig. 3.7, does not seem

to have any of the peaks seen at lower temperature. The majority of the correlation

in (Q,H) space is below 0.3. The high signal at low Q may be an artifact from leftover

charge scattering near the center.

One of the conclusion we have drawn from the differences in directivity and spatial

extent between the intensity and the memory is that our intensity normalization for

determining ρ works correctly; the correlation between two images appears to be

independent of the intensities of the images. This divergence in behavior between the

intensity and memory was less obvious in “global” correlations, and has only become

clear with the new information available in (Q,H) maps.

The intensity of the speckle signal as a function of Q should tell us about period-

icity in the domain pattern itself. The central peak in the intensity, located at Q*,

corresponds to the average domain periodicity in the sample. Thus, correlations in

the ring of radius Q* can tell us about the memory of the domains at the scale of one

domain period.

As we might expect, the memory is maximum at Q* in the scattering space, or

at the spatial scale of an average domain period in the real space. In addition to

this main peak, we also observe two clear secondary peaks in all temperatures below

TB. Interestingly, there are no peaks in the speckle intensity at these Q values. This

puzzling result means that even though there is no inherent periodicity in the domains,

we observe high memory at these scales. In other words, there exists a correlation

in the domains at these scales without having an actual domain periodicity at these

scales. If taken at face value, the location of the additional peaks indicate correlations

at the scale just above and just below the average domain periodicity, but we do not

observe such periodicity in the domain morphology. This has led us to search for
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Figure 3.8 Intensity Comparison (a) Intensity of speckle signal as a
function of H and Q. (b) Correlation coefficient ρ as a function of H and
Q. Notably, the central peak in the correlation corresponds to the same ring
at which intensity is a maximum, Q*. This ring occurs at 300 pixels, cor-
responding to a periodicity of about 400 nm in the real space. The central
peak in the memory at Q* indicates that correlation is a maximum when
performed at the same spatial scale as a domain period. Also, the secondary
peaks present in the correlation, separated from the main peak by a distance
of ∆Q′, are not present in the intensity pattern. This strengthens the theory
that these peaks result from a superstructure rather than representing two
distinct periodic patterns in the domains.
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alternative explanations.

Because the two secondary peaks are, within the uncertainty of our measurement,

equidistant from the central peak, it suggests that rather than being actual Bragg’s

peaks, related to their distance from the center, these are superstructural peaks in

the memory centered about the peak at Q*. Thus, the distance ∆Q′ to the main

peak, rather than their distances from the origin Q1 and Q2, is the indicator of the

characteristic distance they correspond to in the real space.

Knowing that λ = 1.59nm, L =0.92m, and Q∗ =285 pixels (with each pixel taking

up 1.25 µm), we can conclude that the main peak at Q* corresponds to a distance in

the real space of about 407.5 ± 4.5 nm. Because of the uncertainty inherent in our

ring radius of 15 pixels, the uncertainty in our measurement of the spatial scale of

∆Q′ is much higher. ∆Q′ is measured to be 90 ± 15 pixels, which corresponds to a

distance in the real space of 1.3 ± 0.2 µm. This is about three times the Q* distance,

or about six domain widths.

3.3 Comparison to Magnetic Domain Images

From magnetic force microscopy (MFM) imaging of these domains, we do not see

directly any repeating pattern at this 1.3 µm scale. However, the correlations between

domains appears to be high at this scale. It is possible that imperfections in the

deposition of the film may be influencing the shapes of the domains. In Pierce’s

initial work on magnetic memory, sample roughness was the only mechanism used for

inducing memory [5]. However, there are no grains as large as 1.3 µm in our films. We

therefore suggest that 1.3 µm may correspond to an average distance between grains in

the film. This average distance would not necessarily induce any spatially repeating

pattern in the domain morphology, but the grains, known to influence the shapes
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of domain structures in a reproducible way, are creating a secondary mechanism for

memory in these samples, and thus we observe a spatial superstructure in the memory

but not in the domains themselves.

To support this hypothesis, we have performed some preliminary atomic force

microscopy (AFM for the remainder of the thesis refers to atomic force microscope

rather than antiferromagnetic) on the film used in this scattering to try to determine

the average spacing between grains. The atomic force microscope image as well as its

MFM counterpart are shown in Fig. 3.9. Because the AFM details the surface of the

sample, it is possible that the features imaged here are not grains within the sample,

but debris on its outer surface. We plan to conduct much more AFM imaging to

get a better idea about the structure within the sample. The MFM image gives us a

great deal of information, however. We can observe an average periodicity of about

415nm, with a very short correlation length. This indicates what is going on in the

ZFC state.

3.4 Future Work

We suggest a study to measure the memory of exchange-bias films with a controlled

amount of structural grains and analyze these data using our radius-selective proce-

dure. Memory was very low at room temperature, so our memory is obviously not

dominated by defects. If our hypothesis is correct, the distance between the grains

will decrease as surface roughness increases, and therefore the distance between peaks

in Q-space should increase. This would confirm that the additional peaks in the mem-

ory are caused by structural defects in the film influencing the shapes of domains in

a reproducible way, creating a secondary mechanism for memory in these films.
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Figure 3.9 AFM/MFM Comparison (Left) Atomic Force Microscope
(AFM) image of the exchange-bias thin film used in this study. Image is
10 µm squared, with a vertical colorscale of 100 nm. The features imaged
here are a preliminary check to try to measure the average distances between
defects. However, these features may be debris on the surface of the sample.
(Right) Magnetic Force Microscope (MFM) image of the same region of the
film. The disordered magnetic domains do not show obvious morphological
dependence on any of the features imaged in the AFM. They do, however,
show a periodicity consistent with that measured from the scattering.
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3.5 Conclusion

We have studied magnetic domain memory as a function of field, temperature, and

spatial scale. We have observed that domain memory exhibits some unique spatial

features in Q that do not mimic the behavior of the scattering intensity in (Q,H)

space. This suggests that the magnetic domain memory extends over a very wide

spatial scale going from down below the domain periodicity to well above it and even

being intensified at a superstructural scale including about 7 domain periods.

This result is very uniquely obtained by this Q-selective cross-correlation tech-

nique. We also observe this behavior to be quite robust with increasing temperature

all the way up to the TB.
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Appendix A

Code

A.1 Speckle Isolation Code

Two of the most basic programs used were getTetragon and getEllipse. These return
a matrix of a given size with an ellipse or tetragon filled with ones while the rest of
the image is zeros (or vice-versa). Their code is:

getTetragon.m

1 function t e t ragon = getTetragon ( x1 , y1 , x2 , y2 , x3 , y3 , x4 , y4 ,
matr ixSize , i n v e r t )

2 %Line eqaut ion : y = y1 + ( y2 − y1 ) /( x2 − x1 ) ∗( x − x1 )
3 i f ( x1 == x2 )
4 x2 = x2 + 0 . 0 0 1 ;
5 end
6 i f ( x2 == x3 )
7 x3 = x3 + 0 . 0 0 1 ;
8 end
9 i f ( x3 == x4 )

10 x4 = x4 + 0 . 0 0 1 ;
11 end
12 i f ( x1 == x4 )
13 x4 = x4 + 0 . 0 0 1 ;
14 end
15

16 N = 10000;
17 stepA = ( x2 − x1 ) /N;
18 stepB = ( x3 − x2 ) /N;
19 stepC = ( x4 − x3 ) /N;
20 stepD = ( x4 − x1 ) /N;
21 xA = x1 : stepA : x2 ;
22 xB = x2 : stepB : x3 ;

46
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23 xC = x3 : stepC : x4 ;
24 xD = x1 : stepD : x4 ;
25 yA = y1 + ( y2 − y1 ) /( x2 − x1 ) ∗(xA − x1 ) ;
26 yB = y2 + ( y3 − y2 ) /( x3 − x2 ) ∗(xB − x2 ) ;
27 yC = y3 + ( y4 − y3 ) /( x4 − x3 ) ∗(xC − x3 ) ;
28 yD = y1 + ( y4 − y1 ) /( x4 − x1 ) ∗(xD − x1 ) ;
29 for n = 1 :N
30 xA(n) = f ix (xA(n) ) ;
31 xB(n) = f ix (xB(n) ) ;
32 xC(n) = f ix (xC(n) ) ;
33 xD(n) = f ix (xD(n) ) ;
34 yA(n) = f ix (yA(n) ) ;
35 yB(n) = f ix (yB(n) ) ;
36 yC(n) = f ix (yC(n) ) ;
37 yD(n) = f ix (yD(n) ) ;
38 end
39 t e t ragon = zeros ( matr ixS ize ) ;
40 for n = 1 :N
41 t e t ragon (yA(n) ,xA(n) ) = 1 ;
42 t e t ragon (yB(n) ,xB(n) ) = 1 ;
43 t e t ragon (yC(n) ,xC(n) ) = 1 ;
44 t e t ragon (yD(n) ,xD(n) ) = 1 ;
45 end
46 tetragonL = tet ragon ;
47 tetragonR = tet ragon ;
48 for m = 1 : matr ixS ize (1 ) %rows
49 rowMarked = 0 ;
50 for n = 1 : matr ixS ize (2 ) %columns
51 i f ( tetragonL (m, n) == 1 && rowMarked )
52 cont inue ;
53 end
54 i f ( tetragonL (m, n) == 1 && ˜rowMarked )
55 rowMarked = 1 ;
56 end
57 i f ( tetragonL (m, n) == 0 && rowMarked )
58 tetragonL (m, n) = 1 ;
59 end
60 end
61 end
62 for m = matr ixS ize (1 ) :−1:1 %rows
63 rowMarked = 0 ;
64 for n = matr ixS ize (2 ) :−1:1 %columns
65 i f ( tetragonR (m, n) == 1 && rowMarked )
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66 cont inue ;
67 end
68 i f ( tetragonR (m, n) == 1 && ˜rowMarked )
69 rowMarked = 1 ;
70 end
71 i f ( tetragonR (m, n) == 0 && rowMarked )
72 tetragonR (m, n) = 1 ;
73 end
74 end
75 end
76 t e t ragon = tetragonR .∗ tetragonL ;
77 i f ( i nv e r t )
78 t e t ragon = ones ( matr ixS ize ) − t e t ragon ;
79 end
80 end

and getEllipse2, which is the same as getEllipse, but the ellipse can extend beyond
the scope of the image.

getEllipse2

1 function e l l i p s e = g e tE l l i p s e 2 (h , k , a , b , phi , matr ixSize , i n v e r t )
2 N = 10000;
3 s t a r t = −pi ;
4 stop = pi ;
5 s tep = ( stop − s t a r t ) /N;
6 theta = −pi : s t ep : pi ;
7 x = k + a∗cos ( theta ) ∗cos ( phi ) − b∗ sin ( theta ) ∗ sin ( phi ) ;
8 y = h + b∗ sin ( theta ) ∗cos ( phi ) + a∗cos ( theta ) ∗ sin ( phi ) ;
9 for q = 1 : length ( x )

10 x (q ) = round( x (q ) ) ;
11 i f x (q )<1
12 x (q ) =1;
13 end
14 i f x (q )>matr ixS ize (2 )
15 x (q )=matr ixS ize (2 ) ;
16 end
17 y (q ) = round( y (q ) ) ;
18 i f y (q )<1
19 y (q ) =1;
20 end
21 i f y (q )>matr ixS ize (1 )
22 y (q )=matr ixS ize (1 ) ;
23 end
24 end
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25

26 e l l i p s e = zeros ( matr ixS ize ) ;
27 for n = 1 : length ( x )
28 e l l i p s e ( x (n) , y (n) ) = 1 ;
29 end
30 e l l i p s e L = e l l i p s e ;
31 e l l i p s eR = e l l i p s e ;
32 for m = 1 : matr ixS ize (1 ) %rows
33 rowMarked = 0 ;
34 for n = 1 : matr ixS ize (2 ) %columns
35 i f ( e l l i p s e L (m, n) == 1 && rowMarked )
36 cont inue ;
37 end
38 i f ( e l l i p s e L (m, n) == 1 && ˜rowMarked )
39 rowMarked = 1 ;
40 end
41 i f ( e l l i p s e L (m, n) == 0 && rowMarked )
42 e l l i p s e L (m, n) = 1 ;
43 end
44 end
45 end
46 for m = matr ixS ize (1 ) :−1:1 %rows
47 rowMarked = 0 ;
48 for n = matr ixS ize (2 ) :−1:1 %columns
49 i f ( e l l i p s eR (m, n) == 1 && rowMarked )
50 cont inue ;
51 end
52 i f ( e l l i p s eR (m, n) == 1 && ˜rowMarked )
53 rowMarked = 1 ;
54 end
55 i f ( e l l i p s eR (m, n) == 0 && rowMarked )
56 e l l i p s eR (m, n) = 1 ;
57 end
58 end
59 end
60 e l l i p s e = e l l i p s eR .∗ e l l i p s e L ;
61 i f ( i nv e r t )
62 e l l i p s e = ones ( matr ixS ize ) − e l l i p s e ;
63 end
64 end
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Here is an example of a file for reading in the images, storing them in cell array
Im, and performing the speckle isolation process (in the function getSpeckle2), and
storing these pure speckle images in the cell array Imspeck.

SpeckleMaker3200.m

1 % This f i l e d e c l a r e s the images and c a l c u l a t e s and saves the
s p e c k l e images f o r the 3100 s e r i e s .

2

3 % IMPORTANT: The c e l l Im ’ s f i r s t 3 rows are the ascending
branches , and

4 % f i n a l 3 rows are the descending branches
5

6 r e f {1}= f i t s r e a d ( ’ eb3187 . f i t ’ ) ;
7 r e f {2}= f i t s r e a d ( ’ eb3213 . f i t ’ ) ;
8 r e f {3}= f i t s r e a d ( ’ eb3239 . f i t ’ ) ;
9 r e f {4}= f i t s r e a d ( ’ eb3200 . f i t ’ ) ;

10 r e f {5}= f i t s r e a d ( ’ eb3226 . f i t ’ ) ;
11 r e f {6}= f i t s r e a d ( ’ eb3252 . f i t ’ ) ;
12

13 S=s ize ( r e f {1}) ;
14

15 load ( ’ ascend3200 . mat ’ )
16 load ( ’ descend3200 . mat ’ )
17

18 Im{6 ,12}=[ ] ;
19 for n1=1:3
20 for n2=1:12
21 i f ascend (n2 , n1 ) ˜= 0
22 Im{n1 , n2} = eval ( [ ’ f i t s r e a d ( ’ ’ ’ ’ ’ ’ eb ’ int2str (

ascend (n2 , n1 ) ) ’ . f i t ’ ’ ’ ’ ’ ’ ) ; ’ ] )−r e f {n1 } ;
23 end
24 i f descend (n2 , n1 ) ˜= 0
25 Im{n1+3,n2} = eval ( [ ’ f i t s r e a d ( ’ ’ ’ ’ ’ ’ eb ’ int2str (

descend (n2 , n1 ) ) ’ . f i t ’ ’ ’ ’ ’ ’ ) ; ’ ] )−r e f {n1+3};
26 end
27 end
28 end
29

30 t e t r a=getTetragon
(671 ,419 ,1001 ,445 ,1001 ,570 ,636 ,542 , [ 1001 ,1001 ] , 1 ) ;

31 e l l i=g e tE l l i p s e (498 ,465 ,180 ,173 , . 48∗ pi , [ 1 0 0 1 , 1 0 0 1 ] , 1 ) ;
32

33 Imspeck {6 ,12}=[ ] ;
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34 for T1=1:6
35 for T2=1:12
36 i f isempty (Im{T1 ,T2}) == 0
37 Imspeck{T1 ,T2}=getSpeck l e2 (Im{T1 ,T2} , t e t ra , e l l i ) ;
38 end
39 end
40 end
41

42 save Speck le3200 double DMspeck Imspeck
43 save Im3200 2 Im
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The function doubleboundaryfit is a 1-D polynomial fit of the columns of the
images, followed by a 1-D fit of the rows of the image (now with the fitted column
values inserted where the blocker was). The double-fitted values then replace the
regions specified to be behind the blocker (These are specified by the ellipse and
tetragon elli and tetra, which are simply zeroed-out regions where the blocker is
located).

doubleboundaryfit.m

1 function cyborg2 = doubleboundary f i t ( im , b locker , deg2 )
2 deg1=1;
3 S=s ize ( im) ;
4 ze ro l im =3;
5 im=im .∗ b locke r ;
6 cyborg=im ;
7 Z=1−b locke r ;
8 for n=1:S (2 )
9 z=Z ( : , n ) ;

10 c o l=im ( : , n ) ;
11 zback=rot90 ( z , 2 ) ;
12 i f sum( z ) > ze ro l im
13 [ a , i 1 ]=max( z ) ;
14 [ a , i 2 ]=max( zback ) ;
15 i 1=i1 −1;
16 i 2=S (2)−i 2 +2;
17 x=[ i1 −3: i1 , i 2 : i 2 +3] ;
18 y=co l ( x ) ;
19 f u l l =1:S (2 ) ;
20 p=q u i e t p o l y f i t (x ’ , y , deg1 ) ;
21 f i l l e r=polyval (p , f u l l ) ;
22 cyborg ( : , n )=f i l l e r ’ . ∗ z+co l ;
23 end
24 end
25 f u l l =1:S (1 ) ;
26 cyborg2=cyborg ;
27 for n=1:S (1 )
28 z=Z(n , : ) ;
29 row=cyborg (n , : ) ;
30 i f sum( z ) > ze ro l im
31 p=q u i e t p o l y f i t ( fu l l , row , deg2 ) ;
32 f i l l e r=polyval (p , f u l l ) ;
33 cyborg2 (n , : )= f i l l e r .∗ z+im(n , : ) ;
34 end
35 end
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The function getSpeckle2 is an improvement of Brian Wilcken’s code getSpeckle.
The only real difference is this program utilizes the function doubleboundaryfit to
fit the region behind the blocker prior to the smoothing process to eliminate the
boundary problem.

getSpeckle2.m

1 function [ speck le , blurredImage ] = getSpeck l e2 ( image , e l l i p s e ,
t e t ragon )

2 v i s = 0 ; %1 = d i s p l a y graphs , 0 = no d i s p l a y
3 blockerRemove = e l l i p s e .∗ t e t ragon ;
4 dTolFinder = image .∗ blockerRemove ;
5 dTol = ( std ( std ( dTolFinder ) ) /(max(max( dTolFinder ) )−min(

min( dTolFinder ) ) ) ) /2 ;
6 %f p r i n t f ( ’ D i f f e r e n t i a l Tolerance : %f \n ’ , dTol )
7 PSF = f s p e c i a l ( ’ average ’ , 3 ) ; %3x3 po in t spread func t i on (

PSF) used in convo lu t i on f o r image b l u r r i n g
8 blurredImage = doubleboundary f i t ( image , blockerRemove , 1 5 ) ;
9 p = 1 ; %counter f o r genera t ing range i n f o two s t e p s ahead

10 n = 3 ; %counter f o r c a l c u l a t i n g cen tered d e r i v a t i v e s
11 previousOne = 1 ;
12 cur r ent = 1 ;
13 blurredImageOne = 1 ;
14 cur rentBlur = 1 ;
15 while ( t rue )
16 blurredImage = i m f i l t e r ( blurredImage ,PSF, ’ conv ’ , ’

r e p l i c a t e ’ ) ; %FFT2 based image b l u r r i n g v ia
convo lu t i on

17 % blurredImage = PbPBlur ( b lurredImage ) ; %Pixe l−by−
p i x e l convo lu t i on based b l u r r i n g

18 sp e ck l e = ( image − blurredImage ) .∗ blockerRemove ; %
Remove b l o c k e r

19 %spe c k l e = ImageCrop ( s p e c k l e ) ; %crop a percentage o f
p i x e l s from each s i d e o f the speck l e , so as to
d i s card wi th edge e f f e c t s inheren t in the b l u r r i n g
t e chn i que s

20 maximum(p) = max(max( sp e ck l e ) ) ;
21 minimum(p) = min(min( sp e ck l e ) ) ;
22 r (p) = maximum(p) − minimum(p) ; %r i s a vec t o r o f

l e n g t h 1 : p t ha t con ta ins the range o f the s p e c k l e
a t any g iven pass p : r ( p )

23 blurMax (p) = max(max( blurredImage ) ) ;
24 blurMin (p) = min(min( blurredImage ) ) ;
25 blurR (p) = blurMax (p) − blurMin (p) ; %record the range
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o f the b l u r to show how i t decays over time
26 %Succes i ve S u b s t i t u t i o n s f o r r e tu rn ing the co r r e c t

s p e c k l e r e s u l t
27 previousTwo = previousOne ;
28 previousOne = cur rent ;
29 cur r ent = speck l e ;
30 blurredImageTwo = blurredImageOne ;
31 blurredImageOne = currentBlur ;
32 cur rentBlur = blurredImage ;
33 i f (p > 4) %the 1 s t and 2nd centered d i f f e r e n c e

d e r i v a t i v e s cannot be de f ined wi thout a minimum of
3 data po in t s

34 drdp (n) = ( r (n+1) − r (n−1) ) /(2∗1) ; %centered
d i f f e r e n c e 1 s t p d e r i v a t i v e o f r ( p )

35 d2rdp2 (n) = ( r (n+1) − 2∗ r (n) + r (n−1) ) /(1ˆ2) ; %
centered d i f f e r e n c e 2nd p d e r i v a t i v e o f r ( p )

36 d3rdp3 (n) = ( r (n+2) − 2∗( r (n+1) − r (n−1) ) − r (n
−2) ) /(2∗1ˆ3) ; %centered 3rd p d e r i v a t i v e o f r (
p )

37 i f ( v i s ) %the s e l i n e s o f code on ly execu te i f v i s
was not s e t to 0 , the f o l l ow i n g code p re s en t s
an array o f graphs and images in a u s e f u l

l a you t t ha t i s easy to read
38 %setup s p e c k l e s l i c e v i s u a l i z a t i o n
39 [ vS , hS ] = s ize ( sp e ck l e ) ;
40 o r i g i n a l = image .∗ blockerRemove ;
41 o r i g S l i c e = o r i g i n a l ( : , ce i l (hS/2) ) ;
42 b l u r S l i c e = blurredImageTwo .∗ blockerRemove ;
43 b l u r S l i c e = b l u r S l i c e ( : , ce i l (hS/2) ) ;
44 s p e c k l e S l i c e = previousTwo ( : , ce i l (hS/2) ) ;
45 %Blur e v o l u t i on
46 subplot ( 4 , 6 , [ 1 2 7 8 ] ) ;
47 imagesc ( blurredImageTwo )
48 info = sprintf ( ’ b lur a f t e r %d pas s e s ’ ,n ) ;
49 t i t l e ( info )
50 %Speck l e e v o l u t i on ( image )
51 subplot ( 4 , 6 , [ 3 4 9 10 ] ) ;
52 imagesc ( previousTwo )
53 info = sprintf ( ’ s p e ck l e a f t e r %d pas se s ’ ,n ) ;
54 t i t l e ( info )
55 %Speck l e e v o l u t i on ( s l i c e )
56 subplot ( 4 , 6 , [ 5 6 11 12 ] ) ;
57 plot ( o r i g S l i c e , ’ y− ’ )
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58 hold on
59 plot ( s p e c k l e S l i c e , ’ r− ’ )
60 plot ( b l u rS l i c e , ’ k− ’ )
61 plot (0∗ b l u rS l i c e , ’m− ’ )
62 hold o f f
63 info = sprintf ( ’ V e r t i c a l S l i c e \nYellow :

o r i g i n a l , Black : blur , Red : sp e ck l e ’ ) ;
64 t i t l e ( info )
65 %AC r e s u l t
66 subplot ( 4 , 6 , [ 1 7 18 23 24 ] ) ;
67 surf ( CyclicFFT2xcorr ( previousTwo , previousTwo )

)
68 info = sprintf ( ’ auto c o r r e l a t i o n r e s u l t a f t e r

%d pas se s ’ ,n ) ;
69 t i t l e ( info )
70 %p l o t o f s p e c k l e range
71 subplot ( 4 , 6 , [ 1 5 1 6 ] ) ;
72 plot ( r ( 1 : n ) )
73 hold on
74 plot (maximum( 1 : n) , ’ k− ’ )
75 plot (minimum( 1 : n) , ’ r− ’ )
76 hold o f f
77 info = sprintf ( ’ Speck le Range ( r )\nr = %f ’ , r (

n) ) ;
78 t i t l e ( info )
79 %p l o t o f b l u r range
80 subplot ( 4 , 6 , [ 1 3 1 4 ] ) ;
81 plot ( blurR ( 1 : n) , ’b− ’ )
82 hold on
83 plot ( blurMax ( 1 : n) , ’ k− ’ )
84 plot ( blurMin ( 1 : n) , ’ r− ’ )
85 hold o f f
86 info = sprintf ( ’ range o f b lur = %f ’ , blurR (n) )

;
87 t i t l e ( info )
88 %p l o t o f 1 s t d e r i v a t i v e o f s p e c k l e range as a

func t i on o f
89 %pass
90 subplot ( 4 , 6 , 19 ) ;
91 plot ( drdp )
92 info = sprintf ( ’ 1 s t d e r i v a t i v e o f range at %d

pas se s \ndr/dp = %f ’ ,n , drdp (n) ) ;
93 t i t l e ( info )



A.1 Speckle Isolation Code 56

94 %p l o t o f 2nd d e r i v a t i v e o f s p e c k l e range as a
func t i on o f

95 %pass
96 subplot ( 4 , 6 , 2 1 : 2 2 ) ;
97 plot ( d2rdp2 )
98 info = sprintf ( ’ 2nd d e r i v a t i v e o f range at %d

pas se s \nd2r/dp2 = %f ’ ,n , d2rdp2 (n) ) ;
99 t i t l e ( info )

100 %p l o t o f 3 rd d e r i v a t i v e o f s p e c k l e range as a
func t i on o f

101 %pass
102 subplot ( 4 , 6 , 20 ) ;
103 plot ( d3rdp3 )
104 info = sprintf ( ’ 3 rd d e r i v a t i v e o f range at %d

pas se s \nd3r/dp3 = %f ’ ,n , d3rdp3 (n) ) ;
105 t i t l e ( info )
106 pause ( 0 . 0 1 )
107 end
108 i f (abs ( d2rdp2 (n) ) < dTol && abs ( d3rdp3 (n) ) < abs

( d2rdp2 (n) ) ) %break cond i t i on f o r the wh i l e
loop execu t e s i f we have ach ieved convergence
o f the cen tered 2nd d e r i v a t i v e o f r ( p ) to
w i th in t o l e r anc e

109 break
110 end
111 n = n + 1 ;
112 end
113 p = p + 1 ;
114 end
115 sp e ck l e = previousTwo ;
116 %f p r i n t f ( ’ Speck l e range ( i t e r a t i o n s ) 2nd d e r i v a t i v e

convergence to < %f in %d i t e r a t i o n s .\n ’ , dTol , p )
117 end
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A.2 Center Fitting

This is the program I used for fitting the center of the (slightly elliptical) ring in one
of the image series. It returns the location of the center h,k as well as the ratio of the
semi-major and semi-minor axes btoa, and the angle of the ellipse phi.

FitEllipseCenter.m

1 function [ h , k , a , b , phi , btoa ]= F i tE l l i p s eCen t e r ( im)
2 %t h i s f unc t i on t ake s as input the b l u r r ed image ( c en t r a l

reg ion need not be
3 %removed ) .
4

5 S=f ix ( s ize ( im) /10) ;
6 for i =1:3
7 vect ( i )=(3+2∗( i −1) ) ∗S (1) ;
8 x ( i , : )=im( vect ( i ) , : ) ;
9 y ( i , : )=im ( : , vect ( i ) ) ’ ;

10 end
11

12 d=diag ( im) ’ ;
13

14 M=f ix ( length ( im) /4) ;
15 f i r s t ( 1 : 2∗M(1) ) =1;
16 f i r s t (2∗M(1) : length ( x ) ) =0;
17 l a s t ( 1 : 2∗M(1) ) =0;
18 l a s t (2∗M(1) : length ( x ) ) =1;
19 for i =1:3
20 [C, xval (1 , i ) ]=max( x ( i , : ) .∗ f i r s t ) ;
21 [C, xval (2 , i ) ]=max( x ( i , : ) .∗ l a s t ) ;
22 [C, yval (1 , i ) ]=max( y ( i , : ) .∗ f i r s t ) ;
23 [C, yval (2 , i ) ]=max( y ( i , : ) .∗ l a s t ) ;
24 end
25 [C, dval (1 ) ]=max(d .∗ f i r s t ) ;
26 [C, dval (2 ) ]=max(d .∗ l a s t ) ;
27

28 XY( 1 , : ) =[ yval ( 1 , 1 ) , vect (1 ) ] ;
29 XY( 2 , : ) =[ yval ( 2 , 1 ) , vect (1 ) ] ;
30 XY( 3 , : ) =[ yval ( 1 , 2 ) , vect (2 ) ] ;
31 XY( 4 , : ) =[ yval ( 2 , 2 ) , vect (2 ) ] ;
32 XY( 5 , : ) =[ yval ( 1 , 3 ) , vect (3 ) ] ;
33 XY( 6 , : ) =[ yval ( 2 , 3 ) , vect (3 ) ] ;
34 XY( 7 , : ) =[ vect (1 ) , xval ( 1 , 1 ) ] ;
35 XY( 8 , : ) =[ vect (1 ) , xval ( 2 , 1 ) ] ;
36 XY( 9 , : ) =[ vect (2 ) , xval ( 1 , 2 ) ] ;
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37 % XY(8 , : ) =[ v e c t (2) , x v a l (2 ,2) ] ;
38 XY(1 0 , : ) =[ vect (3 ) , xval ( 1 , 3 ) ] ;
39 XY(1 1 , : ) =[ vect (3 ) , xval ( 2 , 3 ) ] ;
40 XY(1 2 , : ) =[ dval (1 ) , dval (1 ) ] ;
41 XY(1 3 , : ) =[ dval (2 ) , dval (2 ) ] ;
42

43 % whi tespace=ones ( s i z e ( im) ) ;
44 % for i =1: l e n g t h (XY)
45 % whi tespace (XY( i , 1 ) −3:XY( i , 1 ) +3,XY( i , 2 ) −3:XY( i , 2 )+3)=0;
46 % % imagesc ( whi t e space .∗ im)
47 % % colormap gray
48 % % pause
49 % end
50

51 [ a , b , k , h , phi ]= e l l i p s e f i t (XY( : , 1 ) ,XY( : , 2 ) ) ;
52 btoa=b/a ;
53

54

55 % e1=g e t E l l i p s e (h , k , a , b , phi , s i z e ( im) ,0) ;
56 % e2=g e t E l l i p s e (h , k , a+5,b+5,phi , s i z e ( im) ,1) ;
57 % E=e1+e2 ;
58 %
59 % % B=Ci r c l eF i t (XY) ;
60 % % mid=[round (B(1) ) , round (B(2) ) ] ;
61 % % r=round (B(3) ) ;
62 % % e3=g e t E l l i p s e (mid (1) ,mid (2) , r , r , 0 , s i z e ( im) ,0) ;
63 % % e4=g e t E l l i p s e (mid (1) ,mid (2) , r+5, r+5 ,0 , s i z e ( im) ,1) ;
64 % % C=e3+e4 ;
65 % % subp l o t (1 ,2 ,1)
66 % imagesc ( im .∗E.∗ whi te space ) ; t i t l e ( ’ E l l i p t i c a l f i t ’ )
67 % % subp l o t (1 ,2 ,2) ; imagesc ( im .∗C.∗ whi te space ) ; t i t l e ( ’ C i rcu la r

f i t ’ )
68 % % colormap gray
69 % pause ( . 1 )

I used images in the coercive region, and averaged the output of FitEllipseCenter.m
to find the value of the center.

CenterSurvey3200.m

1 load ( ’ Im3200 . mat ’ )
2 hvalues=zeros ( 5 , 5 ) ;
3 kva lues=zeros ( 5 , 5 ) ;
4 r a t i o s=zeros ( 5 , 5 ) ;
5 ph iva lue s=zeros ( 5 , 5 ) ;
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6

7 for T1=1:6
8 i =1;
9 for T2=3:7

10 i f isempty (Im{T1 ,T2}) == 0
11 im=overb lur (Im{T1 ,T2}) ;
12 [ h , k , a , b , phi , btoa ]= F i tE l l i p s eCen t e r ( im) ;
13 hvalues (T1 , i )=h ;
14 kva lues (T1 , i )=k ;
15 r a t i o s (T1 , i )=btoa ;
16 ph iva lue s (T1 , i )=phi ;
17 i=i +1;
18 end
19 end
20 end
21

22 numzeros=sum(sum( i s i n f ( 1 . / hva lues ) ) ) ;
23 s=s ize ( hva lues ) ;
24 div=s (1 ) ∗ s (2 )−numzeros ;
25

26 h=sum(sum( hva lues ) ) / div ;
27 k=sum(sum( kva lues ) ) / div ;
28 btoa=sum(sum( r a t i o s ) ) / div ;
29 phi=sum(sum( ph iva lue s ) ) / div ;
30

31 save Cente rE l l i p s e3200 . mat h k btoa phi
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A.3 Cross-Correlation

Here is an example of a whole-image cross-correlation algorithm. rhoA and rhoD
are cell arrays, with each cell corresponding to the number of loops separating the
correlated images.

nonq3200 rpm.m

1 clear ;
2 load ( ’ Speckle2900 . mat ’ ) ;
3

4 S=s ize ( Imspeck {1 ,5}) ;
5 mid=f loor (S (1 ) /2) ;
6

7 %e l l i p s e over which the auto/ cross−c o r r e l a t i o n peaks are
i n t e g r a t e d

8 s=g e tE l l i p s e (round(S (1 ) /2) ,round(S (2 ) /2) , 25 , 12 , ( . 48∗ pi ) ,S , 0 ) ;
9

10 % Autocor re l a t i on
11 [W,L]= s ize ( Imspeck ) ;
12

13 Auto (W,L) =0;
14 for T1=1:W
15 for T2=1:L
16 i f isempty ( Imspeck{T1 ,T2}) == 0
17 C=i f f t 2 ( f f t2 ( Imspeck{T1 ,T2}) .∗ f f t2 ( rot90 ( Imspeck{

T1 ,T2} , 2 ) ) ) ;
18 C=f f t s h i f t (C) ;
19 Auto (T1 ,T2)=sum(sum( s . ∗ (C+abs (C) ) /2) ) ;
20 end
21 end
22 end
23

24 % Cross−c o r r e l a t i o n
25 l oops=W/2−1;
26

27 rhoA{ l oops }=[ ] ;
28 rhoD{ l oops }=[ ] ;
29 counterA=zeros (L , l oops ) ;
30 counterD=zeros (L , l oops ) ;
31 for T1=1:W/2
32 T=T1+W/2 ;
33 for m=1:W/2−T1
34 rhoA{m}(L) =0;
35 rhoD{m}(L) =0;
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36 for T2=1:L
37 i f isempty ( Imspeck{T1 ,T2}) == 0
38 i f isempty ( Imspeck{T1+m,T2}) == 0
39 C=i f f t 2 ( f f t2 ( Imspeck{T1 ,T2}) .∗ f f t2 ( rot90 (

Imspeck{T1+m,T2} , 2 ) ) ) ;
40 C=f f t s h i f t (C) ;
41 surf (C(mid−50:mid+50,mid−50:mid+50) ) ;
42 pause
43 rhoA{m}(T2)=rhoA{m}(T2)+sum(sum( s . ∗ (C+abs

(C) ) /2) ) /sqrt (Auto (T1 ,T2) ∗Auto (T1+m,T2
) ) ;

44 counterA (T2 ,m)=counterA (T2 ,m) +1;
45 end
46 end
47 i f isempty ( Imspeck{T,T2}) == 0
48 i f isempty ( Imspeck{T+m,T2}) == 0
49 C=i f f t 2 ( f f t2 ( Imspeck{T,T2}) .∗ f f t2 ( rot90 (

Imspeck{T+m,T2} , 2 ) ) ) ;
50 C=f f t s h i f t (C) ;
51 rhoD{m}(T2)=rhoD{m}(T2)+sum(sum( s . ∗ (C+abs

(C) ) /2) ) /sqrt (Auto (T,T2) ∗Auto (T+m,T2) )
;

52 counterD (T2 ,m)=counterD (T2 ,m) +1;
53 end
54 end
55 end
56 end
57 end
58 for m=1: loops
59 for T2=1:L
60 i f counterA (T2 ,m) ˜= 0
61 rhoA{m}(T2)=rhoA{m}(T2) /counterA (T2 ,m) ;
62 end
63 i f counterD (T2 ,m) ˜= 0
64 rhoD{m}(T2)=rhoD{m}(T2) /counterD (T2 ,m) ;
65 end
66 end
67 end
68

69 save not−q 2900 rpm doub l e r e su l t s . mat rhoA rhoD
70

71 % Remember : the f i r s t 3 rows o f rhoA/D are ascending , l a s t 3
are descending
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Here is the same series correlation, but with Q-selective correlations. It employs
the nearest-neighbor fit in the autocorrelation.

q3200 rpm cw.m

1 load ( ’ Speck le3200 double . mat ’ ) ;
2 load ( ’ Cente rE l l ip s e3200 . mat ’ ) ;
3

4 S=s ize ( Imspeck {1 ,5}) ;
5

6 % load the rad ius va l u e s f o r the r in g s
7 load ( ’ cw15 1000 rad ius . mat ’ )
8

9 % Make the r in g s
10 qold=g e tE l l i p s e 2 (h , k , r (1 ) , r (1 ) ∗btoa , phi , S , 1 ) ;
11 for n=2: length ( r )
12 qnew = ge tE l l i p s e 2 (h , k , r (n) , r (n) ∗btoa , phi , S , 1 ) ;
13 Q{n−1} = qold−qnew ;
14 pix (n−1)=sum(sum(Q{n−1}) ) ;
15 i f pix (n−1) == 0
16 break
17 end
18 qold = qnew ;
19 end
20

21 L=length (Q) ;
22

23 % E l l i p s e over which auto / cross−c o r r e l a t i o n peaks are
i n t e g r a t e d

24 s=g e tE l l i p s e (round(S (1 ) /2) ,round(S (2 ) /2) , 25 , 12 , ( . 48∗ pi ) ,S , 0 ) ;
25

26 % Autocor re l a t i on
27 AutoDM(L) =0;
28 for n=1:L
29 C=i f f t 2 ( f f t2 (DMspeck .∗Q{n}) .∗ f f t2 ( rot90 (DMspeck .∗Q{n} , 2 ) )

) ;
30 C=f f t s h i f t (C) ;
31 AutoDM(n)=sum(sum( s . ∗ (C+abs (C) ) /2) ) ;
32 end
33

34 Auto {6 ,12}=[ ] ;
35 for T1=1:6
36 for T2=1:12
37 Auto{T1 ,T2}(L) =0;
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38 for n=1:L
39 i f isempty ( Imspeck{T1 ,T2}) == 0
40 C=i f f t 2 ( f f t2 ( Imspeck{T1 ,T2} .∗Q{n}) .∗ f f t2 (

rot90 ( Imspeck{T1 ,T2} .∗Q{n} , 2 ) ) ) ;
41 C=f f t s h i f t (C) ;
42 [ Val1 , I1 ]=max(C) ;
43 [ zdp , I2 ]=max( Val1 ) ;
44 C( I1 ( I2 ) , I2 ) =0;
45 neighbor=max(max(C) ) ;
46 C( I1 ( I2 ) , I2 )=neighbor ;
47 Auto{T1 ,T2}(n)=sum(sum( s . ∗ (C+abs (C) ) /2) ) ;
48 end
49 end
50 end
51 end
52

53 % Cross Corre l a t i on (RPM)
54

55 rhoA {2}=[ ] ;
56 rhoD {2}=[ ] ;
57 counterA=zeros (12 ,2 ) ;
58 counterD=zeros (12 ,2 ) ;
59 for T1=1:3
60 T=T1+3;
61 for m=1:3−T1
62 rhoA{m} (12 ,L) =0;
63 rhoD{m} (12 ,L) =0;
64 for T2=1:12
65 i f isempty ( Imspeck{T1 ,T2}) == 0
66 i f isempty ( Imspeck{T1+m,T2}) == 0
67 for n=1:L
68 C=i f f t 2 ( f f t2 ( Imspeck{T1 ,T2} .∗Q{n}) .∗

f f t2 ( rot90 ( Imspeck{T1+m,T2} .∗Q{n
} , 2 ) ) ) ;

69 C=f f t s h i f t (C) ;
70 rhoA{m}(T2 , n)=rhoA{m}(T2 , n)+sum(sum( s

. ∗ (C+abs (C) ) /2) ) /sqrt (Auto{T1 ,T2}(
n) ∗Auto{T1+m,T2}(n) ) ;

71 end
72 counterA (T2 ,m)=counterA (T2 ,m) +1;
73 end
74 end
75 i f isempty ( Imspeck{T,T2}) == 0
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76 i f isempty ( Imspeck{T+m,T2}) == 0
77 for n=1:L
78 C=i f f t 2 ( f f t2 ( Imspeck{T,T2} .∗Q{n}) .∗

f f t2 ( rot90 ( Imspeck{T+m,T2} .∗Q{n
} , 2 ) ) ) ;

79 C=f f t s h i f t (C) ;
80 rhoD{m}(T2 , n)=rhoD{m}(T2 , n)+sum(sum( s

. ∗ (C+abs (C) ) /2) ) /sqrt (Auto{T,T2}(n
) ∗Auto{T+m,T2}(n) ) ;

81 end
82 counterD (T2 ,m)=counterD (T2 ,m) +1;
83 end
84 end
85 end
86 end
87 end
88 for m=1:2
89 for T2=1:12
90 i f counterA (T2 ,m) ˜= 0
91 rhoA{m}(T2 , : )=rhoA{m}(T2 , : ) / counterA (T2 ,m) ;
92 end
93 i f counterD (T2 ,m) ˜= 0
94 rhoD{m}(T2 , : )=rhoD{m}(T2 , : ) / counterD (T2 ,m) ;
95 end
96 end
97 end
98 save q3200 rpm cw ne ighbor re su l t s . mat rhoA rhoD pix
99

100 % Remember : the f i r s t t h r e e rows o f rho are ascending , l a s t
t h r e e are

101 % descending .


