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ABSTRACT 

 

 

COMPUTATIONAL ANALYSIS OF THE RELATIVE DECAY 

CONSTANTS FOR 
7
BE, 

7
BE

+
, AND 

7
BE

++
 

 

Mark Hutchison 

Department of Physics and Astronomy 

Bachelor of Science 

 

 
 The actual decay constant for neutral beryllium 7 (

7
Be) is unknown because it has 

always been measured with a substantial loss of its 2s electrons due to bonding or 

interstitial effects.  By considering free 
7
Be ions (such as may appear in a low density 

non-neutral plasma) we can potentially calculate the electron charge density at the 

nucleus with more accuracy and this can be used to calculate relative changes in the 

decay constant for ionized states of 
7
Be.  We use both Hartree–Fock self-consistent field 

(HF SCF) and Density Functional Theory (DFT) methods for calculating the relative 

changes in the decay constants for 
7
Be,

 7
Be

+
, and

 7
Be

++
 and find that there is a non-linear 

relationship between the decay constant and the fractional amount of 2s electrons still 

present in the nucleus. 
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COMPUTATIONAL ANALYSIS OF THE RELATIVE 

DECAY CONSTANTS FOR 
7
BE, 

7
BE

+
, AND 

7
BE

++ 

I. INTRODUCTION 

For many years, elements that only decay through electron capture have been 

known to be susceptible to changes in their half-life [1,2].  These changes have been 

achieved by subjecting the particular element to an external environment that essentially 

changes the electron charge density near the nucleus and thus the probability of an 

electron being captured.  Since the only atomic orbitals that give finite electron densities 

at the nucleus are s orbitals, the shape of the s orbitals has the greatest effect on the 

electron capture rate [3].  An element’s s orbitals can be manipulated by changing its 

physical [4] or chemical state [2,5,6], by exposing it to extreme pressures [6–10] or 

temperatures [11,12]
,
 or by ionizing its atoms [13].  Although any element with this 

property should exhibit these characteristics, it has been much harder to observe in 

heavier elements because the valence electrons (those most susceptible to outside 

influences) are so far away from the nucleus, or the shielding is so great, that they exhibit 

a very small effect [3,14,15].  Thus only for lighter elements will the wave functions of 

the valence electrons noticeably overlap with that of the nucleus.  The lightest element 

that decays solely by electron capture is beryllium 7 (
7
Be) and thus it is a prime candidate 

for understanding more fully the physics of electron capture. 

Despite the long history of research done on 
7
Be, there is still no known half-life 

for neutral 
7
Be.  Almost all of the half-life measurements to date are of 

7
Be embedded 

interstitially in other elements; however, because this affects the electron density near the 
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nucleus, none of these measurements truly represent the half-life of 
7
Be [16].  The 

“accepted” half-life is merely an average of all of these measurements and has no more 

correlation with the actual half-life of neutral 
7
Be than any one measurement on its own, 

i.e., taking an average was not done with the express purpose of obtaining a more 

accurate half-life. 

One of the most important places where the half-life of 
7
Be is used is in the 

Standard Solar Model (SSM) to calculate the boron 8 (
8
B) solar neutrino, one of the 

primary neutrinos that we can detect [17].  
7
Be is created in the proton-proton cycle of the 

sun and is a necessary precursor to 
8
B.  However, the decay rate for 

7
Be used in the 

calculation came from terrestrial measurements assuming that all of its 2s electrons were 

still present [18].  Because every host material used in experiments thus far has had a 

different electron affinity than that of 
7
Be, these experiments measured the half-life of 

7
Be with a substantial fraction of 2s electrons missing.  While this is only one among 

many sources of errors in the SSM, after the measurement of the 
8
B neutrino flux to 

within 5  uncertainty by the Sudbery Neutrino Observatory [19], there has been a push 

to increase the accuracy of the SSM (still at about 20  uncertainty) in order to compare 

theory and experiment [20]. 

Another place 
7
Be is created is in the upper atmosphere of the Earth; it is a natural 

byproduct of spallation of cosmic rays colliding with oxygen and nitrogen.  When the 

Long-Duration Exposure Facility (LDEF) was retrieved and analyzed after orbiting Earth 

for six years in low orbit, there was an unusually high concentration of 
7
Be found [21,22].  

Because of the dynamic process in which 
7
Be is formed in the atmosphere, it is likely that 

it forms in an ionized state.  A longer half-life for 
7
Be

+
 caused by having fewer electrons 
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near the nucleus could possibly explain the unexpected amount of 
7
Be on the LDEF.  

Thus it is not only important to find the decay rate for neutral 
7
Be, but also for 

7
Be

+
.  

Furthermore, a full investigation into the relationship between decay rate and 2s electrons 

near the nucleus would be quite revealing.  Recently Das and Ray predicted that this 

relationship was linear (Fig. 1) [23].  However, the data used had a fairly tight spread 

 

Fig. 1  This is a graph taken from Das and Ray’s paper [23] that shows the proposed linear relationship 

between the decay constant and the fractional amount of 2s electrons (ns) still present in the nucleus.  The 

numbered points were calculated by Das and Ray using a tight-binding linear muffin-tin orbital method on 
7
Be atoms in the media listed in the graph. 
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(~3/10 of the proposed range) and may or may not represent the true relationship over the 

entire range of 2s electrons near the nucleus.  In addition to the two previously mentioned 

decay rates, it would be necessary to compute a third decay rate for 
7
Be

++
 as well.  

Therefore, a correct calculation and/or measurement of the half-lives for 
7
Be, 

7
Be

+
, and 

7
Be

++
 would be advantageous for many different reasons. 

The plasma research group at Brigham Young University is the first to try to 

measure the half-life of 
7
Be when it is free from other materials [24].  They will do this 

by creating a very low density, non-neutral plasma of singly ionized 
7
Be.  A low density 

plasma minimizes the interaction between atoms while a non-neutral plasma ensures that 

there are no free electrons to affect the half-life measurement.  One advantage to this 

experiment is the corresponding theoretical calculation is less complicated since it only 

needs to take into account a single atom.  Additionally, the amount of 2s electrons still 

present in the atom is known exactly without recourse to other calculations.  Therefore 

this single atom calculation could potentially produce results more reliable than others, 

and will hopefully provide experimental data to substantiate the theory.  Using this as a 

model, we will be looking at the electron densities of 
7
Be, 

7
Be

+
, and 

7
Be

++
 and their 

corresponding decay rates. 

II. THEORY 

Although Bambynek et al. did a fairly comprehensive study of different 

calculation methods for 
–
, 

+
, and electron capture decay rates [25], both the derivations 

and the calculations are rather lengthy and are not as easily adapted to compare changes 

in the decay rate ( ) due to ionization as the method presented by Bukowinski [9].  The 
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1

2

3

latter is much more transparent and results in a simple relation for EC that only depends 

on the electron charge density at the nucleus of both neutral and ionized atoms (  and  

respectively) and the neutral decay constant ( 0). The following is a reproduction of the 

derivation of EC given by Bukowinski. 

7
Be decays 100  of the time by electron capture into 

7
Li (89.56  directly into 

the ground state of 
7
Li and 10.44  into an excited state of 

7
Li followed almost 

immediately by  decay into its ground state).  The electron capture process, regardless of 

the two branches, follows the reaction 

7Be + e –   7Li + e  ,  

where e 
–
 is an electron (usually from the 1s orbital, but not necessarily) and e is a 

neutrino.  The probability of this reaction is proportional to the square of the matrix 

element of the interaction Hamiltonian, Hint, between the initial and final states of the 

atom.  Under the Born-Oppenheimer approximation, we may decouple the nuclear and 

electronic wave functions and, to a good approximation, we may treat the process as a 

two-body interaction 

p + e –  n + e  ,  

where p is a proton and n is a neutron. It then follows that the decay constant for electron 

capture, EC, is given by 

EC c n

*  *  H int  p  e  d
2

 ,  

where  n ,  , p , and e are the wave functions of the neutron, neutrino, proton, and 

electron, respectively, and c is a constant of proportionality.  Because of the small size of 

the nucleus, we may approximate equation (3) by  
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5

4

6

7

8

EC c e 0
2

n

*  *  H int  p  d
2

. 

If more than one electron state has non-vanishing amplitude at the origin, the 

decay constant is the sum of all the individual contributions:  

EC c n

*  *  H int  p  d
2

,  

where 

e

i 0
2

.
i

 

Making the reasonable assumption that the various nuclear wave functions are not 

affected by a few megabars of pressure, EC may be written as  

EC c n

*  *  H int  p  d
2

 

or 

EC 1 0 0  .  

where  is the total electron density at the nucleus at pressure P,  at atmospheric 

pressure, and 0 is the atmospheric pressure decay constant for neutral 
7
Be.  Although 

equation (8) was derived under the assumption that pressure was the only thing that was 

changing, the equation is more general.  Both Tossel [6] and Lee et al. [3] use the same 

equation assuming that chemical combinations also do not affect the nuclear wave 

functions.  Because this has the same affect ionization has on an atom, we will be able to 

use this equation as well. 

The disadvantage of using this calculation is that it does not provide any decay 

rates for the ionized atoms.  In fact, 0 must be known first in order to even find EC.  
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However, provided 0 were to be obtained, either from the aforementioned methods set 

forth by Bambynek, et al., or otherwise, both of these obstacles would then be irrelevant.  

In any case, even without 0, valuable insight can be gained from an analysis of just the 

proportionality factor , especially since Das and Ray also only consider relative decay 

rates (the slope of  vs. average number of 2s electrons, ns) and admit that their 

calculations would likely have a vertical offset even though the slope would remain 

unchanged [23].  Thus, in order to verify the linear relationship between  and ns 

obtained by Das and Ray, we need only see if  produces the same slope over the entire 

range of ns or if the relationship is more complex and only appears linear over smaller 

intervals. 

III. METHODS 

 In order to use equation (8), we need to have some method of calculating electron 

charge densities at the nucleus.  For many-electron atoms, this requires a quantum 

chemistry program that can numerically solve for the charge density by using a basis set, 

or trial wave function, that is optimized to give the lowest upper bound on the energy. 

Most quantum chemistry packages only recognize basis sets that use Gaussian-type 

orbitals (GTOs, a four-indexed function containing an exponential in r
2
) to approximate 

the atomic orbitals of the electrons, although there are a few programs that are now able 

to implement Slater-type orbitals (STOs, a four-indexed function containing an 

exponential only in r). 

STOs provide a better representation of the actual atomic orbitals because the 

exponential allows the existence of a cusp at the nucleus.  Unfortunately, there is no 
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analytic solution to its four-indexed integrals and therefore it must be solved numerically.  

These numerical calculations are computationally very taxing and few programs have 

tried implementing them.  On the other hand, the four-indexed integrals for GTOs do 

have an analytic solution making calculation times more practical.  However, GTOs have 

drawbacks in other areas; they are rounded instead of cusped at the nucleus and they fall 

off too quickly at larger radii because of the r
2
 dependence.  The former is a serious 

disadvantage to our calculation because we need an accurate electron charge density 

exactly at the nucleus. 

One very basic way to increase the accuracy is to increase the number of 

functionals used in the basis set.  In general, according to Hartree–Fock (HF) theory and 

the quantum mechanical Variational Principle, increasing the number of functionals will 

converge on the HF limit giving a more accurate charge density [26].  While this provides 

a good starting point, HF theory has some inherent drawbacks as well.  HF theory uses 

the fundamental assumption that each electron sees all of the others as a static electric 

field and ignores the problem of correlation altogether.  For this reason, HF theory is used 

to optimize the functions describing occupied orbitals while functions for correlation 

between electrons are optimized using theories such as Møller–Plesset (MPn, where n 

refers to the order of the perturbation), configuration interaction (CI), or coupled-cluster 

(CC). 

Each of these more robust methods has their place and it is important to 

understand their strengths and limitations when deciding which method is best for a given 

calculation.  MPn theory is a many body perturbation theory and works very well for 

small perturbations, but its performance decreases as the perturbation increases and, 
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furthermore, the theory does not necessarily converge at higher orders [27].  Thus MPn 

theory only allows for a partial description of the correlation between electrons.  

Meanwhile a full CI calculation (using an infinite basis set) does converge and yields an 

“exact” solution to the non-relativistic, Born–Oppenheimer, time-independent 

Schrödinger equation; however, some formulations are not size-consistent [28].  Size-

consistency is important because it ensures that the quality of the results does not depend 

on the size of the system, i.e., how many nuclei, how many electrons are in the system, or 

how far apart or close together they are. 

CC theory is a mathematically elegant CI method developed to fix the size-

consistency problems that plague many of the CI calculations.  Therefore the CC 

approach would likely be the best approach to calculating an accurate electron charge 

density.  CC theory is a perturbation theory that uses an excited configuration that is 

“coupled” to the reference configuration and the order of the calculation is determined by 

the number of excitations allowed in the definition of the excitation operator.  Currently 

in the literature and in computational programs CC theory has only been implemented up 

to fourth order.  The orders are usually denoted by appending CC with the letters S, D, T, 

and Q that respectively stand for single, double, triple, and quadruple excitations.  A four-

electron atom would have full description using CCSDTQ, but it is likely that the triples 

and quadruples would only make very fine corrections to that of the singles and doubles 

(although doubles by far gives the most significant contribution, singles are needed to 

account for orbital relaxation and are easily incorporated when already doing doubles) 

[29].  Therefore, calculations at the CCSD level of theory would most likely be accurate 
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enough for our purposes and it will allow for a full description for at least one of our 

calculations, 
7
Be

++
. 

All of these methods are dependent on basis sets and even the best theory will 

produce erroneous results if given a basis set that is too small or badly optimized.  In fact, 

the basis set is often more important that the actual computer package used.  This has 

given rise to hundreds of basis sets and it is often hard to choose which is best for a given 

calculation.  In our case, because we are looking for the electron charge density at the 

nucleus, the calculation is most strongly dependent on large exponent (tight) functions in 

the basis set, usually found in the s orbitals.  Although tight functions affect chemical 

bonding very little, they provide a much better description of the electron density curve 

near the nucleus than diffuse functions [30].  Because our calculations do not involve 

bonding and depend on the charge density at the nucleus, tight functions are essential for 

getting accurate results. 

S orbitals are also important because they are the only finite orbitals at the nucleus 

and are the orbitals that contribute the most to the charge density at r=0.  Furthermore, in 

its ground state, 
7
Be only occupies the 1s and 2s orbitals adding more importance to the s 

orbitals.  That is not to say that we are only interested in basis sets with strictly s orbitals; 

Bunge and Equivel show that including angular functions (P, D, F, etc.) slightly improves 

charge density calculations [31].  Unfortunately, they also found that it was not intuitive 

as to what combination of them would yield the best charge density.  Rather it would 

require a manual optimization of the charge density for known quantities.  Helium (He) 

would be an ideal candidate for such optimization because of the immense amount of 

research done on He to very high precision.  Consequently, the ideal basis set for our 
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calculation would have a large number of radial functions (20  s functions) supplemented 

by a few angular functions as well. 

Most basis sets “out of the box” are contracted in some way (i.e. at least one of 

the basis functions is represented by a linear combination of Gaussians) and almost 

without exception include a contraction of the s orbitals.  Not only does this reduce the 

number of s orbitals, but it also tends to make the basis more diffuse.  Thus, as a general 

rule, a basis set loses some of its flexibility when it is contracted, especially at the nucleus 

[32].  Consequently, for any calculation near the nucleus it is almost always wise to 

uncontract the basis set first.  Additionally, most basis sets are designed only for valence 

electron correlation, but because correlation between both the 1s and 2s electrons is 

important we will need a basis set that allows for core-valence correlation, e.g., the 

correlation consistent polarized core-valence n-tuple zeta (cc-pCVnZ) basis set or the 

weighted core-valence n-tuple zeta (cc-pwCVnZ) basis set.  This also means that the 

frozen core approximation would yield poor results and should not be used for this type 

of calculation, especially for 
7
Be

+
 or 

7
Be

++
 (the latter would then have no electrons to 

even correlate).  Because basis sets with tight functions are important for properties more 

sensitive to intrashell correlation, cc-pCVnZ (or similar basis set) would likely be a better 

candidate than cc-pwCVnZ [33].  However, most basis sets do not have enough s orbital 

functions and need to be augmented with another basis set, preferably composed 

exclusively of a large number of s orbital functions.  In fact, probably the best option 

available would be to manually create a new basis set with all of these features and then 

optimize the exponentials simultaneously until the HF energy is minimized.  Fortunately, 
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the calculations are similar enough to one another that we should be able to use the same 

basis set for all three charge density calculations for 
7
Be, 

7
Be

+
, and 

7
Be

++
. 

IV. CALCULATION 

We will be using NWChem [34, 35] for our initial calculations because of its 

built-in charge density algorithm (dplot) and because the most recently published basis 

sets are available in NWChem format from the Environmental Molecular Sciences 

Laboratory Basis Set Exchange (EMSL BSE) website hosted by Pacific Northwest 

Laboratory [36–38].  We will be comparing our calculations with previously published 

charge densities and the calculated hydrogenic charge density for 
7
Be

+++
 in order to see 

which basis set yields the best results.  Once a suitable basis set is found, we will then use 

this to calculate all needed charge densities and use them in equation (8) to find relative 

changes in the decay constant.  We will then normalize our data to overlap the data 

obtained by Das and Ray in order to verify whether there is a linear relationship between 

the decay constant and the fractional amount of 2s electrons in the atom.  Because we are 

only looking at the 2s shell, we will only be plotting our first three calculations (
7
Be, 

7
Be

+
, and 

7
Be

++
).  Although the calculation for 

7
Be

+++
 will be useful in determining our 

method accuracy, it only has one 1s electron and the charge density at the nucleus 

behaves much differently than when 2s electrons are present. 

NWChem’s “dplot” calculation has two available methods.  In this paper we will 

be using both methods and will compare the results obtained from each to see how well 

they agree.  The first approach is the Hartree-Fock self-consistent field (SCF) method.  

This is an iterative process designed to converge on a set of orbital wave functions that 

can be used to generate important chemical properties.   Initially a guess is made for the 
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wave functions of the occupied atomic/molecular orbitals and from these the one-electron 

Hamiltonians or Fock operators are constructed.  Then by solving the one-electron 

Schrödinger equation a new set of wave functions are generated and the process repeats.  

When the convergence criterion is reached, usually when the energy changes by less than 

a specified amount, the loop is broken and the now “converged” wave functions can be 

used to generate any physical observable.  The major caveat is that SCF calculations are 

done at the HF level and thus uses the assumption that each electron sees all the others as 

a static field.  Therefore this is only reliable as a preliminary calculation and as a 

stepping-stone for more accurate theories. 

The second method used by “dplot” is density functional theory (DFT).  DFT and 

molecular orbital theory (MO theory) are two very different approaches to the same 

problem.  Whereas MO theory optimizes the wave function, DFT instead optimizes the 

charge density.  Although using a physical observable is not as versatile as the wave 

function, there are some advantages to taking this approach over MO calculations.  First, 

DFT calculations are guaranteed to never scale worse than N
3
, where N is the number of 

functions used to represent the Kohn-Sham orbitals, and often do much better.  Since HF 

MO calculations usually scale as N
4
, DFT calculations are the most cost-efficient method 

within a certain accuracy [39].  Another important advantage is that DFT calculations do 

not necessarily need to be fed contracted Gaussians and, under certain representations of 

the density, even STOs are available [40].  One significant improvement on HF theory is 

the fact that DFT replaces the HF exchange terms for a more general term that can 

include information about both exchange energy and electron correlation.  Even though 

DFT does not account for correlation completely, this will potentially give us more 
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accurate results than the SCF method.  Hence a DFT calculation with its alternate 

approach will serve as an important verification of any results obtained by the above SCF 

method. 

We stress that these are initial calculations and that a subsequent calculation using 

the CCSD theory described above (preferably in a program supporting STOs, e.g., 

Molpro) will need to be conducted in order to verify the results in this paper.   

V. RESULTS/DISCUSSION 

 We first calculated the electron density at the nucleus for 
7
Be

+++
 by solving the 

Schrödinger equation for a hydrogen-like atom with a modified potential for a beryllium 

nucleus.  Even without taking into account fine-structure effects due to spin or relativity, 

the hydrogenic solution should be accurate to 1 part in 10
4
 for Be; this is more than 

enough accuracy since the errors in our NWChem computations are much larger than this 

in the density.  Using 
7
Be

+++
 alone as an indicator of the accuracy of a given method is 

not particularly revealing about how well the method will work for calculating the charge 

densities of 
7
Be,

 7
Be

+
, and

 7
Be

++
 because of the intricate correlation effects that are 

present when two or more electrons are present in an atom.  However, it is the only 

charge density that we can solve for exactly.  Furthermore, when it is used in conjunction 

with other reference values we have found that there does seem to be some correlation to 

the accuracy of the calculations for the other atoms.  It has, therefore, been useful in 

determining basis sets and functionals for both the SCF and DFT calculations. 

For a better test of the accuracy of the many electron systems, we have found 

some previously published charge densities at the nucleus of Be atoms with which we can 

compare our results.   Almbladh, et al., calculate values for the charge density at the 
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nucleus for neutral Be and Be
++

 which they considered to be exact when compared to HF 

calculations or DFT local density approximations [41].  Although computational 

chemistry has improved a great deal since 1983, these calculations are likely still good 

enough for the preliminary calculations we are presenting here.  In any case, these values 

will at least provide some benchmark of accuracy by which we can ensure that our 

preliminary calculations are reliable.  However, it is plain that a more accurate 

calculation using modern techniques is needed to verify the findings of these methods 

and we are currently working on performing CCSD calculations using Molpro. 

We next looked for a basis set that would give us the charge densities that were 

closest to our three reference values.  We found that the single most accurate basis set 

available, short of creating our own basis set, was the uncontracted well-tempered basis 

set (WTBS).  In its uncontracted form, the WTBS basis set contains 20 radial functions 

and has the tightest functions out of any of the basis sets on the EMSL BSE website.  

These features make WTBS an ideal basis for our calculations.  When doing our SCF 

calculations we also found that our charge densities could be improved slightly if we 

augmented this basis set with the angular functions in the aug-pcS-4 basis set.  Charge 

densities calculated using the most accurate basis sets with the tightest functions and 

most numerous s orbital functions are given in Table 1. 

Table 1 

Electron densities (in electrons a.u.
-3

) at r=0 calculated for 
7
Be, 

7
Be

+
, 

7
Be

++
, and 

7
Be

+++
 using the 

SCF method.  The “exact” values for 
7
Be and 

7
Be

++
 come from Almbladh, et al., [41] and the value 

for 
7
Be

+++
 is the hydrogenic charge density (ignoring fine-structure and relativity). 

Atom “Exact” cc-pCVQZ 
Partridge 

Uncontr. 3 
aug-pcS-4 WTBS

 WTBS augmented 

with aug-pcS-4 
       

7
Be 35.37 34.724 35.262 35.162 35.293 35.297 

7
Be

+ 
-- 34.417 34.951 34.851 34.981 34.985 

7
Be

++ 
34.4 33.713 34.236 34.139 34.266 34.269 

7
Be

+++ 
20.3718 19.989 20.300 20.242 20.317 20.319 

Avg. Error -- 1.901 0.378 0.661 0.292 0.282 
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On the other hand, our DFT calculations were best when only the WTBS basis set 

was used.  However, in addition to basis sets, DFT calculations require a set of density 

functionals as well.  When looking for the best density functionals, we compared the 

calculated ionization energies to their known values and again looked at how well the 

charge densities matched our reference values.  While there were quite a few density 

functionals that produced accurate ionization energies, there were relatively few that 

could also produce accurate charge densities.  In fact, the best results were obtained when 

we used a class of functionals developed by Haprecht, Cohen, Tozer, and Handy (HCTH) 

that use the generalized gradient approximation (GGA).  A list of the ionization energies 

and charge densities calculated using the different HCTH functionals is given in Tables 2 

and 3 respectively.  The HCTH group is fitted to highly accurate experimental data 

(known as the Gaussian 2 set [42]) for first and second row atoms/molecules on the 

periodic table as well as accurate exchange-correlation potentials [43].  Although there 

were some functionals in this group that were very accurate at obtaining our reference 

charge densities for a particular ion of 
7
Be, but did not perform as well on the others.  

Therefore we chose to use the plain HCTH functional because it has better consistency in 

performing well on all of the atoms.  Our three reference charge densities, along with a 

list of the best charge densities obtained from NWChem using the SCF and DFT 

methods, are given in Table 4. 

Table 2 

Ionization energies (in kJ/mol) of 
7
Be

+
, 

7
Be

++
, and 

7
Be

+++
 using NWChem’s DFT module for the XCTPSSH and 

HCTH class of functionals.  The Exact ionization energies come from Moore [44]. 

Ionization 

Energy 
Exact

 
hcth hcth120

 
hcth147 hcth407 hcthp14 hcth407p xctpssh

 

         

I1 899.4 875.05 889.85 887.98 906.56 907.08 914.18 873.58 

I2 2656.5 2644.63 2670.68 2666.51 2681.87 2769.93 2685.04 2647.25 

I3 17504.5 17522.89 17533.60 17531.18 17544.49 17615.65 17547.78 17512.86 

Avg.  Error -- 0.788 0.587 0.600 0.660 1.920 0.988 0.857 
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Table 3 

Electron densities (in electrons a.u.
-3

) at r=0 calculated for 
7
Be, 

7
Be

+
, 

7
Be

++
, and 

7
Be

+++
 using NWChem’s DFT 

module for XCTPSSH and HCTH class of functionals.  The “exact” values for 
7
Be and 

7
Be

++
 come from 

Almbladh, et al., [41] and the value for 
7
Be

+++
 is the hydrogenic charge density (ignoring fine-structure and 

relativity). 

Atom “Exact” hcth hcth120
 

hcth147 hcth407 hcthp14 hcth407p xctpssh
 

         

7
Be 35.37 35.385 35.374 35.353 35.333 35.191 35.370 35.436 

7
Be

+ 
-- 35.064 35.051 35.031 35.010 34.865 35.045 35.107 

7
Be

++ 
34.4 34.365 34.347 34.329 34.314 34.156 34.348 34.406 

7
Be

+++ 
20.3718 20.301 20.277 20.269 20.267 20.179 20.289 20.156 

Avg. Error -- 0.165 0.211 0.252 0.289 0.721 0.186 0.421 

 

Table 4 

Summary of the best electron densities (in electrons a.u.
-3

) at r=0 calculated for 
7
Be, 

7
Be

+
, 

7
Be

++
, and 

7
Be

+++
 using SCF and DFT methods.  The “exact” values for 

7
Be and 

7
Be

++
 come from Almbladh, et 

al., [41] and the value for 
7
Be

+++
 is the hydrogenic charge density (ignoring fine-structure and 

relativity). 

Atom “Exact” SCF
 

DFT
 

    

7
Be 35.37 35.2965 35.3852 

7
Be

+ 
-- 34.9845 35.1072 

7
Be

++ 
34.40 34.2689 34.3648 

7
Be

+++ 
20.3718 20.3193 20.3007 

Finally we used these charge densities in equation (8) to acquire relative changes 

in the decay constant for 
7
Be

+
 and 

7
Be

++
 and normalized our neutral decay constant to the 

proposed decay constant in Das and Ray.  This allowed us to plot our results over their 

data and to analyze what trends can be seen over the entire 2s electron range.  Because it 

was not intuitive as to what model should be used to fit the data we tried a number of 

different models on both SCF and DFT results: linear, quadratic, cubic, and exponential 

(Figs. 2–5).  For each model we used a weighted fit so that the more accurate data points 

would carry more importance in determining the shape of the line.  We also added a 

variational parameter in the height of our NWChem results since we do not know the 

actual decay constant for any of the atoms.  By minimizing this parameter in the 

weighting function we were able find the optimal height for our NWChem results for 

each model and analyze which model best fits the overall data.  There is a caution to 

consider when sliding two different data sets around in order produce the best fit.  This 
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has the potential to over fit the data, i.e., produce a fit that is better than reality.  

However, because the decay constants for 
7
Be and its ions are currently unknown and 

both data sets are subject to possible offsets, there is no other option but to normalize our 

data in this way. 

This is not intended to be an exhaustive study on how to model this relationship 

between decay constant and 2s electrons (although this would be a valuable topic for 

subsequent research).  We are merely trying to demonstrate whether the relationship is 

linear or non-linear and to ascertain a better value for the decay constant of neutral 
7
Be.    

From the graphs in Figures 2 & 4 it seems clear that the relationship is indeed non-linear 

and appears to most resemble quadratic behavior.   In Figure 6 we have plotted the 

quadratic fit for both the SCF and DFT calculations again and added the linear fit done by 

Das and Ray.  The quadratic model in the region considered by Das and Ray appears to 

be quite linear and seems to verify their observations for the behavior between about 

ne=2.2–2.8.  However, there seems to be some non-linear effects that make a linear model 

insufficient at predicting the behavior of the decay constant over the entire range of 2s 

electrons. 

The cause most suspect for the non-linearity would be interelectron repulsion.  Because 

both 1s and 2s orbitals are spherically symmetric about the nucleus, as the fraction of 2s 

electrons increased there would be a small amount of repulsion causing the 1s electrons 

to become more diffuse.  Thus even though the overall electron density may increase at 

the nucleus due to the increase in 2s electrons, there would be a small competing effect to 

decrease the electron density as well.  However, you would expect this to be tied up in 

the correlation effects of the electrons.  Since correlation is not included in the methods 
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Fig. 2 We have plotted our SCF calculation with Das and Ray’s data and performed a weighted fit using a 

linear and quadratic model.  We have also allowed the absolute height of the NWChem calculations to vary 

while minimizing the error in the fit since we do not know the actual half-life of any of the atoms. 
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Fig. 3 We have plotted our SCF calculation with Das and Ray’s data and performed a weighted fit using a 

cubic and exponential model.  We have also allowed the absolute height of the NWChem calculations to 

vary while minimizing the error in the fit since we do not know the actual half-life of any of the atoms. 
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Fig. 4 We have plotted our DFT calculation with Das and Ray’s data and performed a weighted fit using a 

linear and quadratic model.  We have also allowed the absolute height of the NWChem calculations to vary 

while minimizing the error in the fit since we do not know the actual half-life of any of the atoms. 
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Fig. 5 We have plotted our DFT calculation with Das and Ray’s data and performed a weighted fit using a 

cubic and exponential model.  We have also allowed the absolute height of the NWChem calculations to 

vary while minimizing the error in the fit since we do not know the actual half-life of any of the atoms. 
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Fig. 6  The quadratic model best seemed to fit the data from both NWChem and Das and Ray.  Here we 

plotted the graphs again and have now included Das and Ray’s proposed linear relationship between decay 

constant and 2s electrons in the atom. 
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we are using our results are somewhat puzzling.  This is another area that should be 

researched more in depth, but is outside the scope of our present research project. 

VI. CONCLUSION 

We have performed a SCF and DFT calculation of the electron charge densities at 

the nucleus of 
7
Be, 

7
Be

+
, 

7
Be

++
, and 

7
Be

+++
 atoms and used these to generate relative 

changes in the decay constant.  When we plot these charge densities with the results of 

Das and Ray we found a non-linear relationship between the decay constant and the 

fractional amount of 2s electrons in the atom.  This is most likely caused by interelectron 

repulsion between 1s and 2s electrons.  This means that the half-life of neutral 
7
Be is 

longer than the predicted half-life given by Das and Ray.  Improvement on the decay rate 

for 
7
Be will help to reduce the error in the 

8
B solar neutrino calculation in the SSM and 

could possibly show whether ionized 
7
Be could be responsible for the unexpected 

amounts of beryllium on the LDEF. 

It is very important to realize that the calculations and curves generated in this 

paper are entirely subject to a correct measurement of at least one of the half-lives of 
7
Be, 

7
Be

+
, 

7
Be

++
, or 

7
Be

+++
.  Any one of these measurements will pin down one of the points 

on the curve and the absolute scaling for our calculations.  Thus, if the plasma group at 

Brigham Young University is successful at measuring a half-life for 
7
Be

+
 we will be able 

to find the actual decay constant for neutral 
7
Be to a fairly high degree of accuracy.  To 

completely verify these results we suggest that an additional calculation, at least at the 

CCSD level, be performed in order to take care of the correlation effects of the electrons. 
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APPENDIX A 

Acronym Glossary 

 

aug-pcS-n Augmented polarization consistent basis set for nuclear magnetic 

shielding constants with polarization level n 

CC Coupled cluster 

cc-pCVnZ Correlation consistent polarized core-valence n-tuple zeta basis set 

cc-pwCVnZ Correlation consistent polarized weighted core-valence n-tuple zeta 

basis set 

CCSD Coupled cluster with single and double excitations 

CCSDT Coupled cluster with single, double, and triple excitations 

CCSDTQ Coupled cluster with single through quadruple excitations 

CI Configuration interaction 

DFT Density functional theory 

EMSL Environmental molecular sciences laboratory 

GGA Generalized gradient approximation 

GTO Gaussian-type orbital 

HCTH GGA exchange-corrlation functional of Hamprecht, Cohen, Tozer, and 

Handy 

HF Hartree–Fock 

LDEF Long-duration exposure facility 

MO Molecular orbital 

MPn Møller–Plesset perturbation theory of order n 

SCF Self-consistent field 

STO Slater-type orbital 

WTBS Well-tempered basis set 

xctpssh Meta-GGA and hybrid density functional by Tao, Perdew, Staroverov, 

and Scuseria 
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APPENDIX B 

NWChem Input Files 

This is the NWChem input file used to generate the SCF calculations for this 

paper: 

 

Start be 

 

charge 0 

 

geometry units au 

  Be 0 0 0  mass 7.016928 

end 

 

basis  spherical nosegment 

  Be library "uncontracted_WTBS" 

  Be library "uncontracted_aug-pcS-4" 

end 

 

scf 

  singlet 

  vectors output Be.movecs 

  ROHF 

end 

 

dplot 

  TITLE DENSITIES 

  vectors Be.movecs 

  LimitXYZ units au 

  -1    1    100000 

  -0    0     0 

  -0    0     0 

  spin total 

  gaussian 

  output aug0.cube 

end 

 

task scf 

task dplot 
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This is the NWChem input file used to generate the DFT calculations for this 

paper: 

Start be 

 

charge 0 

 

geometry units au 

  Be 0 0 0  mass 7.016928 

end 

 

basis 

  Be library "uncontracted_WTBS" 

end 

 

dft 

#mult 2 

 xc  hcth407p 

 vectors output be.movecs 

end 

 

dplot 

  TITLE DENSITIES 

  vectors be.movecs 

  LimitXYZ units au 

  -1    1    100000 

  -0    0     0 

  -0    0     0 

  spin total 

  gaussian 

  output corr.cube 

end 

 

task dft 

task dplot 
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