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ABSTRACT

Path Integral Method for Calculating Work Statistics in Quantum Thermodynamics

Taylor S. Kimball
Department of Physics and Astronomy, BYU

Bachelor of Science

The definition of work, one of the cornerstones of classical thermodynamics, must be re-
formulated in quantum thermodynamics because of the inherent uncertainty in position and energy
in microscopic systems. To account for this uncertainty, I calculate and use the propagator from
quantum mechanics, which gives the probability amplitude that a particle will move from a initial
position to a final position. I discuss the notion of work in microscopic systems, as well as the
two-point method, the most current method for calculating work. I then present an alternative
method to calculate work, which utilizes the path integral formulation of quantum mechanics to
find the work. I consider two applications, a free particle interacting with a rigid wall moving at
constant velocity, and a free particle inside an infinite square well where one wall is moving at
constant velocity. In both cases, I calculate the propagator using a semiclassical approximation
to the path integral for both systems, and calculate the work for the infinite square well system.
The path integral result is compared to the result from the two-point method, and shown to be an
equivalent, but more powerful method.

Keywords: quantum thermodynamics, work statistics, path integral, van Vleck, work probability
distributions
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Chapter 1

Introduction

Quantum thermodynamics is a branch of physics that has been recently developed (Griffiths 2005).

In this chapter, I give a brief overview of quantum thermodynamics and related fields of physics.

The tension between quantum thermodynamics and these related fields of physics leads to the need

for a new definition of the fundamental concept of work and new methods to evaluate it. This

research problem is illustrated by an evaluation in two specific examples.

1.1 Classical Thermodynamics

Thermodynamics is the theory of macroscopic quantities, like heat, work, and temperature of a

system and how these quantities relate to energy and entropy. It is a theory that describes the average

behavior for every physical system. In that sense, thermodynamics is the most general theory in

physics (Kreuzer & Tamblyn 2010).

Thermodynamics was mainly developed in the 19th century in order to better understand com-

plex, macroscopic systems like steam engines. These systems were too complicated to analyze each

component individually, and, as a result, thermodynamics was developed to give an overall under-

standing of these systems (Deffner & Campbell 2019). In what follows I give a brief introduction of

1



2 Chapter 1 Introduction

the most important concepts in thermodynamics in my work.

1.1.1 Work in Classical Thermodynamics

The fundamental idea behind thermodynamics is that systems transform from one equilibrium state

to another equilibrium state. These states are described using state equations, which describe how

the thermodynamic quantities are related.

Work W is one of the most important quantities in thermodynamics because work is one of the

primary ways through which a state can be transformed. This transformation is described by the

first law of thermodynamics (Kreuzer & Tamblyn 2010)

dE = d̄W + d̄Q, (1.1)

where E is the internal energy, W is the work, and Q is the heat. The symbol d̄ is used to denote that

the differential quantity is not exact. In other words, the first law of thermodynamics states that the

change in energy for a system is dependent on the change in work and heat of a system. From this

thermodynamic perspective, work can be thought of as the energy transferred to or from a particle

via the force applied on the particle.

The exact mathematical definition of work done on a particle is

W =
∫

C
F⃗ · d⃗s, (1.2)

where C is the trajectory a particle follows, F⃗ is the force applied to the particle, in is in the direction

of d⃗s, which is a infinitesimal displacement. The work is the sum total of the force infinitesimally

parallel to the displacement applied to the particle.

One of the most important theorems in classical mechanics is the work-energy theorem, which

states that the change in kinetic energy of a system corresponds to the amount of work done on the

system. This can be expressed as

W = ∆T, (1.3)
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where T is the kinetic energy (this is only true if Q = 0, which means no heat is transferred into or

out of the system).

1.2 Quantum Mechanics

Quantum mechanics is the second branch of physics that is relevant in quantum thermodynamics.

Quantum mechanics was developed to better explain microscopic systems, and has also been proven

to be accurate and useful. In this section, I will discuss the main properties of quantum mechanics

that are needed to understand the results in this thesis.

1.2.1 Probability Distributions

One of the most common problems in classical mechanics is to calculate the positions of a particle as

a function of time based on the forces the particle feels. Using Newton’s second law and the initial

conditions of the particle, we can determine the position of the particle at any time. In quantum

mechanics, we are not interested in finding the position of a particle (because finding the exact

position of a particle is impossible! See Section 1.2.2), we are instead interested in determining

the wavefunction, ψ(x, t), of a particle, where x indicates position and t is time. The wavefunction

of a particle is a statistical quantity that gives the probability amplitude of finding the particle at a

specific position and time and is typically found by solving the Schrödinger equation

ih̄
∂

∂ t
ψ(x, t) = Ĥ ψ(x, t), (1.4)

where h̄ is the reduced Planck’s constant, i is the imaginary unit, and Ĥ is the Hamiltonian operator

(which gives the total energy of the system).

In microscopic systems, we can only determine where the particle is likely to be. The norm

square of the wavefunction gives the probability distribution for the position of the particle. In
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mathematical terms, ∫ b

a
|ψ(x, t)|2 dx. (1.5)

This integral shows the probability that the particle can be found between positions x = a and x = b

at time t (Griffiths 2005). In order to conserve probability, all wavefunctions must be normalized,

which means the particle must be found somewhere in space. This can be expressed as∫
∞

−∞

|ψ(x, t)|2 dx = 1. (1.6)

1.2.2 Uncertainty Principle

The uncertainty principle in quantum mechanics gives a lower limit to the joint uncertainty un-

certainty in position and momentum simultaneously. It is related to the statistical interpretation

introduced in section 1.2.1, and is the reason why we can’t know the exact position of a particle.

The uncertainty principle is expressed mathematically as

∆x∆p ≥ h̄
2
. (1.7)

where p is the momentum.

There is also an uncertainty principle that gives a lower limit to how well we can know the

energy of the system. This energy uncertainty principle is defined as

∆E∆ t ≥ h̄
2
. (1.8)

In quantum mechanics, we can’t know the exact position and momentum, or energy and total time

span of a particle (we can know the momentum and energy of particle simultaneously, however).

Specifically, a particle in a microscopic system does not follow a well-defined trajectory, and the

particle does not have a definitive energy (Griffiths 2005). The inherent uncertainty and statistical

interpretation in quantum systems is arguably the main difference between quantum and classical

systems.
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1.2.3 Propagators

Propagators in quantum mechanics are functions that give the probability amplitude that a particle

will go from some start point xa to an end point xb in a given time interval, ta to tb. The propagator

is either denoted as K (xa, ta;xb, tb) (Feynman & Hibbs 2010), or as a transition amplitude using

the Dirac notation, ⟨xb|Û |xa⟩, where Û is the evolution operator. From this point on, I will use the

Dirac transition amplitude definition to express the propagator.

The propagator can be found from the wavefunction of the particle. Once you find the wave-

function, you can calculate the propagator by using (da Luz & Cheng 1992)

⟨xb|Û |xa⟩=
∫

∞

0
ψ

∗(xa, ta)ψ(xb, tb)dk, (1.9)

where k = 2π/λ , and is the wavenumber of the wavefunction. The wavenumber is related to the

wavelegth, and hence the momentum of the particle by the de Broglie relation, which is

p = h/λ = h̄k. (1.10)

1.2.4 Density Matrices

The density matrix is a generalization of mass density to quantum systems. The density matrix

describes the state of some system. Density matrices can be thought of as more general versions

of wavefunctions. Wavefunctions can only describe pure states, while density matrices can also

represent mixed states (which occur when the exact state is unknown or when two states are

entangled).

The density matrix can be calculated from the wavefunction and the initial state of the system.

The mathematical definition of the density matrix is

ρ(x) = ∑
n

exp(−βEn))

Z0
|ψn(x)⟩⟨ψn(x)| . (1.11)
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where β is the inverse temperature (β = 1/kBT , where kB is the Boltzman constant and T is the

temperature), Z0 is the initial partition function, En is the energy of the nth level, and |ψn⟩⟨ψn| is

the outer product of the initial wavefunction (Deffner & Campbell 2019). For systems with real

wavefunctions, the outer product turns into standard multiplication.

1.3 Quantum Thermodynamics

Quantum Thermodynamics combines elements of quantum mechanics and classical thermodynam-

ics and studies how the laws of thermodynamics can be applied to microscopic systems. Classical

thermodynamics has been proven to be accurate in the classical limit, but has three major short-

comings: (i) it does not contain any information about microscopic systems; (ii) thermodynamics

cannot describe non-equilibrium states as it is an equilibrium theory; and (iii) the mathematical

framework is classical in nature (Deffner & Campbell 2019). Due to these shortcomings, we need

to develop a quantum version of thermodynamics to help us fully describe microscopic systems.

1.3.1 Motivation for the Development of Quantum Thermodynamics

One of the main motivations for quantum thermodynamics is to help us better understand quantum

machines, like quantum computers. Quantum computers have the potential to immensely improve

our computational abilities and increase the accuracy of computational models. It is crucial to

have an understanding of quantum thermodynamics to further develop quantum computers. Other

machines, like quantum heat engines, have the potential to be even more efficient than classical

heat engines (Preskill 2012). Quantum thermodynamics will help to maximize the efficiency and

output of these quantum machines, and has the potential to lead to an improvement in quantum

technologies, just like classical thermodynamics helped to improve the efficiency of steam engines

in the 18th century.
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One of the main differences between classical thermodynamics and quantum thermodynamics

is the presence of fluctuations. Because quantum systems are microscopic, they are susceptible to

sudden changes in thermodynamic quantities, which lead to fluctuations in these quantities. In order

to deal with fluctuations, a branch of thermodynamics was developed called Stochastic Thermody-

namics. Stochastic thermodynamics is a branch of thermodynamics is centered around analyzing

small systems that are far from thermodynamic equilibrium. Recent developments in stochastic

thermodynamics include the Jarzynski Equality (Jarzynski 1997) and Crook’s fluctuation theorem

(Crooks 1999). The fundamental idea behind stochastic thermodynamics is that thermodynamics

can be generalized to single particle dynamics (Sekimoto 1998). Single particle dynamics is the

focus of my work, and has lots of applications to other quantum systems. The development of

stochasic thermodynamics was crucial to the development of quantum thermodynamics (Deffner &

Campbell 2019).

1.3.2 Calculating Work Statistics

The classical definition of work Eq.(1.2), does not apply to microscopic systems because particles

do not follow a single trajectory (from Section (1.2.2). We need to develop another understanding

for quantum work, one that is more closely related to the work-energy theorem classical mechanics

or the first law of thermodynamics.

The typical method for calculating work in quantum systems is by using the two point mea-

surement (Deffner & Campbell 2019). The two point measurement is done by initializing a system

and measuring the instantaneous energy E0
n at time t = 0, moving the system forward in time using

a force protocol, and measuring the instantaneous energy Eτ
l at some time t = τ . The quantum

fluctuating work is then the difference in energies

Wl,n = Eτ
l −E0

n , (1.12)

where n and l are arbitrary states. This is very similar to the work-energy theorem in classical,



8 Chapter 1 Introduction

Eq. (1.3). However, there is some uncertainty that the system is actually in the state E0
n at time

t = 0 because of the time and energy uncertainty principle. Because of that, we need to define the

probability of finding the system at the nth energy level at t = 0. This is defined as pn, and can be

calculated using

pn = ⟨E0
n |ρ̂(0)|E0

n⟩ , (1.13)

where ρ̂(0) is the initial density matrix. The initial system is set up in some ensemble with partition

function Z0 and energy level En. In order to extract work out of the system, we use a time-dependent

potential that is controlled by an external parameter, which is called the work parameter, λt . At t = 0,

the work parameter is at its initial value, λ0, so we can write the energy at t = 0 as the Hamiltonian

as a function of λ0.

The probability of observing the work Wl,n is then going to be the probability pn of the system

being in En at t = 0 multiplied by the probability of the system going from En to El . The probability

of observing the work can be expressed as

p(n, l) = pn| ⟨Eτ
l |Û |E0

n⟩ |2, (1.14)

where Û is the evolution operator

Û = T̂ exp
(
− i

h̄

∫
τ

0
dtĤ(λt)

)
,

and Ĥ is the Hamiltonian operator andT̂ is the time ordering operator, which is needed because

H(λ0) and H(λτ do not commute. Because of the uncertainty in energy and position , the amount

of work W is also uncertain, and we need to represent the work done as a probability distribution ,

P(W ). This distribution can be expressed as

P(W ) = ∑
l,n

δ (W −Wl,n)p(l,n). (1.15)

where Wl,n is the work associated with going from an arbitrary state l to another arbitrary state n.

This distribution can be difficult to find. An easier quantity to calculate is the characteristic function
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of work, which is the Fourier Transform of the work distribution. After taking the Fourier transform,

we get that the characteristic function of work can be defined as

χW (ν) =
∫

dWP(W )exp(iνW ), (1.16)

where ν is the Fourier transform conjugate variable of work W . The characteristic function of

work is the quantity I will be calculating using a path integral approach. Using Eq. (1.15) we can

rewrite the characteristic function of work as

χW (ν) =
∫

dW ∑
l,n

δ (W −Wl,n)p(n, l)exp(iνW ).

Using now use the definition for p(n, l), from Eq. (1.14), we get

χS(ν) =
∫

dW ∑
l,n

δ (W −Wl,n)pn| ⟨Eτ
l |Û |E0

n⟩ |2exp(iνW )

We can now use the definition of pn, from Eq. (1.13), to get

χw(ν) =
∫

dW ∑
l,n

δ (W −Wl,n)⟨E0
n |ρ(0)|E0

n⟩⟨Eτ
l |Û |E0

n⟩⟨E0
n |Û†|Eτ

l ⟩exp(iνW ).

We can simplify this by replacing the W in the exponent with Eτ
l −E0

n , as well as evaluating the

integral to get

χw(ν) = ∑
l,n

⟨Eτ
l |Û |E0

n⟩⟨E0
n |ρ̂(0)|E0

n⟩⟨E0
n |Û†|Eτ

l ⟩exp(iνEτ
l − iνE0

n).

Further simplification leads to

χw(ν) = ∑
l,n

⟨Eτ
l |Ûexp(−iνE0

n)|E0
n⟩⟨E0

n |ρ̂(0)|E0
n⟩⟨E0

n |Û†exp(iνEτ
l )|E

τ
l ⟩ .

At this point, we can replace the energy at each time with the equivalent Hamiltonian since it is

acting on the energy eigenstates. This gives that at t = 0, E0
n is equivalent to H(λ0) and the energy

at t = τ , Eτ
l is equivalent to H(λτ). Substituting these results gives

χw(ν) = ∑
l
⟨Eτ

l |Û exp(−iνH(λ0))ρ̂(0)Û† exp(iνH(λτ)|Eτ
l ⟩ .
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At this point, there is only one summation left, which means this equation is equivalent to taking

the trace. This gives the final equation for the characteristic function of work

χw(ν) = Tr
[
Û exp(−iνĤ(λ0))ρ̂(0)Û† exp(iνĤ(λτ)

]
(1.17)

(Funo & Quan 2018). This is the standard definition for the characteristic function of work. It

involves the evolution operator and the adjoint of the evolution operator, the initial density matrix,

and the energy at the initial and and final time. By calculating the characteristic function of work,

we can easily find the work probability distribution by taking the inverse Fourier transform of the

characteristic function of work.

1.4 Research Question

My research was focused on calculating the work distribution for two different quantum config-

urations, using an alternative method to the two-point measurement, which will be described in

Chapter 2. These configurations are

1. A free particle of mass m starting at xa and ta, initially moving with velocity v, and ending at xb

at tb interacting with one rigid wall moving at a constant velocity u.

2. A free particle of mass m starting at xa and ta, initially moving with velocity v, and ending at xb

at tb inside an infinite square well with one wall moving at a constant velocity u.

In Chapter 2, the path integral method for calculating the work distribution will be introduced,

and Chapter 3 will focus on calculating the work distribution for the specific configurations above.
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Figure 1.1 . The wall’s equation of motion is l(t) = ut, where u is the velocity of the wall.
The particle starts at x = xa and ends at x = xb.

Figure 1.2 A quantum infinite square well is shown with one wall moving at a constant
velocity u, and the equation of motion is l(t) = l0 +ut, where l0 is the initial position of
the wall. The particle starts at x = xa and ends at x = xb.
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Chapter 2

Methods

Traditionally, there are two formulations of quantum mechanics, the operator formulation and the

path integral formulation. For my project, I was specifically interested in using the path integral

formulation to calculate work statistics in quantum thermodynamics. This chapter gives a basic

introduction to path integrals and how to use path integrals to calculate work distributions.

2.1 Lagrange’s Equations

The path integral formulation of quantum mechanics is rooted in the Lagrangian formulation of

classical mechanics, which is an alternative method to Newton’s Laws for calculating the equations

of motion for a system using Lagrange’s equations.

The Lagrangian L is defined as the difference between the kinetic and potential energy,

L = T −V, (2.1)

where T is the kinetic energy and V is the potential energy. The kinetic energy of a particle with

mass m is given by

13
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T =
1
2

m
(
ẋ2 + ẏ2 + ż2)= 1

2
m
−→̇
r

2
(2.2)

where x, y, z are the cartesian components of position (−→r is the overall position vector) and ẋ, ẏ, ż

are the cartesian components of velocity (
−→̇
r ). The potential energy has the form

V =V (x,y,z) =V (−→r ) . (2.3)

Based on these definitions of the energies, it is clear that the Lagrangian is a function of both

position and velocity. The first step when finding the equations of motions using the Lagrange’s

equations is to identify the potential energy and the kinetic energy (which involves finding the

velocity) and use them to express the Lagrangian.

In order to find the equations of motion using the Lagrangian, we define a functional, called the

action S, as

S =
∫ t2

t1
L (r, ṙ) dt. (2.4)

Using the calculus of variations, it can be shown that

∂L

∂x
=

d
dt

∂L

∂ ẋ
(2.5)

is the equation of motion for the particle in the x-component, with similar equations for the y and z

directions.

This result says that the actual trajectory a particle follows in a given time interval is such that

the action is stationary (Taylor 2003). This idea was crucial for the development of path integrals,

as well as for approximate methods that can be used to solve the path integrals.

2.2 Path Integrals

Paul Dirac was interested in using the Lagrangian in quantum mechanics as an alternative to the

canonical quantization procedure, which starts from the Hamiltonian version of classical mechan-
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Figure 2.1 The overall time interval is divided up into N pieces of length ∆t. We need to
consider the propagation through each time interval (Tannor 2007).

ics. Richard Feynman then used this result to develop the path integral formulation of quantum

mechanics, which gives an alternative method to finding the propagator in quantum mechanics. As

discussed in Section1.2.3, the propagator is typically defined by using the wavefunction ψ(x, t) as

⟨xb|Û |xa⟩=
∫

∞

0
ψ(xa, ta)ψ∗(xb, tb)dk, (2.6)

where xa is the initial position of the particle, xb is the final position of the particle, and Û is the

evolution operator. Instead of using this definition of the propagator, Richard Feynman found

another way using the Lagrangian and Action to calculate the propagator in a quantum system.

In quantum systems, each possible path between positions xa and xb in a time interval tb − ta

contributes to the total probability amplitude of going from xa to xb. Each path contributes an equal

magnitude, but the phase from each path varies with the phase factor, exp(iS/h̄) where S is the

action from Section 2.1 (Feynman & Hibbs 2010).

To calculate Feynman’s path integral definition of a propagator, we first divide the time interval

into N pieces of size ∆t = (tb − ta)/N, as is shown in Figure 1. The propagator is then the
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accumulation of infinitesimal propagation through each of these pieces

⟨xb|exp(−iHt/h̄) |xa⟩=
∫

dx1dx2...dxN ⟨xb|exp
(
−iĤ∆t/h̄

)
|xN⟩⟨xN |exp

(
−iĤ∆t/h̄

)
|xN−1⟩

...⟨x2|exp
(
−iĤ∆t/h̄

)
|x1⟩⟨x1|exp

(
−iĤ∆t/h̄

)
|xa⟩

(2.7)

where Ĥ is the Hamiltonian operator. The Hamiltonian is the operator representing the total

energy the particle, which we can define as

Ĥ = T̂ +V̂ ,

where T̂ and V̂ are the kinetic and potential energy operators.

As the time interval goes to zero, the number of intervals will go to infinity, which means we

can ignore the non-commutative nature of the p̂ and V̂ operators and write the evolution operator as

exp
(
−iĤt/h̄

)
≈ exp

(
−iT̂ t/h̄

)
exp
(
−iV̂ t/h̄

)
. (2.8)

Using the form for T̂ and V̂ in Section 1.1, we get the evolution between between two points in

the interval, x1 and x2, to be

⟨x2|exp(−iH∆t/h̄) |x1⟩= ⟨x2|exp
(
−ip̂2

∆t/2mh̄
)

exp(−iV ∆t/h̄) |x1⟩ . (2.9)

We can use the definition of the inner product, and the completeness relation for the position and

momentum operator to write this as

∫ ∫ ∫
⟨x2|p⟩⟨p|exp

(
−ip̂2

∆t/2mh̄
)
|p′⟩⟨p′|x⟩⟨x|exp(−iV ∆t/h̄) |x1⟩ d pd p′ dx. (2.10)

We then use the definitions of the inner product of the position and momentum operator, evaluate
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the integral, and simplify to get

⟨x2|exp(−iH∆t/h̄)|x1⟩

=
∫ 1√

2π h̄
exp(ipxb/h̄)exp

(
−ip2

∆t/2mh̄
) 1√

2π h̄
exp(ipxa/h̄)exp(−iV ∆t/h̄)d p

=
1

2π h̄
exp(−iV ∆t/h̄)

∫
∞

−∞

exp
(
−ip2

∆t/2mh̄
)

exp(ip(xb − xa)/h̄)d p

=

√
m

2πih̄∆t
exp(−iV ∆t/h̄)exp

(
im(xb − xa)

2/2∆t2) .
(2.11)

Since (xb − xa)/∆t corresponds to the average velocity during the time interval, we can replace

it with ẋ which gives us

⟨xb|exp(−iH∆t/h̄) |xa⟩=
√

m
2πih̄∆t

exp
(

i
(

mẋ2

2
−V

))
∆t/h̄. (2.12)

We see that the Lagrangian L = mẋ2/2−V is in the exponent, so we can rewrite this in terms of

the Lagrangian to get

⟨xb|exp(−iH∆t/h̄) |xa⟩=
√

m
2πih̄∆t

exp(iL ∆t/h̄) . (2.13)

This is the contribution to the probability amplitude from one spatial point in the interval to the next.

We need to connect the N intermediate points together over the time t, which we do by multiplying

the amplitudes of each intermediate point. Since there are no operators here (all of the expressions

are classical), this corresponds to a sum in the exponent. This gives

⟨xb|exp(−iHt/h̄) |xa⟩path =

√
m

2πih̄∆t
exp
(

i∑
n

Ln∆t/h̄
)
, (2.14)

where the path refers to a single path between points xa and xb. As we take the time interval goes to

zero, the discrete sum over n can be replaced by an integral. The exponent now has the form of the

action , S =
∫

L dt, so we can write the contribution to the trajectory for one path as

⟨xb|exp(−iHt/h̄) |xa⟩path =

√
m

2πih̄∆t
exp(iS/h̄) . (2.15)
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This propagator is only the contribution from one path. We need to consider the contribution of

each path, since each possible path contributes to the total probability amplitude. The complete

expression for the propagator is then

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩=

√
m

2iπ h̄t ∑
all paths

eiS/h̄

=

√
m

2iπ h̄t

∫
D [x]eiS/h̄,

(2.16)

where D [x] represents the integral over all paths between xa and xb. In other words, this propagator

requires us to consider every single path between the end points, of which there can be infinitely

many (Tannor 2007). The term in front of the integral is a normalization constant for a single

particle, so it is necessary to determine the normalization constant for other systems.

In the classical limit , where the action is much bigger than h̄, a small change in the actual

trajectory results in large changes in the phase. This leads to high oscillations from positive to

negative values. These oscillations will add to zero, which means the total contribution to the

trajectory from paths close to the trajectory is zero. In summary, except for regions where the

action is stationary, δS/δx = 0, the phases from nearby paths cancel out, and only one path is

physically possible. This path becomes the trajectory the particle will follow, and explains why a

single trajectory emerges from all possible quantum trajectories in the classical limit (Feynman &

Hibbs 2010).

The fact that the classical trajectory comes out of a quantum expression suggests that nature is

inherently quantum, and that classical laws arise out of quantum laws in the classical limit.

2.2.1 Path Integrals for Successive Events

It is important for this project to find the propagator for two successive events. For two events that

happen successively, there is a different action for each event and therefore a different formula for

the path integral propagator . If we take an intermediate step between xa and xb, called xint , we can
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write the action as

S[xb,xa] = S[xb,xint ]+S[xint ,xa]. (2.17)

The propagator from xa to xb through xint is then defined as

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩=

∫
D [x]e(i/h̄)S[xb,xint ]+(i/h̄)S[xint ,xa]. (2.18)

We are integrating over all paths from xa to xint , and then integrating over all paths from xint to xb.

We then integrate over all possible values of xint to get

⟨xb|exp(−iHt/h̄) |xa⟩=
∫

∞

−∞

dxint

∫ xint

xa

D [x]exp(iS[xint ,xa]/h̄)
∫ xb

xint

D [x]exp(iS[xb,xint ]/h̄) .

(2.19)

This is equivalent to

⟨xb|exp(−iHt/h̄) |xa⟩=
∫

∞

−∞

⟨xb|exp(−iHt/h̄) |xint⟩⟨xint |exp(−iHt/h̄) |xa⟩ dxint . (2.20)

In other words, the probability amplitude to go from xa to xb through an intermediate point

xint is the probability amplitude to go from xa to xint multiplied by the probability amplitude to go

from xint to xb (this is just like multiplying probabilities in statistics), and then integrating over all

possible xint . The general rule is that probability amplitudes for events occurring in succession in

time multiply (Feynman & Hibbs 2010).

2.2.2 Van Vleck Propagator

In practice, these path integrals are difficult to evaluate, and approximations are often used. One of

the most important approximations is called the van Vleck propagator. The van Vleck propagator

is a semiclassical approximation, which means the only paths that contribute to the van Vleck

propagator are paths possible in classical mechanics. The full derivation of the van Vleck propagator

is given in (Tannor 2007). The van Vleck propagator has the form

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩= ∑

all classical paths

(
− 1

2πih̄
∂ 2S

∂xb∂xa

)1/2

exp(iS/h̄) , (2.21)
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where S is the action , and the summation is only over classical paths. There are several possible

problems where counting only the classical paths leads to the full quantum propagator, and these

problems in this thesis are two of them.

2.3 Path Integral Approach to Calculating Work Statistics

From Chapter 1, we have that the characteristic function of work can be written as

χW (ν) = Tr
[
Û exp

(
−iνĤ(λ0)

) ˆρ(0)Û† exp
(
iνĤ(λτ)

)]
. (2.22)

We rewrite this using the defintion Û = exp(−iĤt/h̄) and simplify to get

χW (ν) = ⟨xb|Û exp
(
−iνĤ

)
|xa⟩⟨xa|ρ̂(0)|xa⟩⟨xa|Û† exp

(
iνĤ

)
|xb⟩

= ⟨xb|Û |xa⟩exp
(
−iνĤ

)
⟨xa|ρ̂(0)|xa⟩⟨xa|Û†|xb⟩exp

(
iνĤ

)
.

(2.23)

Using the (unnormalized) path integral definition of the propagator, we can rewrite this as

χW (ν) =
∫

D[x]exp(iS/h̄)exp
(
−iνĤ

)
⟨xa|ρ(0)|xa⟩

∫
D[x]exp(−iS/h̄)exp

(
iνĤ

)
. (2.24)

This is equation for the characteristic function of work which we will use (Funo & Quan 2018).

2.4 Potential as a Work Parameter

In order to extract work out of a system, we will use a time-dependent potential with a time-

dependent parameter λt called the work parameter. Work is done on the system when the work

parameter is changed by an external agent. In both of the configurations in this thesis, the work

parameter is the position of the moving wall. Another examples of the work parameter is a changing

angular frequency in the quantum harmonic oscillator.
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It is standard to have two propagations involving the work parameter [5]. The first propagation is

when the work parameter is held at a constant value, λ0 from t = 0 to t = h̄ν , where ν is the Fourier

conjugate variable of work, from Chapter 1. After the initial propagation, the work parameter

is changed from λ0 to λτ over the time period t = h̄ν to t = τ + h̄ν . In order to account for the

changing work parameter, we insert an intermediate position xint at tint , and at this point, the work

parameter begins to change. Using the results from the Section on successive events, the propagator

would be

⟨xb|Û |xa⟩=
∫

∞

−∞

dxint

∫ xint

xa

D [x]exp(−iS1[x]/h̄)
∫ xb

xint

D [x]exp(−iS2[x]/h̄) , (2.25)

where S1[x] and S2[x] are defined as

S1[x] =
∫ h̄ν

0
dt L (λ0,x) , S2[x] =

∫
τ+h̄ν

h̄ν

dt L (λt ,x) . (2.26)

The characteristic function of work involves the adjoint of the propagator, which is called the

"backwards" propagator. In order to avoid confusion, the backward propagator is characterized by

the action S[y], and the time variable s. During this propagation, the work parameter is changed

from λ0 at s = 0 to the final value λτ at s = τ . It is then held at λτ from time s = τ to s = τ + h̄ν .

This means the propagator for the backwards propagation is

⟨xa|Û†|xb⟩=
∫

∞

−∞

dyint

∫ xint

xb

D [y]exp(iS1[y]/h̄)
∫ xa

xint

D [y]exp(iS2[y]/h̄) , (2.27)

and the actions are defined as

S1[y] =
∫

τ

0
dsL (λs,y) , S2[y] =

∫
τ+h̄ν

τ

dsL (λτ ,y) . (2.28)

We will use these definitions to calculate a propagator for the forward and backward progressions,

which will then be used to calculate the characteristic function of work (Qiu et al. 2020).
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Chapter 3

Results

In order to calculate the characteristic function of work , from which we can find the work probability

distribution, we need to calculate the action . To calculate the action, we need to find the kinetic

energy and potential energy to include in the Lagrangian. In order to calculate the kinetic energy, we

need to find the velocity. This process was done to calculate the work distribution for the problems

introduced in Chapter 1. For both of these problems, we only consider classical paths so we can use

the van Vleck propagator.

3.1 Classical Action Results

3.1.1 Calculating Action for Problem 1

For the first problem, there are two classical paths that the particle could follow to go from xa(ta) to

xb(tb); A direct path where the wall isn’t involved, and an indirect path where the particle hits off

the wall. The wall moves at a constant velocity u, and the position is given by L(t) = ut. Figure 1

shows the physical set up for the indirect path.

We assume that xa > La ( xa and La are the position of the particle and the wall, respectively, at

23
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time ta), and xb > Lb.

Direct Path

For the direct path, the average velocity is

v =
xb − xa

tb − ta
. (3.1)

We put this in the Lagrangian to get

L =
1
2

mv2 =
1
2

m
(xb − xa)

2

(tb − ta)2 . (3.2)

Using this to calculate the action for the direct path, SD, we get

SD =
∫ tb

ta
dt

m(xb − xa)
2

2(tb − ta)2 =
m(xb − xa)

2

2(tb − ta)2 (tb − ta).

This is the first of two actions we need to calculate for the first problem.

Indirect Path

The indirect path involves a collision with the moving wall, which is moving at velocity u. By

conservation of momentum, when the particle collides with the wall, it will gain velocity 2u.

We divide the interval tb − ta into two times, t ′ and t ′′. t ′ is the time from ta until the particle hits

the wall at a time we call tint . t ′′ is the time from when the particle hits the wall at tint until tb. Using

these definitions, we can write the equations of motion for the wall and particle. Starting with the

first time segment, t ′ we have for the wall

Lint −La = ut ′ (3.3)

and for the particle

Lint − xa =−vt ′ (3.4)
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We have two equations and two unknowns. Solving this system of equations with substitution gives

t ′ =
xa −La

(v+u)
. (3.5)

Using this definition for t ′, we can solve for Lint , which gives

Lint =
uxa + vLa

u+ v
. (3.6)

We now use these definitions to solve for t ′′. The distance the particle travels after the collision is

xb −Lint , and the velocity of the particle is v+2u. This means we can express t ′′ as

t ′′ =
xb −Lint

v+2u
.

We use the expression for Lint to get

t ′′ =
u(xb − xa)+ v(xb −La)

(v+2u)(v+u
. (3.7)

We know that adding t ′ and t ′′ gives the total time interval, t ′+ t ′′ = tb − ta. This gives us

t ′+ t ′′ =
−2La + xa + xb

2u+ v
. (3.8)

We can use the definition of constant velocity to write the velocity of the wall as u = (Lb−La)/(tb−

ta). Plugging this into our equation for total time we get

tb − ta =
−2La + xb + xa

2Lb−La
tb−ta

+ v
.

Solving this equation for v we get our initial velocity in terms of know quantities,

v =
xb + xa −2La

tb − ta
. (3.9)

Now that we have the velocity, we can write the action for the indirect path as

SI =
∫ t ′

0

1
2

mv2dt +
∫

t ′
t ′′

1
2

m(v+2u)2dt.
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Using the equations for v, t ′, and t ′′ derived above, we can evalute this integral to get

SI =
m
2
(v2t ′+(v+2u)2(t ′′− t ′)).

This simplifies to

SI =
m

2(tb − ta)

[
(xa + xb)

2 −4u(xatb + xbta −utatb)
]
. (3.10)

We now have the classical action for both of the classical paths possible for Problem 1.

3.1.2 Calculating Action for Problem 2

In this problem, we consider an infinite square well with one wall moving constant in time, such

that it follows L(t) = L0 +ut, where L0 is the position of the wall at t = 0.

This problem is uniquely challenging because there are an infinite number of number classical

paths between xa and xb because of the possible reflections between the particle and the wals.

In order to deal with the infinite number of classical paths, we classify the paths into 4 classes

based on which wall the particle collides with first and last (da Luz & Cheng 1992). These classes

are

(1) The first collision with the moving wall and the last collision with the fixed wall or no collision

at all

(2) Both the first and the last collisions with the fixed wall

(3) The first collision with fixed wall and last collision with the moving wall

(4) Both the first and last collisions with the moving wall

We define three variables to help find the initial velocity: L j (with j ≥1) is the position of the

moving wall when the particle hits it for the jth time. t ′j is the time the particle spends traveling

from x = 0 to arrive at x = L j before the the jth collision with the moving wall. t ′′j is the time the

particle spends traveling from x = L j to arrive at x = 0 after the jth collision with the moving wall.
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Example Calculation for the Simplest Case

As an example, we will calculate the initial velocity and the action for the case when xa = xb = 0,

and use the results to find a general expression for each of the classes. For this case, all paths will

belong to class 1 because the first collision must happen with the moving wall.

By conservation of momentum, the particle will lose velocity 2u after each collision with the

moving wall, but will keep the same velocity magnitude but change direction with a collision with

the stationary wall. The equation of motion for the particle before the first collision (traveling from

x = 0 to L1 is

L1 −0 = vt ′1.

After the particle collides with the moving wall, the particle will switch direction and travel to the

stationary wall. This trajectory can be described as

0−L1 =−(v−2u)t ′′1 .

The particle will collide with the stationary wall at x = 0 and travel to the wall which will be at

x = L2. This gives us

L2 −0 = (v−2u)t ′2.

This pattern continues, and after the next collision with the moving wall we have

0−L2 = (v−2u−2u)t ′′2 ,

which is followed by

L3 −0 = (v−2u−2u)t ′3.

This gives us the position of the wall at the jth collision, which is

L j = (v−2 ju)t ′′j . (3.11)
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Additionally, if we consider the equations of motion for the wall, we have that

L1 −L0 = ut1

for the time period when the particle moves from it’s starting position to the first collision. For the

next period, when the particle travels from the first collision with the moving wall to the second

collision with the moving wall, we get

L2 −L1 = u(t ′′1 + t ′2).

It follows that, in general, we can say

L j+1 −L j = u(t ′′j + t j+11). (3.12)

Finally, we need to find the initial equation of motion for the wall using ta. At ta, the wall will be at

L(ta) = L0 +uta = La. This implies that

ut ′1 = L1 −L0 −uta = L1 −La. (3.13)

We will now solve for L j in terms of known variables.

We introduce another variable n which signifies the total number of collisions with the moving

wall. For n = 1, we can set up a system of equations to find L1.

L1 = vt ′1, L1 −La = ut ′1.

Solving this for L1 we get

=⇒ L1 =
vLa

v−u
. (3.14)

For two collisions, we have (including the result from above

L1 =
vLa

v−u
, L1 = (v−2u)t ′′1 , , L2 = (v−2u)t ′2, L2 −L1 = u(t ′2 + t ′′1 ).

Solving these we have

=⇒ L2 =
vLa

v−3u
. (3.15)
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For three collisions we have (including the results from above) we get

L2 =
vLa

v−3u
, L2 = (v−4u)t ′′2 , L3 = (v−4u)t ′3, L3 −L2 = u(t ′3 + t ′′2 )

Solving these for L3 we have

=⇒ L3 =
vLa

v−5u
. (3.16)

By comparing these equations, we can see the pattern, which gives us

Ln =
vLa

v−u(2n−1)
. (3.17)

We can now find t ′j and t ′′j in terms of known variables. Setting Eq. (3.12) and Eq. (3.17) equal to

each other we get
vLa

v−u(2 j−1)
= [v−u(2 j−2)]t ′j

which implies

t ′j =
vLa

(v−u(2 j−1))(v−u(2 j−2))
. (3.18)

Similarly y, we can use set Eq. (3.12) and Eq. (3.17) equal and solve for t ′′j . This gives us

t ′′j =
vLa

(v−2 ju)(v−u(2 j−1))
. (3.19)

If we add these two times, we get the total time it takes the particle to go from x = 0, collide with

the moving wall for the jth time, and return to x = 0. We call this time t j, which is given by

t j = t ′j + t ′′j =
2Lav

(2u( j−1)− v)(2 ju− v)
. (3.20)

The total time elapsed between xa and xb is the sum of all the t j, which can be represented as

tb − ta =
n

∑
j=1

t j. (3.21)

Evaluating this sum we get that the total time elapsed between xa and xb must be

tb − ta =
2nLa

v−2nu
. (3.22)
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Solving this equation for the initial velocity v we get

v =
2nLb

tb − ta
. (3.23)

Now that we have the initial velocity, we can calculate the classical action,

S =
∫ 1

2
mv2dt

Just like in Problem 1, we split the action into time periods of constant velocity. This gives

S(0, tb;0, ta) =
m
2

(∫ t ′1

0
v2dt +

n

∑
j=2

∫ t ′j

t ′j−1

(v−2 ju)2dt +
∫ tb

t ′n
(v−2nu)2dt

)
, (3.24)

which yields

S =
2mn2LaLb

tb − ta
. (3.25)

Calculation for General Case

To generalize this result to each of the four cases, we need to add the extra distance the particle

will travel if it starts at an arbitrary position xa and ends at xb. In general, we can write the initial

equation of motion as

vt ′1 = L1 +d1,

where d1 is determined by the specific case. t ′1 is now the time it takes the particle to go from x = xa

to x = L1.

The final trajectory the particle takes (when j = n) can be described as

(v−2nu)t ′′n = Ln +d2,

where d2 is the distance traveled by the particle after the last collision with the moving wall, and is

determined by the specific case. t ′′n is the time the particle takes to go from Ln to the ending point xb.
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We can determine what d1 and d2 will be based on each specific case. For Case 1, the particle

collides with the moving wall first and the fixed wall last, or has no collision with the moving wall.

In order for this to happen, we need d1 =−xa, which leads to the initial condition

L1 − xa = vt ′1.

We must have d2 = xb since the particle goes from x = Ln to x = 0, reflects off the stationary wall,

than travels to x = xb. This leads to the final condition

Ln + xb = (v−2nu)t ′′n .

Case 2 is when the particle collides with the fixed wall for both it’s first and last collision. For

this case, d1 must be d1 = xa, since the total distance the particle travels to hit the moving wall is

L1 + xa. The initial condition is

L1 + xa = vt ′1.

Since both Case 1 and Case 2 have a fixed wall collision as the last collision, d2 = xb for both of

them. The particle follows

Ln + xb = (v−2nu)t ′′n .

Case 3 is when the first collision of the particle is with the fixed wall and the last collision is

with the moving wall. Just as in Case 2, d1 = xa, and the initial condition is

L1 + xa = vt ′1.

The total distance traveled after the last collision in Case 3 is Ln − xb, which means d2 =−xb, and

the particle follows

Ln − xb = (v−2nu)t ′′n .

Case 4 is when both the first and last collision of the particle is with the moving wall. As in

Case 1, d1 =−xa, and the particle has the initial condition

L1 − xa = vt ′1.
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As in Case 3, d2 =−xb, because the kinematic equation for the particle after Ln and until xb is

Ln − xb = (v−2nu)t ′′n .

Using these results, we can derive a formula for the initial velocity for the general case. The initial

velocity in terms of known quantities becomes

v =
2nLb +d1 +d2

tb − ta
. (3.26)

The Action in the general case becomes

S =
∫ t ′1

ta
v2dt +

n−1

∑
j=2

∫ t ′′j

t j−1′′
(v−2 ju)2dt +

∫ tb

t ′n
(v−2nu)2dt.

This evaluates to our final action on Problem 2

S( j)
n (xb, tb;xa, ta) =

m
2T

(
(2nL0 +d1 +d2)

2 +4nu[(d1tb +d2ta)+nL0(ta + tb)]+4n2u2tatb
)
,

(3.27)

where j refers to the case number ( j = 1,2,3,4) and n refers to the number of collisions with the

moving wall.

3.2 Propagator Results

Now that we have calculated the action for both problems, we can use the path integral formulation

to calculate the propagators . Since we only considered classical paths in calculating the action, we

will use the van Vleck formula to calculate the propagator found in (Tannor 2007).

3.2.1 Calculaing the Propagator for Problem 1

The van Vleck propagator is defined as

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩= ∑

all classical paths

(
− 1

2πih̄
∂ 2S

∂xb∂xa

)1/2

exp(iS/h̄) .
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There are only two classical paths, so the van Vleck propagator will have two terms, one corre-

sponding to the direct path and the other term corresponding to the indirect path.

Evaluating the partial derivatives we get

∂ 2SD

∂xb∂xa
=

−m
tb − ta

and
∂ 2SI

∂xb∂xa
=

m
tb − ta

.

We use these expressions to get

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩=

(
1

2πih̄
· m

T

)1/2

exp
(

im(xb − xa)
2

2T h̄

)
+(

1
2πih̄

· −m
T

)1/2

exp
(

im
2T h̄

[
(xb + xa)

2 −4u(xatb + xbta −utatb)
])

.

This simplifies to

⟨xb|exp
(
−iĤ(λt)t/h̄

)
|xa⟩=

( m
2πih̄T

)1/2

(
exp
(

im
2h̄T

(xb − xa)
2
)
− exp

(
im

2h̄T

[
(xa + xb)

2 −4u(xatb + xbta −utatb)
]))

.

(3.28)

This propagator can be shown to be equal to the propagator found when solving Schrödinger’s

equation and using the spectral definition of the propagator.

In order to extract work out of the system, we have the wall stationary for the first part of the

forward propagation, as discussed in Chapter 2 . The propagator for this period of time is found by

substituting u = 0 into the propagator above. This gives

⟨xb|exp
(
−iĤ(λ0)t/h̄

)
|xa⟩=

( m
2πih̄T

)1/2
(

exp
(

im
2h̄T

(xb − xa)
2
)
− exp

(
im

2h̄T
(xa + xb)

2
))

.

(3.29)

This expression matches the expression found in (da Luz & Cheng 1992).
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We can find the entire propagator for the entire forward propagation with the propagators for

each section. We do this by following the method in Chapter 2 in successive events. We introduce

an intermediate point xint , multiply the two propagators together, and integrate over the intermediate

point. By introducing the intermediate point, the starting position for the stationary wall propagation

is xa and the ending point is xint . Similarly, for the moving wall propagation, the starting point will

be xint and the ending point will be xb. We can write this as∫
∞

−∞

⟨xint |exp
(
−iĤ(λ0)t/h̄

)
|xa⟩⟨xb|exp

(
−iĤt/h̄

)
|xint⟩ dxint .

The Hamiltonian in the evolution operator is shown as a function of the work parameter λ , where λ0

represents the work parameter holding at it’s original position, which is when the wall is not moving,

while λt represents when the work parameter is changing, which is when the wall is moving. We

can evaluate this integral to get the propagator for the entire forward propagation. This propagator

was not found by me, and could be a starting point for someone elses research .

3.2.2 Calculating the Propagator for Problem 2

Using the action derived for our second problem, we can evaluate the partial derivatives necessary

for the van Vleck Propagator. For Case 1, we have

∂ 2S(1)n

∂xa∂xb
=−m

T
.

For Case 2, we have
∂ 2S(2)n

∂xa∂xb
=

m
T
.

For Case 3, we have
∂ 2S(3)n

∂xa∂xb
=−m

T
.

and for Case 4, we have
∂ 2S(3)n

∂xa∂xb
=

m
T
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It is of interest to see that in both physical scenarios, the derivative of the action for different

paths only varies by an overall sign. The physical reason behind it could be attributed to the phase

change associated with the number of collisions.

Now that we have the partial derivatives, we can find the van Vleck propagator by summing

over all possible paths. As stated before, there are an infinite number of classical paths between the

starting and ending positions, so our sums in the propagator will be infinite, but the starting index

for the summation is different for the different Cases. Based on the definitions for Case 1 and Case

2, it is possible for the particle to complete a trajectory between the starting and ending positions

without a collision with the moving wall, which means we can say that n = 0 is a possible classical

path. For the path to be considered Case 3 or 4, the particle must collide with the moving wall at

least once, so n = 1 is the shortest classical path.

The propagator will be

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩=

∞

∑
n=0

(
1

2πih̄
· m

T

)1/2

exp
(

i
h̄

S(1)n

)
+

∞

∑
n=0

(
1

2πih̄
· −m

T

)1/2

exp
(

i
h̄

S(2)n

)
+

∞

∑
n=1

(
1

2πih̄
· m

T

)1/2

exp
(

i
h̄

S(3)n

)
+

∞

∑
n=1

(
1

2πih̄
· −m

T

)1/2

exp
(

i
h̄

S(4)n

)
.

(3.30)

We can factor this expression, substitute the expression for action for each case (replacing d1 and d2
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with the variable necessary for the case) above to get

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩=

( m
2πih̄T

)1/2

(
∞

∑
n=0

exp
(

im
2h̄T

(
(2nL0 − xa + xb)

2 +4nu((−xatb + xbta)+nL0(ta + tb))+4n2u2tatb
))

+

∞

∑
n=0

iexp
(

im
2h̄T

(
(2nL0 + xa + xb)

2 +4nu((xatb + xbta)+nL0(ta + tb))+4n2u2tatb
))

+

∞

∑
n=1

exp
(

im
2h̄T

(
(2nL0 + xa − xb)

2 +4nu((xatb − xbta)+nL0(ta + tb))+4n2u2tatb
))

+

∞

∑
n=1

iexp
(

im
2h̄T

(
(2nL0 − xa − xb)

2 +4nu((−xatb − xbta)+nL0(ta + tb))+4n2u2tatb
)))

.

This is a convoluted expression, and showcases the difficulty in evaluating path integrals , even

with a semi-classical method. However, this can be simplified to a closed form expression using

the 3rd Jacobi Theta Function, which can be found in (Gradshteyn & Ryzhik 2007). The Jacobi

Theta Function is a function used in the theory of elliptic functions. To get the above equation, we

evaluate the n = 0 term of the action to ensure all of the sums have the same starting index. This

gives

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩=

( m
2πih̄T

)1/2

(
exp
(

im
2h̄T

(xb − xa)
2
)

+
∞

∑
n=1

exp
(

im
2h̄T

(
(2nL0 − xa + xb)

2 +4nu((−xatb + xbta)+nL0(ta + tb))+4n2u2tatb
))

−exp
(

im
2h̄T

(xa + xb)
2
)

+
∞

∑
n=1

iexp
(

im
2h̄T

(
(2nL0 + xa + xb)

2 +4nu((xatb + xbta)+nL0(ta + tb))+4n2u2tatb
))

+
∞

∑
n=1

exp
(

im
2h̄T

(
(2nL0 + xa − xb)

2 +4nu((xatb − xbta)+nL0(ta + tb))+4n2u2tatb
))

+
∞

∑
n=1

iexp
(

im
2h̄T

(
(2nL0 − xa − xb)

2 +4nu((−xatb − xbta)+nL0(ta + tb))+4n2u2tatb
)))

.
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We can now use the Jacobi Theta function to express the propagator as

⟨xb|exp
(
−iĤt/h̄

)
|xa⟩=

( m
2πih̄T

)1/2
[

exp
(

im(xb − xa)
2

2h̄T

)
θ3

(
m(xbLa − xaLb)

h̄T
,
2mLaLb

π h̄T

)
−exp

(
im(xa + xb)

2

2h̄T

)
θ3

(
m(xbLa + xaLb)

h̄T
,
2mLaLb

π h̄T

)]
.

This gives us a closed form expression for the propagator. However, I will rewrite the propagator

one more time using an identity of the theta function to express the propagator in terms of the

eigenstates of the infinite square well, a well-known solution to the Schrödinger equation. Using

the identity, we get

⟨xb|exp
(
−iĤ(λt)t/h̄

)
|xa⟩=

2√
LaLb

exp
[

imu
2h̄

(
x2

b
Lb

− x2
a

La

)]
∞

∑
n=1

exp
[

in2π2h̄
2mu

(
1
Lb

− 1
La

)]
sin
(

nπxb

Lb

)
sin
(

nπxa

La

)
.

(3.31)

This is the final form of the propagator that we will use in our calculation of the work statistics .

To find the propagator for the time period when the wall is not moving, we set u = 0 in the

action, and follow the same solution pattern to get

⟨xb|exp
(
−iĤ(λ0)t/h̄

)
|xa⟩=

2
L0

∞

∑
n=1

exp
(
−n2π2h̄2

2mL2
0

ν

)
sin
(

nπxa

L0

)
sin
(

nπxm

L0

)
.

This propagator can be found by taking the outer product of the eigenstates found when solving the

Schrödinger equation.

Just as in Problem 1, we can find the propagator for the entire propagation by introducing an

intermediate point. The entire forward propagator will then be

⟨xb|exp
(
−iĤ(λ0)t/h̄

)
|xa⟩=

1
la

√
π h̄

2mulb
(−1)(5/4)

∞

∑
n1,n2=1

×

exp(−
n2

1π2h̄2
ν

2ml2
0

+
imux2

b
2h̄lb

+
iπ2h̄
2mu

(
n2

2
lb

+
n2

1
la

)
×

sin
(

n1πxa

la

)
sin
(

n2πxb

lb

)
A(n1,n2),

(3.32)

where A(n1,n2) is a constant defined in Appendix A.
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3.3 Calculating the Initial Density Matrix for Problem 1

From this point forward, we will only talk about Problem 2, as the results from problem 1 are still

being discussed.

The density matrix was defined in Eq. (1.11) in more detail in chapter 1, where we included a

definition. Using the eigenstates of the infinite square well, we can find the density matrix. We use

these eigenstates because the system originally starts with a stationary wall, which is the infinite

square well. These eigenstates are

ψn(x) =

√
2
L0

sin
(

nπx
L0

)
and the quantization of the energy is given by

E0
n =

n2π2h̄2

2mL2
0
.

These results can be found in quantum mechanics textbooks. We insert these equations into the

definition of the initial density matrix to get

ρ(xi,yi) =
2

Z0L0

∞

∑
n=1

exp
(
−βn2π2h̄2

2mL2
0

)
sin
(

nπxi

L0

)
sin
(

nπyi

L0

)
, (3.33)

where β = 1/kBT is the standard inverse temperature and Z0 is the partition function, as discussed

in Chapter 1.

3.4 Calculation of Work Statistics for Problem 1

At this point, we have found the forward propagator, the backward propagator, and the initial density

matrix, which are the three components in the expression for the characteristic work function ,

which was discussed in Chapter 2. All that remains is to multiply the three factors together, perform
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the integral, and simplify the result. The final result is

χW (ν) =
π2h̄2

64m2u2L0L f Z0

∞

∑
n1,n2,n3,n4,=1

exp

(
−

in2
1π2h̄2

ν

2mL2
0

+
in2

3π2h̄2
ν

2mL2
f

−
βn2

1π2h̄2

2mL2
0

)

A1(n1,n2)A2(n3,n4)A3(n4,n1)A4(n2,n3).

(3.34)

In this formula, each n is an arbitrary quantum number, introduced to keep track of the summations.

We will see shortly what the physical interpretation of these quantum numbers are. In addition, A1,

A2, A3, A4 are all constants. These constants are quite lengthy and not particularly enlightening and

are not included here (these are included in Appendix A).

This solution is the analytic solution for the characteristic function of work, found by using a

path integral approach . It does not have a closed form expression (to our knowledge), but was

found using a path integral approach.

From the characteristic function of work, we can take an inverse Fourier Transform to get the

work distribution for the process. This was discussed in Chapter 1. By taking the Fourier Transform,

we can recover the work variable W . Doing this, we get

P(W ) =
π2h̄2

64m2u2L0L f Z0

∞

∑
n1,n2,n3,n4=1

δ

[
W − π2h̄2

2m

(
n2

3

L2
f
−

n2
1

L2
0

)]

exp

(
−

βn2
1π2h̄2

2mL2
0

)
A1(n1,n2)A2(n3,n4)A3(n4,n1)A4(n2,n3).

(3.35)

This formula is also unwieldy, but we can get some meaning out of the formula by focusing on the

argument inside the Dirac Delta Functions. We see the work variable W , but also the expression

for the energy level n1 when the box is at the initial length L0, and the expression for the energy

level n3 when the box is at the final length L f . Because of that, we can assume that the probability

distribution that we have found here is the probability that the work done by the system will increase

the energy level of the particle from n1 to n3.

This makes intuitive sense because work is traditional thermodynamics changes the energy of

the system, and that is what we have found here. These results are exact, and can be found by
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solving the Schrodinger equation.

3.5 Conclusion and Future Work

By finding the work statistics by using a path integral approach and verifying the validity against

results obtained using the the traditional formalism of quantum mechanics, We have shown that the

path integral is an alternative approach to calculating the work statistics. The path integral approach

can be useful for calculating the work statistics in open systems (systems that can transfer heat

and energy out in an environment), and so future work needs to be done to further explore those

possibilities [1]. This will no doubt improve our understanding of quantum thermodynamics, which

will hopefully lead to a better understanding of quantum technology.

There is also further work to be done exploring the quantum to classical relationship, and

whether the path integral expression for work can be shown to find work in a classical system. This

is a necessary step to better understand how quantum thermodynamics and classical thermodynamics

are related, and whether or not classical thermodynamics emerges from a fundamentally quantum

description of fluctuating thermal phenomena.
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Definition of Constants

The constants A1(n1,n2), A2(n3,n4), A3(n4,n1), A4(n2,n3) are defined as follows:

A1 =
(−1)3/4√h̄laπ

4
√

2mu
exp
(

ih̄π2n2
1

2lamu

)
exp
(

ih̄π2n2
2

2lamu

)
(

exp
(
− in1n2h̄π2

lamu

)(
Erfi

(
(1/2− i/2)(h̄π(n1−n2)− lamu)√

h̄lamu

)
−Erfi

(
(1/2− i/2)(h̄π(n1 −n2)+ lamu)√

h̄lamu

))
−exp

(
in1n2h̄π2

lamu

)(
Erfi

(
(1/2− i/2)(h̄π(n1 +n2)− lamu)√

h̄lamu

)
−Erfi

(
(1/2− i/2)(h̄π(n1 +n2)+ lamu)√

h̄lamu

)))
,

(A.1)

A2 =
(−1)3/4√h̄lbπ

4
√

2mu
exp
(
−

ih̄π2n2
2

2lbmu

)
exp
(

ih̄π2n2
3

2lbmu

)
(

exp
(
− in2n3h̄π2

lbmu

)(
Erfi

(
(1/2+ i/2)(h̄π(n2−n3)− lbmu)√

h̄lbmu

)
−Erfi

(
(1/2+ i/2)(h̄π(n2 −n3)+ lbmu)√

h̄lbmu

))
−exp

(
− in2n3h̄π2

lbmu

)(
Erfi

(
(1/2+ i/2)(h̄π(n2 +n3)− lbmu)√

h̄lbmu

)
−Erfi

(
(1/2+ i/2)(h̄π(n2 +n3)+ lbmu)√

h̄lbmu

)))
,

41



42 Appendix A Definition of Constants

A3 =
(−1)3/4√h̄laπ

4
√

2mu
exp
(
−

ih̄π2n2
1

2lamu

)
exp
(
−

ih̄π2n2
4

2lamu

)
(

exp
(
− in1n4h̄π2

lamu

)(
Erfi

(
(1/2+ i/2)(h̄π(n1−n4)− lamu)√

h̄lamu

)
−Erfi

(
(1/2+ i/2)(h̄π(n1 −n4)+ lamu)√

h̄lamu

))
−exp

(
in1n4h̄π2

lamu

)(
Erfi

(
(1/2+ i/2)(h̄π(n1 +n4)− lamu)√

h̄lamu

)
−Erfi

(
(1/2+ i/2)(h̄π(n1 +n4)+ lamu)√

h̄lamu

)))
,

(A.2)

and

A4 =
(−1)3/4√h̄lbπ

4
√

2mu
exp
(

ih̄π2n2
3

2lbmu

)
exp
(

ih̄π2n2
4

2lbmu

)
(
−exp

(
− in3n4h̄π2

lbmu

)(
Erfi

(
(1/2− i/2)(h̄π(n3−n4)− lbmu)√

h̄lbmu

)
−Erfi

(
(1/2− i/2)(h̄π(n3 −n4)+ lbmu)√

h̄lbmu

))
−exp

(
in1n2h̄π2

lbmu

)(
Erfi

(
(1/2− i/2)(h̄π(n1 +n2)− lbmu)√

h̄lbmu

)
−Erfi

(
(1/2− i/2)(h̄π(n1 +n2)+ lbmu)√

h̄lbmu

)))
.

(A.3)

All of these are defined in terms of the imaginary error function, which is defined as

Erfi(x) =−iErfi(ix) =− 2i√
π

∫ ix

0
exp
(
−t2)dt

)
(A.4)
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