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ABSTRACT

AIRY WAVE PACKETS AS QUANTUM SOLUTIONS FOR RECOVERING

CLASSICAL TRAJECTORIES

Vern Philip Hart II

Department of Physics and Astronomy

Bachelor of Science

We use quantum mechanics to describe J.J. Thomson’s experiment for deter-

mining the mass-to-charge ratio m
e

of the electron. We review the derivation

of Thomson’s classical trajectories in the electrostatic and magnetic fields.

We model Thomson’s capacitor and obtain the stationary wave mechanical

solutions. We construct wave packets representing the transverse probability

amplitude of the beam. We allow this packet to evolve in time to observe

the motion of the peak and compare it with the classical trajectory. As time

progresses the packet disperses and the peak delocalizes. We discuss physical

and numerical causes for this phenomenon. We also use the analytic solution

in momentum space to characterize the wave packets. We consider the prob-

lem in the Heisenberg representation and confirm the correspondence between

quantum expectation values and classical trajectories. The uncertainties of

the Thomson trajectories are identical to those of the undeflected beam.
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Chapter 1

Introduction

Classical mechanics is an approximate description of physical reality. Quantum me-

chanics was developed to improve it and to provide a more complete representation of

physical phenomena. It also explains and predicts new phenomena like the stability

of matter and its interaction with radiation.

There exist several fundamental differences between these two theories. Their

application domains are typically vastly different. As a result, systems are commonly

treated in the literature as either quantum or classical. Specific systems that exhibit

strong classical or quantum behavior are better understood in their respective theory.

Quantum theory, however, claims to be the more accurate theory for describing all

physical systems. We should thus be able to describe any physical system using a

quantum approach, even those where the classical description is typically sufficient.

Achieving an agreement between these two descriptions of the same system is the

goal of this project.

Quantum mechanics was also assisted in its development by some of the early

experiments of the 20th century. One such experiment was the determination of the

charge-to-mass ratio e
m

of the electron by J. J. Thomson in 1897. This discovery of the

1



2 Chapter 1 Introduction

electron was crucial in understanding the nature of the atom as well as in achieving

the ability to view the universe from a quantized perspective. It is this experiment

that we choose to study.

Our goal is to apply quantum theory to the Thomson experiment and give its

purely quantum mechanical description. Our survey of descriptions of the Thomson

experiment in the literature has led us to classical models exclusively. We have been

unable to find a quantum mechanical treatment of this experiment.

Our research is exploring to what extent quantum mechanics can be used to

understand the Thomson experiment. We model the capacitor through a potential

and use the time-independent Schrödinger equation to find stationary solutions. We

then superpose those solutions to construct wave packets. We use the wave packets to

represent the cathode ray beam in Thomson’s experiment and allow them to evolve in

time. We deal with quantum effects such as dispersion and localization. We compare

our results with the classical solutions, namely, the trajectories of the electron beam

in the electric field.

In Chapter 2 we give the history of the Thomson experiment and describe the

quantum mechanical model of the capacitor. In Chapter 3 we derive the classical tra-

jectories from the force law. Chapter 4 explores the nature of the quantum solutions

and describes the construction of the wave packet and its normalization. Chapter

5 addresses the time evolution of the packet, discusses methods for analyzing and

controlling dispersion, and gives an analytic solution based on momentum space for

comparison to the numeric results. We conclude in Chapter 6. Appendix A derives

another method for obtaining the E − B relationship. Appendix B gives the Maple

code for the construction of the wave packet. Appendix C discusses methods for lo-

calizing the wave packet and Appendix D gives the quantum mechanical justification

for treating the Thomson experiment as a quantum rather than a classical system.



Chapter 2

The Thomson Experiment

In this chapter we review some of Thomson’s work. We discuss the electric and

magnetic fields and their potentials and we comment on the extent that we will be

modeling Thomson’s setup.

2.1 J. J. Thomson’s e
m measurements

Thomson had been experimenting with the electrostatic discharge properties of vari-

ous gases. For each different gas the velocity of the electrons would vary slightly. This

would change the way that the ray was affected by the field because it would increase

or decrease the exposure time. In turn it would change the amount of deflection that

was observed. The length of the field would also change the exposure time and would

therefore affect the deflection.1

Thomson conducted his experiment numerous times using different tubes and

different gases. Although the field length and initial velocity would vary with each

experiment, they would remain constant during a given experiment.1 Thomson needed

something that could be controlled during each experiment and would lead to the ratio

3



4 Chapter 2 The Thomson Experiment

he was looking for. This was the purpose of the two critical variables E and B. By

changing the amount of current flowing through the coil, Thomson could control the

strength of the magnetic field B. Thomson could also vary the voltage between the

plates and could then adjust the electric field strength E.1

Once a given system had been established, Thomson could make the adjustments

he needed in order to balance the forces. He would obtain slightly different values

each time and would eventually average his results in order to obtain the most accu-

rate value for e
m

.1 The equations for the electrostatic and electrodynamic forces are

different and are affected by different physical stipulations. They would be adjusted

in different ways during the course of the experiment. The question could then be

raised as to what type of relationship exists between these two field strengths. We

are concerned with creating a balanced force and it might be helpful to understand

this relationship in detail.

2.2 J. J. Thomson’s equations

In conducting his experiment for the determination of the charge-to-mass ratio ( e
m

)

for an electron, Thomson introduced both electric and magnetic fields. His objective

was to obtain two different forces that would cancel. This cancelation leads to a lack

of deflection in a cathode ray. Electrons feel an electric force from two oppositely

charged conducting plates. The ray bends toward the positive and away from the

negative. Electrons also feel a magnetic force. If the two forces are equal, they cancel

and the cathode ray travels undisturbed.

Let us consider the point where the forces are balanced. This means that the

electric and magnetic forces are equal in magnitude. We can then set the two forces
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on the particle equal to each other and solve. Starting from the Lorentz force law2

~F = q( ~E + ~v × ~B) (2.1)

we specialize in the electric

~F1 = ~Eq (2.2)

and magnetic forces

~F2 = q(~v × ~B). (2.3)

The forces are equal in magnitude.

| ~F1| = | ~F2| (2.4)

| ~E|q = q|~v × ~B| (2.5)

| ~E| = |~v × ~B| (2.6)

Recall that the force vectors are actually opposing each other. Thomson chose the

initial velocity to be perpendicular to the magnetic field. The resultant force is

perpendicular to both. The magnitude of the cross product of two orthogonal vectors

gives us the product of their magnitudes.

|~v × ~B| = |~v||B̄| sin θ = |~v|| ~B| (2.7)

since

θ =
π

2
. (2.8)

We now have a simple expression for the relationship between the two field strengths.

It is a function of the velocity of the particle (a very simple one)

E

B
= v. (2.9)

Thomson used this result to find the velocity of the electrons in his cathode ray. He

was able to measure the strengths of the E and B fields when there was no deflection
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of the beam and could thus find a value for v. This value was important because he

needed it to determine the value of e
m

. Thomson measured the radius of curvature R

of the electrons in a magnetic field.1 In section (3.2) we will show that the radius of

this circular trajectory is given by3

R =
mv

eB
. (2.10)

Thus

m

e
=
BR

v
. (2.11)

Thomson had measured the values of B and R and obtained v through the ratio of

the two fields, Eq. (2.9). He thus was able to determine a value for e
m

which he

averaged to be 1.6× 10−7 in c.g.s units.1

2.3 The capacitor model and sloped wells

In classical physics we deal with forces. Particles or objects in a field experience a

force. We can use Newton’s equations to find the motion of these particles as they

travel through space. In quantum mechanics we don’t deal with forces, we deal with

potentials. As such we must model the environment as a potential well rather than

through a force diagram. If we consider the Thomson experiment we have an electric

field being generated by a parallel plate capacitor. Neglecting edge effects at the edge

of the plates, this field is uniform throughout the capacitor itself. Recall the relation

between field and potential2

~E = −~∇V. (2.12)

We can solve for the potential by integrating. Constant fields correspond to linear

potentials. We have a linear potential in the region inside the capacitor. The potential
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Figure 2.1 The potential energy of the parallel plate capacitor in Thomson’s

experiment

decreases in the direction in which the field is pointing. It is not the direction the

beam is traveling in but is actually perpendicular to it.

What happens outside of the capacitor? Again, neglecting edge effects, the field

outside is zero. The potential energy is zero in the region below the capacitor. Once

we have traversed the field to the other side, we again have a constant potential but it

is no longer zero. The potential on this side is some non-zero constant. This analysis

of the potential allows us to create a model potential well for our capacitor. The

capacitor can be constructed as shown in Figs. 2.1 and 2.2.
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Figure 2.2 The potential of the parallel plate capacitor in Thomson’s ex-

periment



Chapter 3

Trajectories as Classical Solutions

In this chapter we obtain the trajectories of the particles based on Newtonian theory.

It is important to have these trajectories as a guide for our quantum results. The

electrons in this apparatus experience both an electric and a magnetic force. We

model the system by considering the two fields separately, beginning with the electric

field.

3.1 The electric field

To begin we select appropriate coordinates. For the case of the electric field, the

trajectory will be parabolic rather than circular. I will choose to work in Cartesian

coordinates because a polar coordinate system will not be of any particular advantage.

The initial velocity v0, E, and B are orthogonal in Thomson’s setup. Let us consider

the capacitor to be parallel to the xz plane. Neglecting edge effects we only have a

force in the y direction. A real capacitor is finite and has skewed field lines around

the edges. This creates forces in the xz plane. For our purposes, however, we treat

the capacitor as ideal (see Fig. 3.1).

9
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Figure 3.1 The coordinate setup for our model of the Thomson experiment



3.1 The electric field 11

The electric force

~F = ~Eq (3.1)

can be inserted into Newton’s second law and expanded as three differential equations

describing the force in each direction.

mẍ = 0 (3.2)

mÿ = Eq (3.3)

mz̈ = 0 (3.4)

Introducing the acceleration ω, where

ω =
Eq

m
(3.5)

we obtain

ẍ = 0 (3.6)

ÿ = ω (3.7)

z̈ = 0. (3.8)

Our equation set contains second-order differential equations. The general solutions

of these equations as functions of time are

x(t) = At+B (3.9)

y(t) =
1

2
ωt2 + Ct+D (3.10)

z(t) = Gt+H, (3.11)

where A, B, C, D, G and H are constants of integration. To find particular solu-

tions we specify boundary conditions for the functions and their first derivatives.

Differentiating our general solutions gives

ẋ = A (3.12)
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ẏ = ωt+ C (3.13)

ż = E. (3.14)

By considering the initial conditions we find a physical meaning for the integration

constants

x(0) = B (3.15)

y(0) = D (3.16)

z(0) = H (3.17)

ẋ0 = ẋ(0) = A (3.18)

ẏ0 = ẏ(0) = C (3.19)

ż0 = ż(0) = G. (3.20)

We can now rewrite our general solutions using the interpretation of the constants

that we just discovered

x(t) = ẋ0t+ x0 (3.21)

y(t) =
1

2
ωt2 + ẏ0t+ y0 (3.22)

z(t) = ż0t+ z0. (3.23)

We have a quadratic relation perpendicular to the capacitor axis and linear relations

along the capacitor. We can combine the two linear equations

t =
z − z0

ż0

(3.24)

t =
x− x0

ẋ0

(3.25)

to eliminate the time from our solution. The resulting equation describes the parabolic

trajectory as it is projected onto the xz plane. The relation is linear because it is an

overhead view of the parabola

z − z0

ż0

=
x− x0

ẋ0

. (3.26)
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We can also eliminate t to create spatial representations of the trajectory in y as

functions of either x or z. These equations describe the projection of the parabola on

either the xy or the yz planes

y(x) =
1

2
ω(
x− x0

ẋ0

)2 + ẏ0(
x− x0

ẋ0

) + y0 (3.27)

y(z) =
1

2
ω(
z − z0

ż0

)2 + ẏ0(
z − z0

ż0

) + y0. (3.28)

If we allow the initial x and z coordinates to be zero we can find an equation for the

parabola in terms of an r axis. This r axis lies in the xz plane and is the horizontal

distance the particle has traveled

x0 = 0 z0 = 0

r =
√
x2 + z2 =

√
ẋ0

2t2 + ż0
2t2 = t

√
ẋ0

2 + ż0
2 = tv0. (3.29)

From the Pythagorean relation we can solve for r in terms of x and z. We can then

use our earlier values for t to relate t and r

t =
r

v0

(3.30)

y(r) =
1

2
ω

(
r2

v2
0

)
+ ẏ0

(
r

v0

)
+ y0. (3.31)

Let us find an expression for the angle at which the beam is deflected after passing

through the capacitor. The particle enters the capacitor at the origin. For simplicity

the initial velocities in the y and z directions are also chosen to vanish. After making

these assumptions we can simplify the equation for y in terms of x

y(x) =
1

2
ω
x2

ẋ0
2 . (3.32)

When the particle leaves the field, it follows a straight line that is tangent to its

trajectory

y′(x) ≡ dy(x)

dx
=
ωx

ẋ0
2 . (3.33)
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This derivative gives the slope of the parabola. We are interested in the slope when

the particle exits the field, namely x = L

y′(L) =
ωL

ẋ0
2 . (3.34)

We know that the slope of a line is equal to the tangent of the angle it forms with

the x axis

y′(L) = tan θ. (3.35)

If θ is small, as is the case in Thomson’s experiment, we can approximate the tangent

with its argument3

θ � π

2
=⇒ tan θ ≈ θ. (3.36)

The deflection angle can then be written as

θ ≈ EqL

mẋ0
2 . (3.37)

3.2 The magnetic field

Now we turn our attention to the magnetic field. Taking an approach similar to the

electric field case, we begin by considering the forces acting on the particle. We again

approximate our system to be ideal. We will consider a constant, uniform magnetic

field acting in the positive z direction

Bx = 0 By = 0 Bz = B. (3.38)

This means that the Lorentz force will be in the xy plane,

~F = q(~v × ~B). (3.39)

We again use Newton’s second law to model the force in each direction

mẍ = q(~v × ~B)x (3.40)
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mÿ = q(~v × ~B)y (3.41)

mz̈ = 0. (3.42)

Working out the cross product we obtain the components in the force equation,

mẍ = ẏBq (3.43)

mÿ = −Bẋq (3.44)

mz̈ = 0. (3.45)

Introducing

ω =
qB

m
(3.46)

the differential equations simplify further,

ẍ = ωẏ (3.47)

ÿ = −ωẋ (3.48)

z̈ = 0. (3.49)

It would be easier for us to solve this system if it were uncoupled, meaning each

equation contained only one variable. We introduce variables for the first derivatives

of x and y:

χ = ẋ (3.50)

Υ = ẏ (3.51)

as well as

χ̇ = ẍ, (3.52)

Υ̇ = ÿ. (3.53)

Combining Eqs. (3.47)-(3.51) we obtain

χ̇ = ωΥ Υ̇ = −ωχ (3.54)
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and finally

χ̈ = −ω2χ (3.55)

Ϋ = −ω2Υ. (3.56)

We now have differential equations with constant coefficients that can be solved di-

rectly for χ and Υ as functions of t,

χ(t) = A cosωt+B sinωt (3.57)

Υ(t) = C cosωt+D sinωt. (3.58)

We must remember, however, that χ and Υ were the first derivatives of x and y. We

are really interested in finding x(t) and y(t) so we must integrate Eqs. (3.57), (3.58),

and (3.49)

x(t) =
A

ω
sinωt− B

ω
cosωt+ C1 (3.59)

y(t) =
C

ω
sinωt− D

ω
cosωt+ C2 (3.60)

z(t) = Gt+H. (3.61)

We notice that the motion describes a periodic closed trajectory. Let us consider

first the two constants, C1 and C2. With some foresight we can consider the average

value of integrating the functions over one period. The average value is obtained by

integrating over the period and dividing by its length

x̄ =
1

2π

∫ 2π

0
x(t)dt =

1

2π

∫ 2π

0

(
A

ω
sinωt− B

ω
cosωt+ C1

)
dt = C1 (3.62)

ȳ =
1

2π

∫ 2π

0
y(t)dt =

1

2π

∫ 2π

0

(
C

ω
sinωt− D

ω
cosωt+ C2

)
dt = C2 (3.63)

leading to

x̄ = C1, ȳ = C2. (3.64)

Indeed we have found the average values of these functions. Let us try now to

interpret the physical nature of these constants. Equations (3.59) and (3.60) are



3.2 The magnetic field 17

parametric equations that suggest elliptical motion. Since the magnetic field is per-

pendicular to the velocity at all times, the speed is constant and the motion is circular.

The magnetic field does no work.2 When we consider an orbiting particle, the average

position of that particle is the center of the circle. This is what we have solved for.

We have found two coordinates (C1,C2) for the center of the circle that the electron

describes in the plane orthogonal to the magnetic field.

We look for the physical significance of the integration constants A, B, C, D, G,

and H that remain in our equation. This information comes from the initial conditions

of the system. We will need the functions and their first derivatives. The motion is

completely described by the following set of equations

x(t) =
A

ω
sinωt− B

ω
cosωt+ C1 (3.65)

y(t) =
C

ω
sinωt− D

ω
cosωt+ C2 (3.66)

z(t) = Gt+H (3.67)

ẋ(t) = A cosωt+B sinωt (3.68)

ẏ(t) = C cosωt+D sinωt (3.69)

ż(t) = G (3.70)

which at the initial time become another set

x0 = −B
ω

+ C1 (3.71)

y0 = −D
ω

+ C2 (3.72)

z0 = H (3.73)

ẋ0 = A (3.74)

ẏ0 = C (3.75)
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ż0 = G. (3.76)

Solving the second set for the constants and substituting in the first set we obtain

x(t) =
ẋ0

ω
sinωt+ (x0 − x̄) cosωt+ x̄ (3.77)

y(t) =
ẏ0

ω
sinωt+ (y0 − ȳ) cosωt+ ȳ (3.78)

z(t) = ż0t+ z0. (3.79)

We have already mentioned that the parametric equations we are dealing with are

suggestive of a circular orbit. As is the case of the electric field it will be important

to have a detailed description of this orbit for comparing with the quantum results

later on. Let us then turn our attention to the circle. We choose a coordinate system

in a way that is consistent with the electric field from the Thomson experiment and

that will allow us to simplify our results. We could come to expect a path that is

similar to Fig. 3.2.

Since we are dealing with a closed orbit, we expect some kind of force acting

toward the center. This force is required to keep the particle in its trajectory. Force

is a vector that acts along the direction of the particle’s acceleration. We know that

the particle has an acceleration component acting toward the center of the circle. We

refer back to the diagram to see if we can make any conjectures. We notice that by

the choice of the coordinate system there are certain places along the path that are

going to have zero acceleration along a given component. For example, a vertical

arrow has no acceleration in the x direction.

With this in mind we refer back to our equations and evaluate them at different in-

tervals. Combining what we have observed about the acceleration with the evaluated

equations will allow the simplification to become evident.

Let’s evaluate the x and y components of the acceleration on the axes. We can

take the derivative of the velocity equations to find functions for the acceleration in
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Figure 3.2 The trajectory of an electron in a constant magnetic field



20 Chapter 3 Trajectories as Classical Solutions

each direction

ẍ(t) = −ẋ0ω sinωt+ (x̄− x0)ω
2 cosωt (3.80)

ÿ(t) = −ẏ0ω sinωt+ (ȳ − y0)ω
2 cosωt (3.81)

z̈(t) = 0. (3.82)

We now look at the different points along the circle. The argument of the trigono-

metric functions is ωt corresponding to an angular frequency multiplied by time. The

value of the argument gives the angle in radians around the circle. For example

ωt = 3π
2

leads to a location on the negative x axis. Choosing successively t = 0, π
2ω
, π

ω

and 3π
ω

we obtain

ÿ
(
π

2ω

)
= 0 =⇒ ẏ0 = 0 (3.83)

ẍ
(
π

2ω

)
= −ẋ0ω (3.84)

ÿ(0) = (ȳ − y0)ω
2 (3.85)

ẍ(0) = 0 =⇒ x̄ = x0 (3.86)

ÿ
(
π

ω

)
= −(ȳ − y0)ω

2 (3.87)

ẍ
(
π

ω

)
= 0 =⇒ x̄ = x0 (3.88)

ÿ
(

3π

2ω

)
= 0 =⇒ ẏ0 = 0 (3.89)

ẍ
(

3π

2ω

)
= ẋ0ω. (3.90)

As a result of this process we simplify the equations. Using B = C = 0 in Eqs. (3.77)

and (3.78) gives

x(t) =
ẋ0

ω
sinωt+ x̄ (3.91)

y(t) = −(y0 − ȳ) cosωt+ ȳ. (3.92)
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Since the motion is circular, the magnitude of the acceleration in the negative y

direction at t = 0 will be equal in magnitude to that of the negative x direction at

t = π
2
. This will create yet another relationship between the constants

ÿ(0) = ẍ
(
π

2ω

)
=⇒ (ȳ − y0)ω

2 = −ẋ0ω (3.93)

ÿ
(
π

ω

)
= ẍ

(
3π

2ω

)
=⇒ (y0 − ȳ)ω2 = ẋ0ω (3.94)

ω(y0 − ȳ) = ẋ0. (3.95)

We can now express both position equations in terms of only one unknown constant

x(t) =
ẋ0

ω
sinωt+ x̄ (3.96)

y(t) =
ẋ0

ω
cosωt+ ȳ. (3.97)

Through a little manipulation with some prior knowledge we alter Eqs. (3.96) and

(3.97) further to obtain

x− x̄ =
ẋ0

ω
sinωt (3.98)

y − ȳ =
ẋ0

ω
cosωt. (3.99)

Squaring both sides,

(x− x̄)2 =
ẋ2

0

ω2
sin2 ωt (3.100)

(y − ȳ)2 =
ẋ2

0

ω2
cos2 ωt, (3.101)

and adding the two equations together while invoking a trigonometric identity gives

(x− x̄)2 + (y − ȳ)2 =
ẋ2

0

ω2
sin2 ωt+

ẋ2
0

ω2
cos2 ωt (3.102)

=
ẋ2

0

ω2
(sin2ωt+ cos2ωt) =

ẋ2
0

ω2
. (3.103)

We have succeeded in getting our equation into the form that we anticipated

(x− x̄)2 + (y − ȳ)2 =
ẋ0

2

ω2
. (3.104)
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Equation (3.104) describes a circle centered at (x̄, ȳ). The term on the right corre-

sponds to the radius R squared

R =
ẋ0

ω
(3.105)

or in terms of the physical parameters

R =
mẋ0

qB
(3.106)

and

(x− x̄)2 + (y − ȳ)2 =
m2ẋ2

0

q2B2
. (3.107)

The constant ω has a well-defined physical significance. We first determine the SI

units

[ω] =
C

Kg

Kg

Cs
=

1

s
= 1Hz (3.108)

corresponding to a frequency. Indeed it is a frequency, often called the cyclotron

frequency, or the frequency at which the particle cycles through one revolution around

the circle just found.3

Returning to the Thomson experiment, with the goal of comparing our results

with Thomson’s, what we are really concerned with is what Thomson saw when he

did his experiment. The radius is a useful parameter but Thomson never saw a radius,

he saw a deflection. Let us extract the deflection from our solutions.

The particle will follow a circular trajectory centered at some point. We aren’t

really concerned about where the circle is centered because we are only dealing with

part of the curve. Thomson’s electron will be leaving the field before it has completed

a significant part of the circumference so t is small.3 Using Eq. (3.104)

(x− x̄)2 + (y − ȳ)2 =
ẋ0

2

ω2
(3.109)

we can solve for the curve as a function of x. Selecting the positive root gives

y = ȳ +
√
R2 − (x− x̄)2. (3.110)
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We are dealing with a situation where the particle travels tangent to the curve of the

circle. This would lead us to believe that we will be needing the derivative.

y′ =
−(x− x̄)√
R2 − (x− x̄)2

(3.111)

This expression gives us the slope of the curve at that point. Since the slope is equal to

the tangent of the angle, we would have to take the inverse tangent of this expression

in order to find θ. Thomson, however, was only concerned with small angles for the

most part. As a result, we are probably safe to use the small angle approximation for

tangents.

θ ≈ tan θ (3.112)

This approximation will then give us a final result that we can use to find the angle.

If we relabel (x− x0) as L then we can write

θ ≈ −L√
R2 − L2

. (3.113)

At this point we can make another approximation. L is small compared to R so we

can eliminate the L2 term and we are left with:

θ ≈ −L√
R2

=
−L
R
. (3.114)

Recall that

R =
mv

qB
, (3.115)

which results in our final expression for the deflection angle

θ ≈ −qBL
mv

= −qBL
mẋ0

. (3.116)

3.3 The electromagnetic field

In order to remain consistent with the Thomson experiment we consider the classical

description of the case in which both fields are acting on the electron. In section
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3.1 we found that the force from the electric field acting on the electron could be

described by Eq. (3.3). It is a differential equation describing the force in the y

direction,

mÿ = Eq. (3.117)

Using the right-hand rule confirms that when the electron first enters the magnetic

field it experiences a force in the y direction. In section 3.2 we found that this force

could be described by Eq. (3.44)

mÿ = −Bẋq. (3.118)

The net force acting on the electron in the y direction is then the sum of the two

forces

mÿ = Eq −Bẋq. (3.119)

Thomson, however, arranged his setup so there would not be any deflection of the

beam.1 This means that the net force on the particle is zero and Eq. (3.119) becomes

0 = Eq −Bẋq. (3.120)

Which gives

Eq = Bẋq (3.121)

E = Bẋ (3.122)

ẋ =
E

B
. (3.123)

Substituting this result back into Eq. (3.119) gives

mÿ = Eq − Eq = 0, (3.124)

as we established by assuming no deflection. We found in section 3.1 that the force

from the electric field acts only in the y direction and since the velocity remains solely
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along x in this case, there is no force from the magnetic field in the x or z directions.

This means

mẍ = 0 (3.125)

mÿ = 0 (3.126)

mz̈ = 0 (3.127)

and

x(t) = ẋ0t+ x0 (3.128)

y(t) = ẏ0t+ y0 (3.129)

z(t) = ż0t+ z0. (3.130)

Knowing that ẏ0 = 0 and ż0 = 0 gives

x(t) = ẋ0t+ x0 (3.131)

y(t) = y0 (3.132)

z(t) = z0 (3.133)

which is the straight line trajectory we expected.
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Chapter 4

Wave Packets as Quantum

Solutions

When we consider the classical version of the Thomson experiment, we rely upon

Newton’s equations to obtain trajectories. Newton’s equations deal with forces but

the quantum treatment is interested in potentials. We use an equation that re-

flects the wave nature of our quantum solutions Ψ(x). The foundation for the quan-

tum description comes from the equation governing nonrelativistic wave mechanics,

the Schrödinger equation. For time-independent potentials we can use the time-

independent Schrödinger equation4

− h̄2

2m

d2Ψ(x)

dx2
= (E − U(x))Ψ(x). (4.1)

This equation is a second-order differential equation in one dimension. Here E

stands for the total energy of the system. The term U(x) represents the potential

energy of the particle in its environment. The term in parentheses (E − U(x)) can

therefore be considered as the kinetic energy of the particle. We solve for the wave-

function Ψ(x).

27
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4.1 Constant potentials

The term in the Schrödinger equation that governs the behavior of the wavefunction

is the potential energy term U(x). We consider some relevant potentials. In the

simplest possible case U(x) = 0 and there is no external influence

− h̄2

2m

d2Ψ(x)

dx2
= EΨ(x). (4.2)

Using k =
√

2mE
h̄2 we get

d2Ψ(x)

dx2
= −k2Ψ(x). (4.3)

This Ordinary Differential Equation (ODE) says that the second derivative of a func-

tion is equal to itself multiplied by a negative constant. This is in very different

circumstances the same equation as that encountered in Eq. (3.56). The solution

to this equation consists of sines and cosines. We know from superposition that any

linear combination of these solutions will also be a solution.3 This gives us a generic

form for the wavefunction in a zero-potential region

Ψ(x) = A sin kx+B cos kx. (4.4)

It is a stationary solution and its time dependence has been removed. We can express

it as a complex exponential or a cosine term with a phase shift

Ψ(x) =
(
A+B

2

)
eikx +

(−A+B

2

)
e−ikx (4.5)

Ψ(x) = B̃ cos(kx+ φ). (4.6)

Another simple case is a constant potential V0 different from zero. Suppose also that

the potential V0 is greater than the total energy E of the particle. If this is the case,

it changes the sign in front of Ψ(x) in Eq. (4.1)

d2Ψ(x)

dx2
= κ2Ψ(x) (4.7)
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where κ =
√

2m(E−V0)

−h̄2 . Again, we have a simple differential equation but the solution

has a different form now. Rather than trigonometric functions we obtain exponentials.

The generic solution from superposition is

Ψ(x) = Aeκx +Be−κx. (4.8)

These solutions apply to the two domains outside of the capacitor.

4.2 Linear potentials and Airy functions

If we refer back to our model for the capacitor from section 2.3 we notice that in the

central region the potential is linear. We can set up the Schrödinger equation to solve

for solutions in this region. For U(x) = αx, a linear potential energy, we obtain

d2

dx2
Ψ (x) = (αx− E) Ψ (x) (4.9)

where the constant slope α depends on the strength of the applied electric field. This

equation is not as easy to solve because we no longer have a constant multiplying the

wavefunction. Solving this equation using Maple we find

Ψ (x) = C1 AiryAi

(
αx− E

(−α)2/3

)
+ C2 AiryBi

(
αx− E

(−α)2/3

)
, (4.10)

where C1 and C2 are integration constants. AiryAi and AiryBi are Maple’s way

of expressing a special class of functions called Airy functions. These functions are

related to the more familiar Bessel functions and they come in two types, Ai and Bi.5

A plot of AiryAi is displayed in Fig. 4.1. We can make a few observations about

the behavior of this function. Towards the right the function decays to zero once it

crosses into the positive x values after reaching a final maximal peak. Towards the

left the function oscillates at an increasing pace as it dies off. This oscillation makes

sense physically if we consider what is happening to the electron. As the electron
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Figure 4.1 The Airy Ai Function
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Figure 4.2 The Airy Bi Function

traverses this sloped well, it sees a decreasing potential energy and thus has more

kinetic energy. As a result, the oscillations become increasingly rapid on the left and

the amplitude decreases as the particle spends less time at any individual location.

We have a second solution as is expected for a second order differential equation,

AiryBi. It is similar to the AiryAi function but has a different asymptotic behavior

on the right. A plot of this function is shown in Fig. 4.2. We see that AiryBi blows

up in the positive region and has the same oscillating behavior on the left. This

unboundedness in the positive region will limit our use of AiryBi later.
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4.3 Airy wave packets

Having established a model for the potential energy of the capacitor we can now

solve the Schrödinger equation to obtain wavefunctions. Sections 4.1 and 4.2 explored

solutions to this equation in the types of potentials that compose our capacitor model.

We can split our model up into three regions based on the type of potential that

exists in these regions. We consider zero, linear, and constant potential regions. The

solutions in each region are given by

Ψ1(x) = A sin kx+B cos kx (4.11)

Ψ2 (x) = C1 AiryAi

(
αx− E

(−α)2/3

)
+ C2 AiryBi

(
αx− E

(−α)2/3

)
(4.12)

Ψ3(x) = Aekx +Be−kx (4.13)

as found in sections 4.1 and 4.2. We make two simplifications. The first simplification

occurs in Ψ2. The term (−α)
2
3 in the denominator of the Airy function’s argument

can be imaginary. We are only concerned with real functions so we must choose α

in a way that will allow us to retain real solutions. If we allow the slope to be unity

then we can choose the real roots of (−α)
2
3 and it will allow the factor to be equal to

one. The second simplification comes in Ψ3. We want our function to go to zero at

positive infinity. The positive exponent blows up in the positive x direction. We can

eliminate it from our solution. After making these simplifications and organizing our

unknown constants we obtain (remember that α = 1 in what follows)

Ψ1(x) = A sin kx+B cos kx (4.14)

Ψ2 (x) = CAiryAi
(
αx− E

α

)
+DAiryBi

(
αx− E

α

)
(4.15)

Ψ3(x) = Fe−kx. (4.16)
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At this point we make a numeric simplification. It was mentioned in section 4.1 that

k =
√

2mE
h̄2 . We establish our system with natural units such that 2m

h̄2 = 1. This

implies that k =
√
E.

We must now apply boundary conditions to our functions in order to obtain a

solution for the entire system. The boundary condition on the left requires that the

function and its derivative be continuous at the boundary between Ψ1 and Ψ2.
4 Using

the functions with adjusted units gives

B = CAiryAi
(
− E

α

)
+DAiryBi

(
− E

α

)
, (4.17)

having evaluated Ψ1 at x = 0 to obtain B on the left side of Eq. (4.17). We also use

the condition that the derivatives of Ψ1 and Ψ2 must be equal at x = 0. Taking the

derivative of these functions and evaluating them at x = 0 gives

A
√
E = CAiryAi

(
1,− E

α

)
+DAiryBi

(
1,− E

α

)
(4.18)

where the number 1 in the argument of the AiryAi and AiryBi functions,
(
1,−E

α

)
,

refers to the first derivatives of AiryAi
(
−E

α

)
and AiryBi

(
−E

α

)
respectively. We

divide one equation by the other and get

B

A
√
E

=

(
CAiryAi

(
− E

α

)
+DAiryBi

(
− E

α

))
(
CAiryAi

(
1,− E

α

)
+DAiryBi

(
1,− E

α

)) . (4.19)

We also have a boundary condition on the right at x = d where d is the length of the

capacitor. The symbol L has been used for the same quantity. We have already taken

care of the end behavior by choosing the exponential term that decays rather than

blowing up, so we are left with conditions at x = d. We have the same conditions

at x = d for Ψ2 and Ψ3 as we do at x = 0 for Ψ1 and Ψ2. The functions and

their derivatives must be equal when evaluated at the boundary point. Setting the

functions equal to each other gives

CAiryAi

(
α d− E

α

)
+DAiryBi

(
α d− E

α

)
= Fe−

√
α d−Ed. (4.20)
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Setting their derivatives equal gives

CAiryAi

(
1,
α d− E

α

)
+DAiryBi

(
1,
α d− E

α

)
= −F

√
α d− Ee−

√
α d−Ed. (4.21)

Dividing the two equations produces(
CAiryAi

(
α d−E

α

)
+DAiryBi

(
α d−E

α

))
(
CAiryAi

(
1, α d−E

α

)
+DAiryBi

(
1, α d−E

α

)) = − 1√
α d− E

. (4.22)

We now have two equations Eq. (4.19) and Eq. (4.22) and four unknowns A, C, D,

and F. We reduce this system to two unknowns by simplifying down to a ratio of

constants. In Eq. (4.19) we already have a ratio of B
A
. We can obtain a ratio for C

D
.

The way we accomplished this in Maple was to set D = 1 and solve Eq. (4.22) for C.

This result was really equal to the ratio of C
D

. We did the same with Eq. (4.19) by

setting B = 1 and solving for A, obtaining the ratio for A
B

. We set D = 1 and C = C
D

and solve Eq. (4.20) for F
D

. We set the same conditions and solve Eq. (4.17) for B
D

.

We take the expressions for each of these combinations of constants and substitute

them into Ψ1, Ψ2 and Ψ3 as follows,

Ψ1(x) =
B

D

(
A

B
sin kx+ cos kx

)
= A sin kx+B cos kx (4.23)

Ψ2 (x) =
C

D
AiryAi

(
αx− E

α

)
+ AiryBi

(
αx− E

α

)
(4.24)

= CAiryAi
(
αx− E

α

)
+DAiryBi

(
αx− E

α

)
(4.25)

Ψ3(x) =
F

D
(e−kx) = Fe−kx. (4.26)

This method works because we set D = 1 and we found expressions for B
D

, A
B

, C
D

and

F
D

.

We now have the correct boundary conditions applied to our wavefunctions in

each region. We construct a piecewise function in Maple consisting of each of these

solutions in their respective domain. This piecewise solution is a function of x and
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Figure 4.3 The wavefunction solution plotted for 3 different values of the
energy
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also a function of E, the energy of the particle. Figure 4.3 displays plots of this

piecewise function for different values of the energy E. The wavefunction behaves as

expected in each of the three regions. The behavior is also affected by the value of

the energy.

We have found the wavefunction that is the solution to our model of the capacitor

in the Thomson experiment. We must now use this wavefunction to construct a local-

ized wave packet. We construct our wave packet as a δ function. The wavefunction

is multiplied by a weight factor and integrated,4

δ(x− a) =
∫ ∞
0

ΨE(x)ΨE(a)dE. (4.27)

Maple is not able to analytically integrate the complicated combination of Airy func-

tions that exists in the expression for our wavefunction. Therefore we must approxi-

mate the integral with a finite sum. We also want to localize our wave packet around

a specific point. The wavefunction squared is going to correspond to the probability

density for the cathode ray. We localize the beam in the center of the capacitor

which, according to our model in Fig. 2.1, is equivalent to x = 12.5. Thus we have

δ(x− 12.5) =
n∑

E=0

ΨE(x)ΨE(12.5). (4.28)

We substitute this value of x into ΨE in our Maple code and sum over a range

of energies. This finite sum may actually have benefits because of the Heisenberg

uncertainty. The less localized our wave packet is, the less dispersive it will be.

4.4 Normalization

Once we had completed the necessary steps for constructing our wave packet, there

remained a plaguing error that prevented us from obtaining a localized peak. We had

summed the Airy terms and constructed a wave packet but it was not localized as



4.4 Normalization 37

we had expected it to be. We noticed in the plots of our wavefunction that changing

the value of the energy was also changing the amplitude. We made a table of values

corresponding to the different energies and the amplitudes they corresponded to.

There did not seem to be a pattern and some of the amplitudes were several orders

of magnitude larger than others. This was an interesting result and it was important

because it helped us to realize that even though our wave packet was normalized in

the end, we had neglected to normalize the wavefunctions from which the packet was

constructed. The relation Eq. (4.27) holds for normalized ΨE.

We returned to the beginning of our Maple code where we had first composed our

piecewise wavefunction from the individual wavefunctions in each region. A term was

added to the code which summed the squares of Ψ(x)1, Ψ(x)2 and Ψ(x)3 over their

respective regions. Again we had to approximate the integral with a sum because

of Maple’s inability to analytically integrate the expressions. This approximation

accounts for the reason that some of the curves in the plots don’t appear to enclose

an area of exactly one. Summing each wavefunction over a sufficiently large region

gives

n2
1E =

0∑
x=−25

ΨE(x)2
1 (4.29)

n2
2E =

25∑
x=0

ΨE(x)2
2 (4.30)

n2
3E =

35∑
x=25

ΨE(x)2
3. (4.31)

We then obtain the normalization constant

NE =
1√

n2
1E + n2

2E + n2
3E

. (4.32)

We multiplied our wavefunction by this normalization constant and constructed the

approximate δ function again

δ(x− 12.5)N =
25∑

E=0

NEΨE(x)ΨE(12.5) (4.33)
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Figure 4.4 The approximate δ function representing the transverse proba-

bility amplitude of the electron beam in the Thomson experiment

Figure 4.4 shows a plot of this approximate δ function representing the probability

amplitude for the beam of electrons in the Thomson experiment. This plot is made

for a sum containing 23 terms. A more detailed explanation of how to further localize

these functions by increasing the number of terms is given in Appendix C. In what

follows we leave out the index E from the expressions for Ψ and N . It is understood

that all wavefunctions have been properly normalized.
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Deflection from Wave Packet

Evolution

Now that we have constructed a wave packet we follow its behavior in the poten-

tial region as time progresses. We include the time dependence by multiplying the

stationary states by the factor e−iωt in the expression for the δ function4

δ(x− xc, t)N =
n∑

E=0

NΨ(x)Ψ(xc)e
−iωt (5.1)

where ω = E
h̄

and xc is the center of the capacitor. In our setup xc = 12.5. Based on

the results of the Thomson experiment and our classical derivations we can make some

assumptions about the wave packet evolution. We should obtain a packet that moves

to the left at an accelerating rate. This corresponds to the probability amplitude of

the electron as it is accelerated through the electric field.

5.1 Dispersion

Once we have obtained an expression for the time-dependent wave packet we animate

it in Maple to see how it behaves. The surprising results illustrated in Fig. 5.1

39
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show that the peak starts out localized at t = 0 as constructed. As time progresses,

however, the packet rapidly disperses and we lose any information about the motion

of the packet. This is seen in Figs. 5.2 and 5.3. Figure 5.4 is an overlay of times

t = 0, t = 0.3, t = 0.6, and t = 1.

Dispersion is a quantum effect that happens to wave packets as time progresses.

We expect to see some dispersion in our packet as it moves through time but it is

quite surprising to see it dominating the motion of the peak. We investigate this

dispersion thoroughly and attempt several techniques to understand its origins.

5.2 Dispersion-controlling techniques

5.2.1 Expectation values

One of the techniques is to look at the expectation value for the wave packet as it

moves through time. To compute the expectation value we use its general definition:4

< x >=

∫∞
−∞ x|ψ(x)|2dx∫∞
−∞ |ψ(x)|2dx

. (5.2)

Again we approximate the integral in Maple using a sum,

< x >=

∑30
x=0 x|ψ(x)|2dx∑30
x=0 |ψ(x)|2dx

. (5.3)

The Maple code for this operation is given below

exp:=sum(subs(t=0,x*shift),x=0..30)/sum(subs(t=0,shift),x=0..30);.

The Maple function shift stands for the solution ψ(x) or δ(x−xc)N . We construct

an array in Maple that takes the expectation value and pairs it with the corresponding

value of t that it was created from. This creates a scatter plot of expectation values

plotted against time. We want to see how the expectation value changes relative to
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Figure 5.1 Time evolution of the wave packet for 0 ≤ t ≤ 0.3
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Figure 5.2 Time evolution of the wave packet for 0.4 ≤ t ≤ 0.7
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Figure 5.3 Time evolution of the wave packet for 0.8 ≤ t ≤ 1.1
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Figure 5.4 An overlay of four plots (t = 0, t = 0.3, t = 0.6 and t = 1)

showing the dispersion of the wave packet (color in electronic version)
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Figure 5.5 The expectation value < x > plotted against time for a wave

packet consisting of 23 terms

the spreading of the wave packet. It is interesting to note that at time t = 0, the

expectation value is closer to x = 11.5 than to x = 12.5 which is where the beam

was localized. This is a result of the small amplitude oscillations on either side of the

peak. Figure 5.1 shows a plot of the localized beam at t = 0. It can be seen from this

figure that the area under the oscillations on the left of the peak is larger than the

area on the right. This shifts the expectation value of the peak to the left because of

the integrals in the expression for the expectation value.

The importance of the way in which the wave packet was constructed becomes

apparent in the motion of the expectation value. Depending on which terms are

taken to create the sum, the wave packet will disperse differently. We would expect

a parabola that opened downward for a plot of the expectation value. This would

indicate that the electron is accelerating to the left. If we construct the scatter plot

for the wave packet composed of 23 terms we obtain Fig. 5.5. This expectation value
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Figure 5.6 The expectation value plotted against time for a wave packet

consisting of 248 terms

oscillates back and forth without moving a significant distance in either direction.

If we refine our grid so that we take 248 terms rather than 23 we get a much more

localized peak. If we perform the same analysis on its expectation value we find Fig.

5.6. This plot still does not look like what is expected. However, it does move a

significant distance in the desired direction. It is particularly interesting to notice

the initial few seconds of the plot. The initial motion of this expectation value is a

parabola that opens downward as expected. It could be suggested that the peak is

trying to move to the left as we had expected but that its motion is being washed out

by dispersion. Significant dispersion happens only one time unit into the evolution. It

is possible that, once the peak has been defined using enough terms, the expectation

value begins moving as expected, only to be biased out by the noise created by the

dispersion of the packet.
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We tried several other techniques to understand the nature of the spreading in-

cluding an analysis using sine waves instead of Airy functions. We did measurements

of the time required for significant dispersion and compared those times for different

parameters. Section 5.4 will discuss our findings.

While conducting the investigation into the nature of the dispersion, we were

able to learn about the behavior of the wave packet. We tried changing the slope

of the potential region, changing the relative dimensions of the capacitor and other

alterations to our model. We also tested several ways of selecting which energy values

to take when we were creating our sum.

5.2.2 Energy level selection

We take more terms to create a finer grid in the sum in Eq. (4.33). We do this to

improve the approximation made in expressing the integral as a sum. Taking more

terms leads to more localized wave packets initially but does not remove the dispersion

in time.

Another method consists of changing the selection of the terms. Rather than

spacing them evenly over the entire range we select them by hand. We do this

to avoid coincidences from the existing periodicity in the frequency of the energy.

Otherwise it might lead to resonances that would be misleading and falsely represent

the data over the entire range. Again this method does affect the packets but does

not remove the dispersion.

As mentioned in the discussion of expectation values, the way in which the packet

is constructed affects its behavior. Taking more terms creates a more localized peak.

Because of the Heisenberg uncertainty relation, a more localized wave packet will

disperse more quickly.4 Our packet disperses much faster when it is composed of

more terms. However, it does lead to a more accurate expectation value plot.
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Taking different combinations of values and trying to stagger the energy terms

affects the packet and the way the packet disperses. Each method seems to have its

own unique effect leading to slightly different dispersion in each case.

5.3 Robinett’s analytic solution

To avoid the difficulties of the numerical analysis of the wave packet we follow a

description of this problem found in Robinett.6 An analytic solution can be found

in momentum space and then Fourier transformed back into position representation.

Rather than modeling the wave packet with δ functions, Gaussian distributions model

the probability amplitude for the electron. We will discuss this selection in detail in

the current and following sections.

The discussion below follows Robinett.6 He begins with the time-dependant Schrödinger

equation in momentum space,

p2

2m
φ(p, t)− F

[
ih̄
∂

∂p

]
φ(p, t) = ih̄

∂φ(p, t)

∂t
(5.4)

or

ih̄

(
F
∂φ(p, t)

∂p
+
∂φ(p, t)

∂t

)
=

p2

2m
φ(p, t) (5.5)

where F plays the role of our slope, −F = α. Assume a solution of the form φ(p, t) =

Φ(p− Ft)φ̃(p). With this form, Eq. (5.5) reduces to

∂φ̃(p)

∂p
= − ip2

2mh̄F
φ̃(p) (5.6)

with the solution

φ̃(p) = e
−ip3

6mFh̄ . (5.7)

The general solution can then be written as

φ(p, t) = Φ(p− Ft)e
−ip3

6mFh̄ (5.8)
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or, using the arbitrariness of Φ(p), as

φ(p, t) = φ0(p− Ft)e
i((p−Ft)3−p3)

6mFh̄ (5.9)

where φ0(p) is some initial momentum distribution since φ(p, 0) = φ0(p). It is interest-

ing to note that if the initial momentum distribution is characterized by < p >0= p0,

then using a change of variables gives

< p >t=
∫ ∞
−∞

p|φ(p, t)|2dp (5.10)

=
∫ ∞
−∞

p|φ0(p− Ft)|2dp. (5.11)

Using q = p− Ft gives

∫ ∞
−∞

q|φ0(q)|2dq + Ft
∫ ∞
−∞
|φ0(q)|2dq (5.12)

=< p >0 +Ft. (5.13)

Thus

< p >t=< p >0 +Ft (5.14)

which is a result comparable to Eq. (D.5). This equation states that the average

momentum value increases linearly with time, consistent with the classical result for

a constant force, F = dp
dt

. The momentum distribution translates uniformly to the

right with no change in shape since

|φ(p, t)|2 = |φ0(p− Ft)|2. (5.15)

The corresponding position space wavefunction can then be obtained through a

Fourier transform

ψ(x, t) =
1√
2πh̄

∫ ∞
−∞

φ0(p− Ft)e
i((p−Ft)3−p3)

6mFh̄ e
ipx
h̄ dp. (5.16)
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Since the p3 terms cancel in the exponent this transform can be done analytically for

a Gaussian momentum distribution characterized by a parameter γ. In that case, we

have

φ0(p) =

√
γ√
π
e
−γ2p2

2 (5.17)

so that

ψ(x, t) =
1√

γh̄
√
π(1 + it

t0
)
e

iFt
h̄

(x−Ft2

6m
)e
−

(x−Ft2

2m )2

2h̄2γ2(1+ it
t0

) (5.18)

where the spreading time is defined by t0 ≡ mh̄γ2. The corresponding probability

density is then

|ψ(x, t)|2 =
1

βt

√
π
e
−

(x−Ft2

2m )2

β2
t (5.19)

where βt = h̄γ
√

1 + t2

t20
. This analytic solution has produced a Gaussian distribution

as the description of the probability amplitude. We modify Eq. (5.19) slightly by

recalling that our setup requires the packet to move to the left. This introduces an

additional negative sign in the exponent. We also added a term in the denominator, σ

to control the width of the peak and shifted the peak into the center of the capacitor

at x = 12.5. The Maple code for this modified Gaussian function is given below,

f:=(1/sigma)*1/(betat*sqrt(Pi))*exp(((-(-(x-12.5)-t^2)^2)

/((sigma^2)*betat^2)));

where

betat:=sqrt(1+0.0001*t^2):.

Here we have set t0 = 10000 so that the peak would spread slowly. We have also

included the natural units and the choice of our slope equal to one. This gives

f =
1

σβt

√
π
e
−
(−x+12.5−t2)

2

σ2βt
2 . (5.20)
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Figure 5.7 The Gaussian function representing the probability amplitude

from the analytic solution
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Figure 5.8 The Gaussian function at times t = 0, t = 1, t = 2, and t = 3

(color in electronic version)

A plot of this Gaussian function for σ = 0.6 at time t = 0 is given in Fig. 5.7. As

time progresses, this Gaussian function accelerates to the left. It spreads out very

slowly because of our choice for t0. A plot of this Gaussian function for times t = 0,

t = 1, t = 2, and t = 3 is shown in Fig. 5.8.
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5.4 Dispersion times comparison

One of the interesting features that comes from the analytic solutions is the ability

to compare them with the numerical solutions. We are particularly interested in the

dispersion time of each packet. This is the amount of time required before significant

dispersion or spreading is observed in either case. In the case of the δ function,

significant dispersion occurs after only a fraction of a time unit. We are interested

in comparing the dispersion of this δ packet with the motion of the Gaussian packet.

We are also interested in any similarities that exist between the motion of the two

peaks. A plot of the two peaks is shown in Fig. 5.9 for t = 0, t = 0.1, t = 0.2, and

t = 0.3.

We know that the Gaussian function is accelerating but it starts from rest and

thus moves very slowly during the first few fractions of a time unit. The δ function

disperses before the Gaussian has moved a significant distance. We had suspected

that the dispersion we were seeing was related to the numeric issues of the problem

rather than any actual specific quantum phenomenon. This comparison helped to

support our beliefs about the nature of the dispersion.

5.5 Discussion

When initially considering the model for the wave packet we did consider the idea of

using a Gaussian distribution. We decided that either method should work, because

of the relationship showing that δ functions can be written as the limit of infinitely

narrow Gaussians,2

δ(x) = lim
ε→0+

1

2
√
πε
e
−x2

4ε . (5.21)

Thus our approach of using an approximate δ function seems to be mathematically

sound.
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Figure 5.9 The Gaussian and δ plotted for t = 0, t = 0.1, t = 0.2, and

t = 0.3
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It is interesting to note that while we were studying the dispersion of our wave

packet we encountered an article addressing a similar problem.7 We ultimately found

the solution in Robinett’s text6 which, as previously mentioned, was derived using a

Gaussian packet in momentum space. In Churchill’s paper7 we found a description of

our problem with a statement about the nature of its difficulties. Churchill states that

modeling this problem from a numeric approach as we did was ”extremely difficult

and numerically intensive.”7

The combination of Robinett’s Gaussian solution in momentum space and the

numeric description by Churchill leads us to a few conclusions about the nature of

our project.6,7 From a mathematical standpoint, we are unaware of any mistakes that

were made in our derivations and expressions. We believe that we have correctly

modeled the wave packet.

The first conclusion we can make comes from the analytic solution. Since the

derivation was carried out in momentum space with a Gaussian function, we can

assume certain special properties about the wavefunctions. The first observation is

that the Gaussian distribution seems to be a more stable solution for this particular

problem. Airy functions are difficult to work with because of their complexity and

the math seems to be simpler with a Gaussian function.

Another observation we can make comes from comparing the dispersion times

for the two peaks. Since the δ function disperses so quickly when compared to the

Gaussian, we are lead to believe that the dispersion is not a purely quantum effect.

The numeric setup we are dealing with in Maple seems to have some complications.

It is possible that we made too many approximations or that Maple is unable to

obtain a stable solution. Modeling the system numerically does not work as well as

the analytic setup.
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Chapter 6

Conclusion

In this project we sought to find a quantum mechanical description of Thomson’s

determination of the charge-to-mass ratio e
m

for the electron. After modeling the sys-

tem and finding stationary solutions in the capacitor we combined them to construct

approximate δ function packets. We allowed these wave packets to evolve in time and

found the packets dispersing before we could observe their deflection. This compli-

cation prevented us from comparing the quantum results to the classical results with

the accuracy that we had expected.

We also found that the problem can be solved analytically in momentum space if

the peak is modeled with a Gaussian function. The apparent lack of dispersion in the

Gaussian packet would indicate that it is a better model for the probability amplitude

than the approximate δ function. The Gaussian and the δ function can be related

mathematically through the limiting relationship between the two functions. This

leads us to believe that there are problems with modeling the probability amplitude

with a δ function that are not inherent in the functions themselves.

This discrepancy was only one of the reasons that we had to question our numeric

approach using Maple. We also compared dispersion times between the two peaks,
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one being a Gaussian and the other a δ function. The dispersion in the δ function

happened far more quickly than it should have for the system involved. It also

dispersed long before any quantum mechanical dispersion or physical deflection was

observed in the Gaussian distribution. This leads us to believe that the dispersion we

are seeing is related to the numeric approach using Maple as opposed to any actual

physical quantum dispersion.

We can thus form some conclusions about our numeric approach. Although Maple

was an exceptionally useful aid during this research project, it struggled towards the

end with the time evolution. The primary reason for this was the analytic manip-

ulation of Airy functions. Maple is not able to perform important operations such

as integration when dealing with complicated expressions involving Airy functions.

There were several integrals we had to approximate with finite sums for this reason.

It is possible that our level of accuracy was just not adequate for the calculations

involved. It is also possible that Maple was not accurate enough to describe the time

evolution graphically. Maple was helpful but may not have been the best choice for

this project.

We also discovered an interesting property of Airy functions. The analytic deriva-

tion was carried out in momentum space to take advantage of the fact that Gaussian

wave packets of Airy functions can be integrated analytically.

In conclusion, we were able to model the Thomson experiment with the analytic

solution. The numeric approach in modeling the peak with an approximate δ function

was not as successful as we had hoped for. We could not avoid the occurrence of

dispersion in the peak. Our recommendation for any future study of the problem is

to better understand the nature of this dispersion. This might be accomplished by

systematically studying dispersion in different potentials. Also a systematic study of

wave packets of different shapes should give insights into the dispersion issue.
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Appendix A

Another Approach to the E-B

Relationship

It is interesting to note that there is a second way to obtain a mathematical link

between the fields from our original definition. We know that we are considering the

case where the forces are balanced and we have already used this to find a common

ratio. We can also consider that if the forces are balanced, there will be no deflection

of the ray and θ will be zero. We can set our two angle functions equal and opposite

to each other:

EqL

mv2
=
qBL

mv
. (A.1)

We can cancel some variables

E

v
= B (A.2)

and we obtain

E = Bv (A.3)

v =
E

B
(A.4)

which is the same relationship found in Eq. (3.123) using another method involving

forces.
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Appendix B

Maple Code for the Construction

of the Wave Packet

Below is the Maple code that was used to create the Airy wave packet with time

evolution included. The expression named shift at the end of the code is the expression

that is plotted for various times in Chapter 5 when dispersion is discussed.

> restart;with(plots):

> S1:=diff(diff(psi(x),x),x)=((-E))*psi(x):

> dsolve(S1,psi(x)):

> psi1:=A*sin(sqrt(E)*x)+B*cos((sqrt(E))*x):

> S2:=diff(diff(psi(x),x),x)=((alpha*x-E))*psi(x):

> dsolve(S2,psi(x)):

> psi2:=C*AiryAi(-(-1)*(alpha*x-E)/alpha)+D*AiryBi(-(-1)*(alpha*x-E)/alpha):

> S3:=diff(diff(psi(x),x),x)=(alpha*d-E)*psi(x):

> dsolve(S3,psi(x)):

> psi3:=F*exp(-(alpha*d-E)^(1/2)*x):

> dpsi1:=diff(psi1,x):
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> dpsi2:=diff(psi2,x):

> dpsi3:=diff(psi3,x):

> LBC:=evalf(subs(x=0,psi1)=subs(x=0,psi2)):

> LBCP:=evalf(subs(x=0,dpsi1)=subs(x=0,dpsi2)):

> LBCR:=evalf(subs(x=0,psi1))/evalf(subs(x=0,dpsi1))

=evalf(subs(x=0,psi2))/evalf(subs(x=0,dpsi2)):

> RBC:=evalf(subs(x=d,psi2)=subs(x=d,psi3)):

> RBCP:=evalf(subs(x=d,dpsi2)=subs(x=d,dpsi3)):

> RBCR:=evalf(subs(x=d,psi2))/evalf(subs(x=d,dpsi2))

=evalf(subs(x=d,psi3))/evalf(subs(x=d,dpsi3)):

> CoD:=solve(subs(D=1,RBCR),C):

> AoB:=solve(subs(B=1,C=CoD,D=1,LBCR),A):

> FoD:=solve(subs(D=1,C=CoD,RBC),F):

> BoD:=subs(D=1,C=CoD,rhs(LBC)):

> psi1:=BoD*(subs(A=AoB,B=1,psi1)):

> psi2:=subs(C=CoD,D=1,psi2):

> psi3:=FoD*(subs(F=1,psi3)):

> psifda1:=subs([alpha=1,d=25],psi1):

> psifda2:=subs([alpha=1,d=25],psi2):

> psifda3:=subs([alpha=1,d=25],psi3):

> n1:=sum(psifda1*psifda1,x=-25..0):

> n2:=sum(psifda2*psifda2,x=0..25):

> n3:=sum(psifda3*psifda3,x=25..35):

> N:=sqrt(1/(n1+n2+n3)):

> P1:=N*psifda1:

> P2:=N*psifda2:
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> P3:=N*psifda3:

> G:=piecewise(x<0 and x>-25,P1,x=-25,P1,x=0,P2,x>0 and

x<25,P2,x=25,P2,x>25 and x<35,P3,x=35,P3):

> F:=subs(x=12.5,G):

> Delta:=F*G:

> piece1:=sum(subs(E=E/1,Delta)*sin((2*E/1)*t),E=0.1..24.9):

> piece2:=sum(subs(E=E/1,Delta)*cos((2*E/1)*t),E=0.1..24.9):

> psixt:=piece2+I*piece1:

> conpsixt:=piece2-I*piece1:

> shift:=psixt*conpsixt:
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Appendix C

Further Localization of the

Probability Amplitude

The sum command in Maple is designed to add the terms of a series that differ by

integer increments. Chapter 4 describes the need for the integrals in our calculations

to be replaced by finite sums. We summed the terms in Maple using the sum command

but were then limited by the size of our interval. We used a change of variables method

in which the variables we were summing over were replaced by a smaller fraction of

the same variable. For example, summing E from 1 to 25,

25∑
E=1

E (C.1)

gives 25 terms from E = 1 to E = 25. This includes E = 1, 2, 3...etc. If we replace E

with another variable G such that G = E
10

, then summing G from G = 10 to G = 250

gives 241 terms in E from E = 1 to E = 25

250∑
G=10

G =⇒
25∑

E=1

E. (C.2)

This includes E = 1, 1.1, 1.2, 1.3...etc. We are summing over the same region but we

now have a much finer grid. The Maple code for this substitution is
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>Sum:=sum(subs(E=E/10,Delta),E=10..250);

where Delta is a function of the energy E. Adding more terms creates a more localized

peak in our probability distribution. This inherently carries with it certain quantum

effects such as dispersion that come from uncertainty.

Figure C.1 shows plots of similar wave packets that were constructed using sine

waves instead of Airy functions. They were constructed in the same way but represent

a different situation such as a particle in a rigid box with a flat potential. They

are plotted for different numbers of terms in the sum and show the effect on the

localization of the packet. In the plots, N is the number of terms in the sum used to

create the packet. Figure C.2 displays the four plots overlayed.
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Figure C.1 The approximate δ function constructed from sine waves plotted

for various values of terms in the sum
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Figure C.2 An overlay of the four plots from Fig. C.1. The curves with

decreasing halfwidths correspond to N = 2, 4, 10, 25



Appendix D

Quantum Mechanical Justification

Based on the Heisenberg Picture

In this project we took an approach to the Thomson experiment that was based on

the quantum mechanical description of the system involved. We sought to recover

the same results that we found in the classical case. The Thomson experiment is

most frequently treated as a classical system. Viewing it from a purely quantum

mechanical standpoint is not nearly as common. It makes sense to solve this system

using classical physics because everything works nicely. The claim of quantum theory,

however, is that it is a better description of how the physical world operates than

classical mechanics. We should thus be able to do anything with quantum mechanics

that we can do with classical physics. In this section I give some justification for the

treatment of the Thomson experiment, which is traditionally classical, as a quantum

mechanical system. This justification is based on the Heisenberg representation.

When working with constant state vectors, we are using the Heisenberg picture.

The time dependence of the operators is given by the Heisenberg equation.4 This
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equation states that for any operator A, its time evolution is given by

Ȧ =
1

ih̄
[A,H]. (D.1)

The Hamiltonian for an electron in the electric field of the Thomson experiment is3

H =
P 2

2m
+ αx (D.2)

where α is the slope of the potential energy in the capacitor model of section 2.3.

Since α is positive the electron is expected to accelerate towards the left. When we

substitute the Hamiltonian into the Heisenberg equation and use [x, P ] = ih̄ we get4

Ṗ =
1

ih̄
[P,H] =

1

ih̄
[P, αx] = − α

ih̄
ih̄ = −α. (D.3)

Thus

Ṗ = −α (D.4)

which is the constant force we expect from the electric field. Integrating to find P (t)

gives

P (t) = P0 − αt. (D.5)

We can do the same thing for the position operator. Applying the Heisenberg equation

gives

ẋ =
1

ih̄
[x,

P 2

2m
+ αx] =

2ih̄

ih̄2m
P =

P

m
. (D.6)

Therefore

ẍ =
1

ih̄
[ẋ, H] =

1

ih̄
[
P

m
,
P 2

2m
+ αx] = − α

m
. (D.7)

We can integrate to solve for x(t),

ẍ = − α
m

(D.8)

ẋ =
P0

m
− α

m
t (D.9)
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x(t) = x0 +
P0

m
t− α

2m
t2. (D.10)

The evolution of the operators can be compared to Eq. (3.22). It is showing constant

acceleration. From Eq.(D.10) we can derive the evolution of the expectation value of

the position.

< x(t) >=< x0 > +
< P0 >

m
t+

< α >

2m
t2. (D.11)

We can also derive an expression for the spreading of the wave packet. The

uncertainty in x is given by4

∆x2 =< x2 > − < x >2 . (D.12)

We have just found an expression for x given by

x = x0 +
P0

m
t− α

2m
t2 (D.13)

and thus

x2 = x2
0 +

(
P0

m

)2

t2 +
α2t4

4m2
+
x0P0t

m
+
P0x0t

m
− x0αt

2

m
− αP0t

3

m2
. (D.14)

Therefore

< x2 >=< x2
0 > + < P 2

0 >
t2

m2
+
α2t4

4m2
+
< x0P0 >

m
t+
< P0x0 >

m
t−αt

2

m
< x0 > −

αt3

m2
< P0 > .

(D.15)

The expectation value of x is given by

< x >=< x0 > + < P0 >
t

m
− αt2

2m
(D.16)

and thus

< x >2=< x0 >
2 +

< P0 >
2 t2

m2
+
α2t4

4m2
+2 < x0 >< P0 >

t

m
−< x0 > αt2

m
−αt

3 < P0 >

m2
.

(D.17)
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The spreading is then given by

∆x2 =< x2 > − < x >2 (D.18)

=< x2
0 > − < x0 >

2 +(< P 2
0 > − < P0 >

2)
t2

m2
+

2t

m

(
< P0x0 + x0P0 >

2
− < x0 >< P0 >

)
.

(D.19)

Thus

∆x2 = ∆x2
0 + ∆P 2

0

t2

m2
+

2t

m

(
< P0x0 + x0P0 >

2
− < x0 >< P0 >

)
. (D.20)

It is interesting to note that α is not contained in the expression. This means that

the spreading is independent of the slope of the potential. It is also interesting to

note that the uncertainty in x is identical to that of the free particle. We can use the

same method for the momentum. We begin with

P (t) = P0 − αt (D.21)

and

< P >=< P0 > −αt. (D.22)

We then proceed to find the values we need for the uncertainty. We find the square

of the momentum

P 2 = P 2
0 + α2t2 − 2αP0t. (D.23)

Thus

< P >2=< P0 >
2 +α2t2 − 2α < P0 > t (D.24)

and

< P 2 >=< P 2
0 > +α2t2 − 2α < P0 > t. (D.25)

We can then find the uncertainty,

∆P 2 =< P 2 > − < P >2= ∆P 2
0 (D.26)
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∆P 2(t) = ∆P 2
0 . (D.27)

If we minimize the uncertainty between these two quantities by setting their product

equal to h̄,

∆x∆P =
h̄

2
(D.28)

then we can assign values as

∆x0 =

√
h̄

2
(D.29)

and

∆P0 =

√
h̄

2
. (D.30)

This results in the following expression for the square of the uncertainty in x,

∆x2 =
h̄

2

(
1 +

t2

m2

)
+

2t

m

(
< P0x0 + x0P0 >

2
− < x0 >< P0 >

)
. (D.31)
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47, 57, 72
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Linear combination, 28
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Magnetic field, 11
Maple, 2, 34, 36, 37, 39, 40, 55, 57, 58,

63, 67
Minimize, 75
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Momentum space, 2, 48, 55, 57, 58

Newton, 6, 9, 27
second law, 11, 14
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Normalization, 2, 37, 38
constant, 37

Orthogonal, 5, 9, 17

Parabola, 45, 46
Parametric equations, 17, 18
Peak width, 50
Piecewise function, 34, 37
Position space, 48, 49
Potential, 2, 27, 47, 58, 68, 74

constant, 7, 28, 32
energy, 7, 27, 28, 72
linear, 6, 29, 32
well, 6, 7, 31
zero, 7, 32

Probability
amplitude, iv, 38, 39, 48, 50, 57
density, 36, 50
distribution, 68

Pythagorean, 13

Quadratic relation, 12
Quantum, 1, 2, 9, 18, 27

effect, 2, 40, 55, 68
mechanics, iv, 1, 2, 57, 58, 71

Relativistic, 27
Right-hand rule, 24
Robinett, 48, 55

Schrödinger, 2, 27–29, 32, 48
Selection, 47
Slope, 14, 23, 29, 32, 47, 48, 50, 72, 74
Small angle approximation, 23
Spreading, 45, 47, 50, 53, 73, 74
Summation, 36–38, 45, 47, 58, 67, 68
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39, 57, 58, 71, 72

Time
dependence, 39, 71
evolution, iv, 2, 58, 63, 72
function of, 11, 16
independent, 27

initial, 17
Trajectory, iv, 2, 13

circular, 6, 17, 18, 21, 22
parabolic, 12
straight line, 25

Trigonometric
functions, 20
identity, 21

Uncertainty, iv, 36, 47, 68, 73–75
Uncoupled, 15
Units

natural, 33, 50
SI, 22

Velocity, 3, 5, 13, 17, 18, 24
Voltage, 4

Wave packets, iv, 2, 36, 37, 39, 40, 45, 47,
48, 50, 53, 55, 57, 58, 63, 68, 73
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