
1 
 

 

Red/green Colorblindness Simulation: Creating a Colorblind Friendly Environment  

 

 

 

Jenny Kang 

 

 

 

A senior capstone project report submitted to the faculty of  

Brigham Young University  

In partial fulfillment of the requirements for the degree of  

Bachelor of Science  

 

 

 

David Allred, Advisor 

 

 

Department of Physics and Astronomy 



2 
 

Brigham Young University 

April 14, 2021 

 

Abstract 

Red/green Colorblindness Simulation: Creating a Colorblind Friendly Environment  

Jenny Kang 

Department of Physics and Astronomy, BYU 

Bachelor of Science 

 

A revolutionary solution for colorblindness was devised by Dr. Don McPherson who invented 

color corrective glasses for the colorblind to see colors in 2012. We are hoping to create greater 

empathy for colorblind individuals and to assist in creating a more colorblind-accessible 

environment. Hence, converse to the colorblind corrective glasses, in this project we assumed a 

person with normal color vision would perceive the world as a red-green colorblind person if 

only 540 nm to 570 nm of wavelengths transmitted through by the dichroic filters. We report on 

the creation of googles that causes people wearing them to lose red-green discrimination. Our 

goal is to allow non-colorblind individuals to experience red/green colorblindness. Seventeen 

volunteers completed Ishihara colorblind tests, sixteen of them with healthy color vision were 

diagnosed as severely red/green colorblind while taking the test with colorblind goggles on.  
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Chapter 1: Introduction 

1.1 Motivation and Background 

Approximately 300 million people worldwide suffer from color blindness—roughly 1 in 

10 men in most Caucasian populations [1]. The struggles of colorblind people might not be as 

obvious as other forms of disability; nevertheless, colorblind individuals can face many 

challenges in their day-to-day life. These challenges may manifest in routine activities including 

preparing and cooking for meals, charging electronics which use red/green indicator lights, 

operating a vehicle, and selecting clothing. Moreover, some people may not notice sunburns on 

their children or discoloring in their stool due to diseases [2]. There are several types and various 

levels of severity of color blindness; because the most common form is red/green color 

blindness, our project will focus on this type. 

Human eyes have photoreceptors on the retina: color detectors called cones. Each cone 

contains a type of opsin protein, and each protein responds to different wavelengths of light. S-

opsin is sensitive at short wavelengths (blue, ~430 nm), M-opsin at medium wavelengths (green, 

~530 nm), and L-opsin at long wavelengths (red, ~560 nm) [3]. When the energy carried by light 

transfers to cones, the opsin protein changes shape, sending signals to the brain. Red/green 

colorblindness is caused by defects in M-opsin, shifting its sensitivity closer to L-opsin. 

Therefore, the brain receives signals from both M-opsin and L-opsin when viewing certain colors 

instead of just red or green, see Fig.1. 

 

 

 

Figure 1: Color cone comparison between normal vision and red/green colorblindness 
Source: Enchroma.Com, https://enchroma.com/pages/what-is-color-blindness 
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Hence, one solution to the problem of simultaneous activation of two different color 

cones is to filter out the wavelengths that the cones cannot differentially respond to by adding 

optical filters, which control the transmittance of the light at certain wavelengths. Thus, the brain 

will not be confused by two signals and only produce one color at a time. See Fig. 2. These 

wavelengths correspond mostly to the yellow to yellow-green portion of the spectrum.  

 

 

1.2 Objective of the Research 

Opposite of colorblind correcting glasses, in this project we assumed that if we used 

filters to block out the wavelengths that M-opsin and L-opsin can distinctly respond to, leaving 

only the wavelengths that confused the brain when seeing red or green together, a person with 

healthy color vision would perceive the world as a red/green colorblind person does. In short, 

we aimed to create classes that simulate red/green colorblindness in a user with normal 

vision. By doing so, we hoped to create greater empathy for colorblind individuals and to assist 

in creating a more colorblind- environment. 

 

 

 

 

Figure 2: The black line is the transmittance spectrum of colorblind correcting lenses created 

by Dr. McPherson 
Source: H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were 

derived from Wright-Guild data,” Color Res. Appl. 22(1), 11–23 (1997).  
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Chapter 2: Methods  
 

In this chapter we are going to unfold the mechanisms and process of creating a goggle   

which cause a normal vision person to become red/green colorblind.  

2.1 Dichroic Filters  
 

  2.1.1 Characteristics of Bandstop and Shortpass Filters  
 

Dichroic filters were used because the transmission as a function of wavelength 

range could be modulated by the thickness and the layers of coatings. In addition, 

tilting the filters changes the position of transmission bands. As light travels through 

coatings with different indices, optical interferences occur and phase reflections are 

produced [4]. Some resonate constructively, others cancel out destructively; only 

certain wavelengths can transmit through while the unwanted wavelengths are 

reflected. This was a desirable characteristic for our experiment, since we needed to 

tune the filters so that only a narrowband, centered on the the target wavelength 

would go through filters [5]. Hence, shortpass filters have a role to play. They allow 

shorter wavelengths to transmit through while reflecting all the longer wavelengths. 

Contrarily, bandpass filters are designed to allow longer wavelengths to transmit 

through and to reflect all the shorter wavelengths.  

The extreme angle sensitivity of dichroic filters was a desirable characteristic to 

design our goggles. As dichroic filters were tilted away from the normal, the 

transmission spectrum is shifted to the shorter wavelengths. The shifted wavelength 

𝜆𝜃 could be calculated through following the formula:   

 

                                                       𝝀𝜽 =  𝝀𝟎√𝟏 − (
𝐬𝐢𝐧 𝜽

𝓷𝒆𝒇𝒇
)

𝟐

                                               (1) 

 

Where 𝜆0 is the unshifted wavelength at normal incidence, 𝜃 is the angle of 

incidence and 𝓃ℯ𝒻𝒻 is the effective refractive index inside the filter.  

We used a spectrometer to characterize filters we obtained for our project. A 

spectrometer is a device to decompose wavelengths of light. In our case, the 

intensity of the spectra is converted into counts via an analog-to-digital converter 

(ADC). We integrated 100 data points over 50 ms on average. To get accurate 

measurements, we first collected the data of ambient light and subtracted the ADC 

counts of ambient light for the following four measurements, bandstop with angle of 
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incidence (AOI) of 0, 15, 30, and 45 degrees. AOI alludes to the tilt of the optical 

filter with respect to the incident light. Zero AOI is defined from the normal 

incidence. In Fig. 3 below, the collected data of light transmission with various AOIs 

using the spectrometer are shown. In the next section we will discuss which angle 

would capture the best target wavelengths to simulate red-green colorblindness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

2.1.2 Target Wavelength Range  

 

  

  

Figure 3: Bandstop filter tilted at different angles (a)AOI at 0 degrees (b) AOI at 15 degrees 

(c) AOI at 30 degrees (d) AOI at 45 degrees.  
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To cause color blindness for a person with normal vision, we aimed to block 

out the shorter wavelengths M-opsin responded to and the longer wavelengths L-

opsin responds to while still retaining the range 535 nm - 575 nm. M-opsin and L-

opsin were most likely to overlap and be activated simultaneously within this range. A 

combination of two optical filters attained the target range:  

 

• Filter 1: A dichroic shortpass filter (570FDS) reduced the 

transmittance of the wavelengths that were longer than 570 nm.  

• Filter 2: A dichroic bandstop filter (537 FDN) at AIO of 45 degrees cut 

off the transmittance wavelengths that were between 440 nm to 540 

nm, which reduce most of the transmittance of green and still allow 

blue to go through. 

 

 Combining these two filters, we hoped to see the color spectrum shown in Fig. 4, red 

and green should turn into a combination of red and green, yellowish brown.  

 

  

  

    
   

 

 

 

After finding the desirable target wavelength, we used spectrometry to measure 

transmittance. We stacked two filters together: the bandpass filter and the shortpass 

filter. The bandstop filter was tilted at 45 degrees and the shortpass filter was at 

normal incidence. The transmittance of the combined filters is shown in Fig. 5. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: Normal and Deuteranopia (also called green-blind) colorblind spectrum 
Source: Color-Blindness.Com, https://www.color-blindness.com/deuteranopia-red-green-color-

blindness/ 
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The black line shows the range of wavelengths which will transmit through 

the filters is centered on 550 nm. Theoretically, the range is the band of wavelengths 

for which the brain cannot differentiate red and green colors well; consequently, 

people with normal color vision will become red/green colorblind. As we saw the 

experimental data line up with our expectation, we saw the probability of achieving 

the research’s aim increase.  

2.2 Computational Simulation   
 

 Make computer simulation of red/green colorblindness with collected data in python.  

 

      2.2.1 Computational Techniques and Algorithms  
 

To obtain the principal wavelength by converting an RGB image (red, green, 

and blue) to HSV (hue, saturation, and value), we followed the formula outlined in 

the previous entry. After obtaining that wavelength, we calculated the ratio of L- and 

M-cone sensitivities multiplied by the transmission of combined filters at that 

wavelength. We reasoned that it might be a decent approximation of the impact of 

our filters to ensure that the ratio of R and G (red and green) values were equal to 

Figure 5: Target wavelength through combine filters 
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that ratio. That is, if ~550 nm wavelength is supposed to evenly trigger red and 

green based on the adjusted sensitivities, we would expect to see an even amount of 

R and G. Essentially, we used R, G, and B as proxies of the triggering of L, M, and 

S cones, respectively.  

Here is the process that results in R/G = L/M without dramatically reducing 

brightness of pixel:  

1. Create HSV array from RGB array for each pixel 

2. Obtain principal wavelength from H of HSV array  

3. Calculate L and M cone sensitivity at that wavelength  

4. Calculate sqrt(L/M)  

5. Average R and G  

6. Set R equal to (Average) * sqrt(L/M)  

7. Set G equal to (Average) / sqrt(L/M)  

 

Performing this operation on a rainbow, produced better results than we had 

initially, though they were still not perfect. Note, for example, the obvious 

discontinuity in Fig. 6 below.  

  

  
 

         2.2.2 Challenges in Computational Simulation 

  
In the first place, it is a difficult problem, as real-life colors are not 

monochromatic, and there is a good amount of biology tied up in how we perceive 

colors. Additionally, it is quite difficult to determine how to modify a pixel as if 

seen through a filter, which has broadband effects that change the character of image 

perceived, when the only information that can possibly be gained about the pixel is 

its dominant wavelength. For example, if we looked at a pure red object through our 

filter, we would not expect it to be pitch black. Thus, the simple model above would 

not work. We determined that the biggest flaw in the way we had been approaching 

this program was that we had completely ignored the cones of the eye, L for red, M 

for green, and S for blue. It was beyond our scope to make an accurate complex 

computer simulation of human eyes; therefore, a clinical experiment was carried out.  

     Figure 6: Simulation of color spectrum of anticipated red/green colorblindness 
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2.3 In Clinical Experiment    
 

            2.3.1 Testing Method and Procedure   
 

We invited 17 people from a senior lab class at BYU to participate in the 

Ishihara red-green colorblindness test with and without the colorblind goggles we 

had created. This test contains colored digits which test takers view in a petri dish of 

colored splotches. Normal-visioned people see 74 in Fig 6 (a), while mildly red-

green colorblind people often see 21, and severely colorblind people cannot make 

anything out.  

  This is the procedure of the clinical test is: first, we had the participant wear 

the goggles for a couple minutes, so their brain could adjust to them. Then, we led 

the volunteer into a dark room which we administered the test. We darkened the 

room to mitigate the effects of ambient light, which would otherwise cause 

reflections on the filters and make it harder to see the test through the goggles. We 

asked the participants to hold the goggles straight and view the test, shown on a 

computer screen, straight-on. Keeping the viewing angle is necessary because the 

transmission of the filters changes as a function of the angle of incident light. We 

stepped through the twelve images of the selected test and then recorded the 

responses of the goggle wearing participants. After taking the test with the goggles, 

the participant would take the same test again without the goggles in order to control 

for the possibility that some participants would be unable to resolve the numbers 

even without the goggles.  

Example images from the test are shown in Fig. 6 below. Fig. 6 (a) and (b) 

are taken with the same phone camera; the image on the left is direct, and the image 

on the right is through our goggles. Finished colorblind goggles are shown in Fig. 7. 

Since we stacked two lenses together and the bandpass filter is tilted 45 degrees, the 

goggles are shaped like binoculars.  
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Figure 6: Pictures of Ishihara test (a) without goggles on (b) with goggles on  

 

  

Figure 7: Picture of the final product: colorblindness goggles 

 

 

 

Chapter 3: Results and Conclusions 

 

3.1 Experimental Results 

 

 3.1.1 Data Analysis  

 

From the Ishihara test result of 17 volunteers, we found that almost 100% of the 

responses indicated the test takers had sever colorblindness while wearing the 

colorblindness goggles, see Fig. 8. We had successfully created goggles that tricked the 

(a) (b) 
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brain and induced colorblindness in people who were not affected by any color vision 

impairments. Even with a small data sample, the test results presented consistent and 

strong evidence in support of our conclusion.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  3.1.2 Highlighted Result: Cory 

One of the volunteers, Cory, was unaware of his colorblindness until he took the 

Ishihara test without the glasses. We found out that he responded to a certain question 

incorrectly in the same way (that is, reporting 21 instead of 74) as many participants did 

while wearing the glasses.  People with normal vision would see 74 in Figure 6 (a) in 

chapter 2, while mildly red-green deficiencies often see 21 [6]. Cory’s test result and his 

responses reinforced our experiment’s conclusion and proved that the colorblindness 

goggles we had created provide the desired result.  

 

3.2 Conclusions 

 
We had proposed that by only letting through the undistinguishable wavelength, the  

overlapping area of M-opsin and L-opsin activating wavelengths, people with normal color 

vision would experience see a red-green colorblind world. In this paper we showed that by 

stacking two dichroic filters, the shortpass filter (570 FDN) and the bandpass filter (537 

FDN) at 45 degrees AOI, wavelengths that are between 540 nm to 570 nm would transmit 

through. The M-opsin and L- opsin would be activated simultaneously to then simulate 

red/green colorblindness. With these glasses, people with normal vision can gain a greater 

Figure 8.  Ishihara test results (a) Average percent correct across all participants 

(b) Percentage of correct responses by each test item 

 

 

 

 

 

(a) (b) 
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Empathy for those who affected by colorblindness. This also allows engineers to create a 

safer and more mindful environment for those with color deficiencies.  
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Appendix  

Computer simulation code 

# This is a sample Python script. 

 

# Press ⌃R to execute it or replace it with your code. 

# Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. 

 

import numpy as np 

import matplotlib.pyplot as plt 

# # https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html 

from scipy.interpolate import interp1d 

 

class Optical: 

    wavelengths = [] 

    transmittances = [] 

    pairing = [] 

 

# Create list of wavelengths, every ten nm, across visible spectrum 

# Taking visible spectrum to be 380 to 700 nm 

wavelengthArray = np.arange(380, 710, 10).tolist() 

 

# For each Optical object 

# Create a list of transmission percentages 

# This is done by visual inspection, yuck 

# Make sure they line up with the correct index of wavelength 

 

shortPass = Optical() 

shortPassTransmission = [0.40, 0.75, 0.91, 0.94, 0.93, 0.93, 0.95, 0.93, 0.94, 0.95, 0.93, 0.91, 0.93, 0.94, 0.93, 0.95, 

0.96, 0.96, 0.90, 0.70, 0.15, 0.08, 0.03, 0.02, 0.01, 0, 0, 0, 0, 0, 0, 0, 0] 

 

# Helps make it easier to not lose your place when looking at graphs 

for i in range(0, len(wavelengthArray) - len(shortPassTransmission)): 

    wavelengthArray.pop() 

merged = tuple(zip(wavelengthArray, shortPassTransmission)) 

# print(merged) 

 

shortPass.wavelengths = wavelengthArray 

shortPass.transmittances = shortPassTransmission 

shortPass.pairing = tuple(zip(wavelengthArray, shortPassTransmission)) 

 

# BANDSTOP 

bandStop = Optical() 

 

#wavelengthArray = np.arange(380, 710, 10).tolist() 

 

bandStopTransmission = [0.75, 0.82, 0.89, 0.90, 0.90, 0.89, 0.91, 0.91, 0.91, 0.93, 0.85, 0.20, 0.05, 0.03, 0.01, 0.01, 

0.01, 0.02, 0.03, 0.10, 0.40, 0.92, 0.94, 0.94, 0.92, 0.91, 0.91, 0.93, 0.93, 0.92, 0.91, 0.91, 0.91] 

 

#Helps make it easier to not lose your place when looking at graphs 

for i in range(0, len(wavelengthArray) - len(bandStopTransmission)): 

    wavelengthArray.pop() 

merged = tuple(zip(wavelengthArray, bandStopTransmission)) 

# print(merged) 
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bandStop.wavelengths = wavelengthArray 

bandStop.transmittances = bandStopTransmission 

bandStop.pairing = tuple(zip(wavelengthArray, bandStopTransmission)) 

 

 

# COMBINED 

combinedFilters = Optical() 

combinedFilters.wavelengths = wavelengthArray 

combinedFilters.transmittances = [] 

for i in range(0, len(wavelengthArray)): 

    combinedFilters.transmittances.append(abs(shortPass.transmittances[i] * bandStop.transmittances[i])) 

merged = tuple(zip(combinedFilters.wavelengths, combinedFilters.transmittances)) 

# print(merged) 

 

# BANDSTOP 45, angle of incidence 

bs45 = Optical() 

bs45Transmission = [0.65, 0.75, 0.71, 0.67, 0.62, 0.50, 0.30, 0.18, 0.10, 0.03, 0.02, 0.01, 0.01, 0.01, 0.02, 0.07, 0.60, 

0.70, 0.58, 0.70, 0.85, 0.82, 0.83, 0.84, 0.83, 0.82, 0.81, 0.72, 0.61, 0.43, 0.25, 0.15, 0.09] 

 

for i in range(0, len(wavelengthArray) - len(bs45Transmission)): 

    wavelengthArray.pop() 

merged = tuple(zip(wavelengthArray, bs45Transmission)) 

# print(merged) 

 

bs45.wavelengths = wavelengthArray 

bs45.transmittances = bs45Transmission 

bs45.pairing = tuple(zip(wavelengthArray, bs45Transmission)) 

 

sp0bs45 = Optical() 

sp0bs45.wavelengths = wavelengthArray 

sp0bs45.transmittances = [] 

 

for i in range(0, len(wavelengthArray)): 

    sp0bs45.transmittances.append(abs(shortPass.transmittances[i] * bs45.transmittances[i])) 

merged = tuple(zip(sp0bs45.wavelengths, sp0bs45.transmittances)) 

print(merged) 

 

 

spf = interp1d(shortPass.wavelengths, shortPass.transmittances, kind='cubic') 

plt.plot(shortPass.wavelengths, shortPass.transmittances, 'o', shortPass.wavelengths, spf(shortPass.wavelengths), '--') 

plt.title("Short Pass at 0 AOI") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Transmission") 

plt.show() 

 

bsf = interp1d(bandStop.wavelengths, bandStop.transmittances, kind='cubic') 

plt.plot(bandStop.wavelengths, bandStop.transmittances, 'o', bandStop.wavelengths, bsf(bandStop.wavelengths), '--') 

plt.title("Band Stop at 0 AOI") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Transmission") 

plt.show() 

 

cf = interp1d(combinedFilters.wavelengths, combinedFilters.transmittances, kind='cubic') 

plt.plot(combinedFilters.wavelengths, combinedFilters.transmittances, 'o', combinedFilters.wavelengths, 

cf(combinedFilters.wavelengths), '--') 



19 
 

plt.title("Combined Filters, 0 AOI") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Transmission") 

plt.show() 

 

bs45f = interp1d(bs45.wavelengths, bs45.transmittances, kind='cubic') 

plt.plot(bs45.wavelengths, bs45.transmittances, 'o', bs45.wavelengths, bs45f(bs45.wavelengths), '--') 

plt.title("BandStop at 45 Degrees AOI") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Transmission") 

plt.show() 

 

sp0bs45f = interp1d(sp0bs45.wavelengths, sp0bs45.transmittances, kind='cubic') 

plt.plot(sp0bs45.wavelengths, sp0bs45.transmittances, 'o', sp0bs45.wavelengths, sp0bs45f(sp0bs45.wavelengths), '--

') 

plt.title("Combined Filters, SP 0, BS 45 AOI") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Transmission") 

plt.savefig("ShortpassBandstop45") 

plt.show() 

 

# Now I will make Optical() objects for each of the cones in the eye 

# In this case "transmittance" is actually sensitivity 

# Values taken from the graph available at https://en.wikipedia.org/wiki/Spectral_sensitivity 

# Values are normalized 

scone = Optical(); 

scone.transmittances = [] 

sconeSensitivities = [0.01, 0.03, 0.06, 0.18, 0.55, 0.85, 1, 0.9, 0.75, 0.45, 0.3, 0.18, 0.12, 0.08, 0.06, 0.03, 0.02, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

 

# To help with inputting values 

for i in range(0, len(wavelengthArray) - len(sconeSensitivities)): 

    wavelengthArray.pop() 

merged = tuple(zip(wavelengthArray, sconeSensitivities)) 

print(merged) 

 

scone.wavelengths = wavelengthArray; 

scone.transmittances = sconeSensitivities 

 

sconef = interp1d(scone.wavelengths, scone.transmittances, kind='cubic') 

plt.plot(scone.wavelengths, scone.transmittances, 'o', scone.wavelengths, sconef(scone.wavelengths), '--') 

plt.title("S-Cone Sensitivity") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Sensitivity") 

plt.savefig("S-Cone") 

plt.show() 

 

 

mcone = Optical(); 

mcone.transmittances = [] 

mconeSensitivities = [0, 0, 0.01, 0.02, 0.04, 0.07, 0.09, 0.1, 0.12, 0.16, 0.25, 0.35, 0.55, 0.75, 0.97, 1, 0.98, 0.9, 0.85, 

0.75, 0.60, 0.45, 0.35, 0.25, 0.17, 0.09, 0.07, 0.03, 0.02, 0.01, 0, 0, 0] 

 

# To help with inputting values 

for i in range(0, len(wavelengthArray) - len(mconeSensitivities)): 

    wavelengthArray.pop() 
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merged = tuple(zip(wavelengthArray, mconeSensitivities)) 

print(merged) 

 

mcone.wavelengths = wavelengthArray; 

mcone.transmittances = mconeSensitivities 

 

mconef = interp1d(mcone.wavelengths, mcone.transmittances, kind='cubic') 

plt.plot(mcone.wavelengths, mcone.transmittances, 'o', mcone.wavelengths, mconef(mcone.wavelengths), '--') 

plt.title("M-Cone Sensitivity") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Sensitivity") 

plt.savefig("M-Cone") 

plt.show() 

 

 

lcone = Optical(); 

lcone.transmittances = [] 

lconeSensitivities = [0, 0, 0, 0, 0, 0.01, 0.02, 0.04, 0.06, 0.1, 0.14, 0.2, 0.3, 0.4, 0.55, 0.7, 0.83, 0.9, 0.99, 0.98, 0.94, 

0.89, 0.81, 0.7, 0.6, 0.45, 0.28, 0.17, 0.1, 0.05, 0.02, 0.01, 0] 

 

# To help with inputting values 

for i in range(0, len(wavelengthArray) - len(lconeSensitivities)): 

    wavelengthArray.pop() 

merged = tuple(zip(wavelengthArray, lconeSensitivities)) 

print(merged) 

 

lcone.wavelengths = wavelengthArray; 

lcone.transmittances = lconeSensitivities 

 

lconef = interp1d(lcone.wavelengths, lcone.transmittances, kind='cubic') 

plt.plot(lcone.wavelengths, lcone.transmittances, 'o', lcone.wavelengths, lconef(lcone.wavelengths), '--') 

plt.title("L-Cone Sensitivity") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Sensitivity") 

plt.savefig("L-Cone") 

plt.show() 

 

 

plt.plot(wavelengthArray, sp0bs45f(wavelengthArray), 'k--', wavelengthArray, sconef(wavelengthArray), 'b', 

wavelengthArray, mconef(wavelengthArray), 'g', wavelengthArray, lconef(wavelengthArray), 'r') 

plt.title("Sensitivies by Cone") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Normalized Sensitivity") 

plt.legend(['Transmission (BS45)', 'S-Cone', 'M-Cone', 'L-Cone'], loc='best') 

plt.savefig("Sens_Transm") 

plt.show() 

 

plt.plot(wavelengthArray, sconef(wavelengthArray), 'b', wavelengthArray, mconef(wavelengthArray), 'g', 

wavelengthArray, lconef(wavelengthArray), 'r') 

plt.title("Sensitivities of the Optical Cones of the Human Eye") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Normalized Sensitivity") 

plt.legend(['S-Cone', 'M-Cone', 'L-Cone'], loc='best') 

plt.savefig("Sensitivities") 

plt.show() 
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plt.plot(wavelengthArray, spf(wavelengthArray), 'b:', wavelengthArray, bs45f(wavelengthArray), 'y--', 

wavelengthArray, sp0bs45f(wavelengthArray), 'g-.') 

plt.title("Transmission of Chosen Filters") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Sensitivity") 

plt.legend(['Shortpass', 'Bandstop at 45 Deg.', 'Combined'], loc='best') 

plt.savefig("Transmission_of_filters") 

plt.show() 

 

plt.plot(wavelengthArray, sconef(wavelengthArray)*sp0bs45f(wavelengthArray), 'b', wavelengthArray, 

mconef(wavelengthArray)*sp0bs45f(wavelengthArray), 'g', wavelengthArray, 

lconef(wavelengthArray)*sp0bs45f(wavelengthArray), 'r') 

plt.title("Sensitivities x Transmission") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Sensitivity") 

plt.legend(['S-Cone', 'M-Cone', 'L-Cone'], loc='best') 

plt.savefig("Sens_x_Transm") 

plt.show() 

 

import pandas as pd 

 

cols = ['Pixel', 'Wavelength', 'Sum', 'Average'] 

 

# Ambient light data, subtract off from the average of other experimental 

ambientlight = pd.read_csv('ambient-avg100_50ms.csv') 

ambientlight.columns = cols 

 

ambientlightf = interp1d(ambientlight['Wavelength'], ambientlight['Average'], kind='cubic') 

plt.plot(ambientlight['Wavelength'], ambientlightf(ambientlight['Wavelength'])) 

plt.title("Ambient Light, No Filters") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts") 

plt.savefig("AmbientLight") 

plt.show() 

 

# White light, experimental 

whitelight = pd.read_csv('whitelight-avg100_50ms.csv') 

whitelight.columns = cols 

# Subtract off ambient light 

whitelight['Average'] -= ambientlight['Average'] 

whitelightf = interp1d(whitelight['Wavelength'], whitelight['Average'], kind='cubic') 

plt.plot(whitelight['Wavelength'], whitelightf(whitelight['Wavelength'])) 

plt.title("Light from Source, No Filters") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts") 

plt.savefig("SourceLight") 

plt.show() 

#%% 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

bandstopfar_0_45 = pd.read_csv('bandstopfar_0_45.csv') 

cols = ['Pixel', 'Wavelength', 'Sum', 'Average'] 

bandstopfar_0_45.columns = cols 

# Subtracting ambient light here makes graph blank; goes negative somewhere? 

bandstopfar_0_45f = interp1d(bandstopfar_0_45['Wavelength'], bandstopfar_0_45['Average'], kind='cubic') 
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plt.plot(bandstopfar_0_45['Wavelength'], bandstopfar_0_45f(bandstopfar_0_45['Wavelength'])) 

plt.title("(d) $\u03B8 = 45^\circ$", fontsize = 18) 

plt.xlabel("Wavelength (nm)", fontsize = 13) 

plt.ylabel("ADC Counts", fontsize = 13) 

plt.savefig("BandStopFar_0_45_Exp") 

plt.show() 

#%% 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.interpolate import interp1d 

bandstopfar_0_0 = pd.read_csv('bandstopfar_0_0.csv') 

cols = ['Pixel', 'Wavelength', 'Sum', 'Average'] 

bandstopfar_0_0.columns = cols 

# Subtracting ambient light here makes graph blank; goes negative somewhere? 

bandstopfar_0_0f = interp1d(bandstopfar_0_0['Wavelength'], bandstopfar_0_0['Average'], kind='cubic') 

plt.plot(bandstopfar_0_0['Wavelength'], bandstopfar_0_0f(bandstopfar_0_0['Wavelength'])) 

plt.title("(a) $\u03B8 = 0^\circ $", fontsize = 18) 

plt.xlabel("Wavelength (nm)", fontsize = 13) 

plt.ylabel("ADC Counts", fontsize = 13) 

plt.savefig("BandStopFar_0_0_Exp") 

plt.show() 

#%% 

plt.plot(wavelengthArray, sp0bs45f(wavelengthArray)*65535, 'k--', wavelengthArray, 

whitelightf(wavelengthArray), 'r-') 

plt.title("Source Light and Calculated Transmission") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts & Transmission") 

plt.legend(['Calculated Transmission (SP0, BS45)', 'Experimental Light'], loc='best') 

plt.savefig("ExperimentalLight_CalculatedTransmissionBS45") 

plt.show() 

 

plt.plot(wavelengthArray, sp0bs45f(wavelengthArray) * whitelightf(wavelengthArray)) 

plt.title("Source Light x Calculated Transmission") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("Predicted ADC Counts") 

plt.savefig("ExperimentalLight_X_CalculatedTransmissionBS45") 

plt.show() 

 

plt.plot(wavelengthArray, sp0bs45f(wavelengthArray) * whitelightf(wavelengthArray), 'b--', wavelengthArray, 

bandstopfar_0_45f(wavelengthArray), 'k-') 

plt.title('Predicted and Experimental Spectrums, SP0 BS45') 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts") 

plt.legend(['Calculated', 'Experimental'], loc='best') 

plt.savefig("Experimental0_45_and_CalculatedTransmission") 

plt.show() 

#%% 

# Bandstop Filter at 0 Degrees 

bandstop0 = pd.read_csv('bandstop_0.csv') 

bandstop0.columns = cols 

bandstop0f = interp1d(bandstop0['Wavelength'], bandstop0['Average'], kind='cubic') 

plt.plot(bandstop0['Wavelength'], bandstop0f(bandstop0['Wavelength'])) 

plt.title("Bandstop Filter at 0 Degrees") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts") 
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plt.savefig("Bandstop_0") 

plt.show() 

#%% 

# Bandstop Filter at 45 Degrees 

bandstop45 = pd.read_csv('bandstop_45.csv') 

bandstop45.columns = cols 

bandstop45f = interp1d(bandstop45['Wavelength'], bandstop45['Average'], kind='cubic') 

plt.plot(bandstop45['Wavelength'], bandstop45f(bandstop45['Wavelength'])) 

plt.title("Bandstop Filter at 45 Degrees") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts") 

plt.savefig("Bandstop_45") 

plt.show() 

#%% 

bandstopclose_0_0 = pd.read_csv('bandstopclose_0_0.csv') 

bandstopclose_0_0.columns = cols 

bandstopclose_0_0f = interp1d(bandstopclose_0_0['Wavelength'], bandstopclose_0_0['Average'], kind='cubic') 

plt.plot(bandstopclose_0_0['Wavelength'], bandstopclose_0_0f(bandstopclose_0_0['Wavelength'])) 

plt.title("Both, Bandstop Filter Close, SP0 BS0") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts") 

plt.savefig("BSClose_SP0_BS0") 

plt.show() 

#%% 

bandstopclose_45_0 = pd.read_csv('bandstopclose_45_0.csv') 

bandstopclose_45_0.columns = cols 

bandstopclose_45_0f = interp1d(bandstopclose_45_0['Wavelength'], bandstopclose_45_0['Average'], kind='cubic') 

plt.plot(bandstopclose_45_0['Wavelength'], bandstopclose_45_0f(bandstopclose_45_0['Wavelength'])) 

plt.title("Both, Bandstop Filter Close, SP0 BS45") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts") 

plt.savefig("BSClose_SP0_BS45") 

plt.show() 

#%% 

bandstopfar_0_30 = pd.read_csv('bandstopfar_0_30.csv') 

bandstopfar_0_30.columns = cols 

# Subtracting ambient light here makes graph blank; goes negative somewhere? 

bandstopfar_0_30f = interp1d(bandstopfar_0_30['Wavelength'], bandstopfar_0_30['Average'], kind='cubic') 

plt.plot(bandstopfar_0_30['Wavelength'], bandstopfar_0_30f(bandstopfar_0_30['Wavelength'])) 

plt.title("(c) $\u03B8 = 30^\circ$", fontsize = 18) 

plt.xlabel("Wavelength (nm)", fontsize = 13) 

plt.ylabel("ADC Counts", fontsize = 13) 

plt.savefig("BandStopFar_0_30_Exp") 

plt.show() 

#%% 

bandstopfar_0_15 = pd.read_csv('bandstopfar_0_15.csv') 

bandstopfar_0_15.columns = cols 

# Subtracting ambient light here makes graph blank; goes negative somewhere? 

bandstopfar_0_15f = interp1d(bandstopfar_0_15['Wavelength'], bandstopfar_0_15['Average'], kind='cubic') 

plt.plot(bandstopfar_0_15['Wavelength'], bandstopfar_0_15f(bandstopfar_0_15['Wavelength'])) 

plt.title("(b) $\u03B8 = 15^\circ$", fontsize = 18) 

plt.xlabel("Wavelength (nm)", fontsize = 13) 

plt.ylabel("ADC Counts", fontsize = 13) 

plt.savefig("BandStopFar_0_15_Exp") 

plt.show() 

#%% 
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shortpassonly = pd.read_csv('shortpassonly.csv') 

shortpassonly.columns = cols 

# Subtracting ambient light here makes graph blank; goes negative somewhere? 

shortpassonlyf = interp1d(shortpassonly['Wavelength'], shortpassonly['Average'], kind='cubic') 

plt.plot(shortpassonly['Wavelength'], shortpassonlyf(bandstopfar_0_15['Wavelength'])) 

plt.title("Shortpass Filter") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel("ADC Counts") 

plt.savefig("Shortpass Only") 

plt.show() 

 

#%% 

wavelengthArray = np.arange(380, 710, 10).tolist() 

 

# White light, experimental 

whitelight = pd.read_csv('whitelight-avg100_50ms.csv') 

whitelight.columns = cols 

# Subtract off ambient light 

whitelight['Average'] -= ambientlight['Average'] 

whitelightf = interp1d(whitelight['Wavelength'], whitelight['Average'], kind='cubic') 

 

plt.plot(wavelengthArray, whitelightf(wavelengthArray), 'r--', wavelengthArray, bandstop45f(wavelengthArray), 'g-

-', wavelengthArray, shortpassonlyf(wavelengthArray), 'b--', wavelengthArray, 

bandstopfar_0_45f(wavelengthArray), 'k') 

plt.title('Filters Independent and Combined') 

plt.xlabel("Wavelength (nm)") 

plt.ylabel('ADC Counts') 

plt.legend(['Source Light', 'BS45', 'SP0', 'SP0BS45'], loc='best') 

plt.savefig("FiltersSep&Combined") 

plt.show() 

#%% 

# Plot actual transmission of combined filters at 45 

# This can be done by dividing the amount of the light with filters by the light with no filters 

plt.plot(wavelengthArray, bandstopfar_0_45f(wavelengthArray)/whitelightf(wavelengthArray)) 

plt.title("Experimentally Determined Transmission by Wavelength") 

plt.xlabel("Wavelength (nm)") 

plt.ylabel('Transmission') 

plt.savefig("ExperimentalTransmissionWRONG") 

plt.show() 

 

#%% 

 

from skimage import data 

from skimage import io 

from skimage.color import rgb2hsv, hsv2rgb 

 

# # changed 

 rgb_img = data.coffee() 

 rgb_img = io.imread("rainbow_squares.jpg") 

# 

# hsv_img = rgb2hsv(rgb_img) 

# hue_img = hsv_img[:, :, 0] 

# value_img = hsv_img[:, :, 2] 

# 

# fig, (ax0, ax1, ax2, ax3) = plt.subplots(ncols=4, figsize=(8, 2)) 

# 
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# ax0.imshow(rgb_img) 

# ax0.set_title("RGB image") 

# ax0.axis('off') 

# ax1.imshow(hue_img, cmap='hsv') 

# ax1.set_title("Hue channel") 

# ax1.axis('off') 

# ax2.imshow(value_img) 

# ax2.set_title("Value channel") 

# ax2.axis('off') 

# 

# new_rgb_img = hsv2rgb(hsv_img) 

# ax3.imshow(new_rgb_img) 

# ax3.set_title("HSV to RGB") 

# ax3.axis('off') 

# 

# 

# 

# fig.tight_layout() 

# fig.savefig("Original") 

# fig.show() 

 

 

 

 

# rainbow = io.imread("rainbow_squares.jpg") 

# hsv_rainbow = rgb2hsv(rainbow) 

# hue_rainbow = hsv_rainbow[:, :, 0] 

# value_rainbow = hsv_rainbow[:, :, 2] 

# 

# fig, (ax0, ax1, ax2, ax3) = plt.subplots(ncols=4, figsize=(8, 2)) 

# 

# ax0.imshow(rainbow) 

# ax0.set_title("RGB Rainbow") 

# ax0.axis('off') 

# ax1.imshow(hue_rainbow, cmap='hsv') 

# ax1.set_title("Hue channel") 

# ax1.axis('off') 

# ax2.imshow(value_rainbow) 

# ax2.set_title("Value channel") 

# ax2.axis('off') 

# 

# # Get wavelength from hue? 

# # https://stackoverflow.com/questions/11850105/hue-to-wavelength-mapping 

# wavelengths_from_image = ((650 - 250) / 270) * hue_img 

# # print(wavelengths_from_image) 

# 

# # JUST TESTING IMPACT 

# # V is the 2 column 

# # Setting all values to 0 makes whole image black 

# # Gets darker as you multiply by numbers less than 1 

# # hsv_rainbow[:, :, 2] = 1 * hsv_rainbow[:, :, 2] 

# 

# # JUST TESTING IMPACT 

# # S is the 1 column 

# # Setting s to 0 and changing nothing else makes the image grayscale 

# # hsv_rainbow[:, :, 1] = 0.1 * hsv_rainbow[:, :, 1] 
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# 

# # JUST TESTING IMPACT 

# # H is the 1 column 

# # Setting h to 0 and changing nothing else makes the image all red 

# # Multiplying by 0.5 changes colors, as you'd expect 

# # hsv_rainbow[:, :, 0] = 0.5 * hsv_rainbow[:, :, 0] 

# 

# # So! 

# # Go through the entire array, get wavelength of pixel (first two indices) 

# # by using the hue value (a 0 in the third index) 

# # Knowing the wavelength, do different things to different SV values at 

# # that pixel according to the transmission spectrum 

# # Namely, 

# 

# 

# # get transmission by hue! 

# # should save some work inside loops 

# 

maxhue = 270 # was 270, changed to 360 

wavelengthrange = 250 # was 250, changed to 320 

maxwavelength = 650 # was 650, changed to 700 

# hueArray = list(map(lambda x: (x / ((maxwavelength - wavelengthrange) / maxhue)), wavelengthArray)) 

hueArray = list(map(lambda x: (x - maxwavelength) * (-1)*(maxhue / wavelengthrange), wavelengthArray)) 

# sp0bs45f() is function for calculated transmission by wavelength 

hueTransmission = sp0bs45f(wavelengthArray) * hueArray / maxhue 

hueTransmissionf = interp1d(hueArray, hueTransmission, kind='cubic') 

# 

# rows = hsv_rainbow.shape[0] 

# columns = hsv_rainbow.shape[1] 

# # print(rows) 

# # print(columns) 

# print("Entering modification loop!") 

# for i in range(0, rows): 

#     print(str(i)) 

#     for j in range(0, columns): 

#         # TODO make the alterations more sophisticated, at the moment just attenuates 

#         # Modify saturation 

#         # print("Hue: " + str(270 * hsv_rainbow[i, j, 0])) 

#         # print("Transmission: " + str(hueTransmissionf(270 * hsv_rainbow[i, j, 0]))) 

# 

#         hsv_rainbow[i, j, 1] = hsv_rainbow[i, j, 1] * (hueTransmissionf(maxhue * (1 - hsv_rainbow[i, j, 0]))) 

#         # Modify value 

#         hsv_rainbow[i, j, 2] = hsv_rainbow[i, j, 2] * (hueTransmissionf(maxhue * (hsv_rainbow[i, j, 0]))) 

# 

#         # hsv_rainbow[i, j, 0] = 0 # Make everything red to test 

#         # Wavelength of that pixel?: 

#         # Thought process: 

#         # The less transmission in a given hue, the more grayscale it should be 

#         # Reducing V makes more dark 

#         # Reducing S makes more grayscale 

# 

# #new 2 was with 1 being inverted, 2 commented out 

# #new 3 is with 1 being inverted, 2 also inverted 

# #new 4 is with 1 being inverted, 2 not inverted 

# 

# 
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# 

# new_rgb_rainbow = hsv2rgb(hsv_rainbow) 

# ax3.imshow(new_rgb_rainbow) 

# ax3.set_title("HSV to RGB") 

# ax3.axis('off') 

# 

# fig.tight_layout() 

# fig.savefig("rainbow_modifyingsaturation_new4") 

# fig.show() 

# 

# 

# 

# 

plt.plot(hueArray, hueTransmissionf(hueArray), '-') 

plt.title("Transmission by Hue") 

plt.xlabel("Hue") 

plt.ylabel("Transmission") 

plt.savefig("Transmission by Hue") 

 

 

 

# ishihara45 = io.imread("ishihara45.jpg") 

# hsv_ishihara45 = rgb2hsv(ishihara45) 

# hue_ishihara45 = hsv_ishihara45[:, :, 0] 

# value_ishihara45 = hsv_ishihara45[:, :, 2] 

# 

# fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(8, 2)) 

# 

# ax0.imshow(ishihara45) 

# ax0.set_title("RGB ishihara45") 

# ax0.axis('off') 

# 

# 

# rows = hsv_ishihara45.shape[0] 

# columns = hsv_ishihara45.shape[1] 

# print("Entering modification loop!") 

# for i in range(0, rows): 

#     print(str(i)) 

#     for j in range(0, columns): 

#         hsv_ishihara45[i, j, 1] = hsv_ishihara45[i, j, 1] * (hueTransmissionf(maxhue * (1 - hsv_ishihara45[i, j, 0]))) 

#         # Modify value 

#         # hsv_rainbow[i, j, 2] = hsv_rainbow[i, j, 2] * (1 - (hueTransmissionf(maxhue * (1 - hsv_rainbow[i, j, 0])))) 

# 

# 

# 

# new_rgb_ishihara45 = hsv2rgb(hsv_ishihara45) 

# ax1.imshow(new_rgb_ishihara45) 

# ax1.set_title("HSV to RGB") 

# ax1.axis('off') 

# 

# fig.tight_layout() 

# fig.savefig("ishihara45modified_2") 

# fig.show() 

 

# This is sensitivity of each cone at various wavelengths multiplied by our filter's transmission 

s_new_sensitivity = sconef(wavelengthArray)*sp0bs45f(wavelengthArray) 
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m_new_sensitivity = mconef(wavelengthArray)*sp0bs45f(wavelengthArray) 

l_new_sensitivity = lconef(wavelengthArray)*sp0bs45f(wavelengthArray) 

 

# rainbow = io.imread("spectrum.jpg") 

# rgb_rainbow = rainbow 

# hsv_rainbow = rgb2hsv(rainbow) 

# hue_rainbow = hsv_rainbow[:, :, 0] 

# value_rainbow = hsv_rainbow[:, :, 2] 

# 

# fig, (ax0, ax1) = plt.subplots(nrows=2, figsize=(8, 2)) 

# 

# ax0.imshow(rgb_rainbow) 

# ax0.set_title("RGB Rainbow Before") 

# ax0.axis('off') 

# 

# rows = hsv_rainbow.shape[0] 

# columns = hsv_rainbow.shape[1] 

# print(rows) 

# print(columns) 

# print("Entering modification loop!") 

# # Maybe I could do this faster with a map? 

# for i in range(0, rows): 

#     print(str(i)) 

#     for j in range(0, columns): 

#         # Get dominant wavelength from the hue 

#         pixel_dominant_wavelength = maxwavelength - ((wavelengthrange / maxhue) * maxhue * hsv_rainbow[i, j, 

0]) 

#         # Get sensitivities of cones at that wavelength 

#         s_sensitivity = sconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength) 

#         m_sensitivity = mconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength) 

#         l_sensitivity = lconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength) 

#         # print("New Pixel, Hue: " + str(hsv_rainbow[i, j, 0]) + ", Wavelength: " + str(pixel_dominant_wavelength)) 

#         # print(str(rgb_rainbow[i, j, 0]) + " * " + str(l_sensitivity)) 

#         # print(str(rgb_rainbow[i, j, 1]) + " * " + str(m_sensitivity)) 

#         # print(str(rgb_rainbow[i, j, 2]) + " * " + str(s_sensitivity)) 

# 

#         # I want the ratio R / G = L_Sens / M_Sens for given pixel 

#         # I also want the ratio G / B = M_Sens / S_Sens for given pixel 

#         # First I will try this using G as reference and modifying the others 

#             # That didn't work because divide by zero 

#             # Try average 

# 

#         # R = G * L_Sens / M_Sens 

#         # B = G * S_Sens / M_Sens 

# 

#         r_g_ave = (rgb_rainbow[i, j, 0] + rgb_rainbow[i, j, 1]) / 2 

#         r_g_b_ave = (1/3)*(rgb_rainbow[i, j, 0] + rgb_rainbow[i, j, 1] + rgb_rainbow[i, j, 2]) 

#         # print("HERE") 

#         # print((l_sensitivity / m_sensitivity)) 

#         l_over_m_sens_sqrt = np.sqrt(abs(l_sensitivity / m_sensitivity)) 

#         # Modify blue after obtaining green 

#         rgb_rainbow[i, j, 0] = r_g_ave * l_over_m_sens_sqrt 

#         rgb_rainbow[i, j, 1] = r_g_ave / l_over_m_sens_sqrt 

#         rgb_rainbow[i, j, 2] = rgb_rainbow[i, j, 1] * (s_sensitivity / m_sensitivity) 

#         # print(rgb_rainbow[i, j, 0] / rgb_rainbow[i, j, 1]) 

#         # this_g = rgb_rainbow[i, j, 1] 
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#         # rgb_rainbow[i, j, 0] = this_g * (l_sensitivity / m_sensitivity) 

#         # rgb_rainbow[i, j, 2] = this_g * (s_sensitivity / m_sensitivity) 

# 

# 

#         # Modify rgb_rainbow 

#         # 0th index is red, 1st is green, 2nd is blue 

#         # rgb_rainbow[i, j, 0] = rgb_rainbow[i, j, 0] * l_sensitivity + 75 

#         # rgb_rainbow[i, j, 1] = rgb_rainbow[i, j, 1] * m_sensitivity + 75 

#         # rgb_rainbow[i, j, 2] = rgb_rainbow[i, j, 2] * s_sensitivity + 75 

# ax1.imshow(rgb_rainbow) 

# ax1.set_title("AfterModifying") 

# ax1.axis('off') 

# fig.tight_layout() 

# fig.savefig("Spectrum_Approach3_RealVals_averagingmodifyingrgb") 

# fig.show() 

 

 

ishihara45 = io.imread("ishihara45.jpg") 

hsv_ishihara45 = rgb2hsv(ishihara45) 

 

fig, (ax0, ax1) = plt.subplots(nrows=2, figsize=(8, 2)) 

 

ax0.imshow(ishihara45) 

ax0.set_title("RGB ishihara45") 

ax0.axis('off') 

 

rows = hsv_ishihara45.shape[0] 

columns = hsv_ishihara45.shape[1] 

print("Entering modification loop!") 

for i in range(0, rows): 

    print(str(i)) 

    for j in range(0, columns): 

        pixel_dominant_wavelength = maxwavelength - ((wavelengthrange / maxhue) * maxhue * hsv_ishihara45[i, j, 

0]) 

        r_g_ave = (ishihara45[i, j, 0] + ishihara45[i, j, 1]) / 2 

        s_sensitivity = sconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength) 

        m_sensitivity = mconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength) 

        l_sensitivity = lconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength) 

        r_g_ave = (ishihara45[i, j, 0] + ishihara45[i, j, 1]) / 2 

        l_over_m_sens_sqrt = np.sqrt(abs(l_sensitivity / m_sensitivity)) 

        ishihara45[i, j, 0] = r_g_ave * l_over_m_sens_sqrt 

        ishihara45[i, j, 1] = r_g_ave / l_over_m_sens_sqrt 

 

ax1.imshow(ishihara45) 

ax1.set_title("After Changing R and G") 

ax1.axis('off') 

 

fig.tight_layout() 

fig.savefig("Ishihara45_App3_RG_ForumVals") 

fig.show() 

 

 

 

 


