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ABSTRACT

Photoluminescence Lifetime as an Indicator of Temperature in Materials

James Erikson
Department of Physics and Astronomy, BYU

Bachelor of Science

Temperature is an important parameter in many processes being studied with microfluidic
devices. As such, improved temperature sensing methods compatible with the size and sensitivity
required for microfluidics need to be found. This work investigates the photoluminescence lifetime
of Rhodamine B and CdTe quantum dots for potential use in microfluidic devices. Lifetime values
were sampled over a range of known temperatures through time-correlated single photon counting.
Spectral measurements were also taken at each temperature. In Rhodamine B, lifetime was obtained
through numerical deconvolution, however, results obtained in this way were unreliable due to
variability within the sample itself over time. Similar methods proved similarly unreliable for
CdTe quantum dots, which also show variability over time, though to a lesser extent. Through the
application of machine learning algorithms, temperatures in CdTe quantum dots can be accurately
determined with uncertainties ranging from 7.7 K at cryogenic temperatures to 0.1 K near room
temperature. This success shows that temperature dependent photoluminescence is a valid option
for future applications in microfluidic devices.
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Chapter 1

Introduction

1.1 Motivation

In recent years, microfluidics has emerged as an efficient and quick method of analysis in many

chemical and biological applications. Through these methods it is possible to integrate entire labo-

ratories onto a single laboratory chip [1], drastically increasing productivity. A challenge presented

in this type of analysis, however, is the need for specialized sensors. For instance, conventional

thermometers cannot be easily integrated into microfluidic chips, and so other temperature sensing

methods must be found.

An effective temperature sensor in a microfluidic device must be small, biologically non-invasive,

and provide localized measurements with a short response time. Currently used sensors include

thermocouples, nano diamonds, liquid crystals, and fluorescent dyes and quantum dots [2]. Each of

these sensors have intrinsic uncertainties. The methods used for data analysis can also contribute to

error in temperature predictions. Our goal is to assess the feasibility of photoluminescent materials

for use in microfluidic temperature sensors. Photoluminescence data taken at known temperatures

can be used to calibrate a method for deducing the temperature using data measured at unknown

1
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temperatures.

1.2 Photoluminescence

Stimulated photoluminescence (PL) is an effective tool for characterizing properties of materials.

In general, the PL process consists of three steps: initial excitation, non-radiative settling, and

photon emission. The description that follows, given in terms of energy bands, is specific to

semiconductors. Even so, the basic principles remain the same for any photoluminescent material.

Valence Band 

Conduction Band 

Excitation Photon 

Photoluminescence 

Photon 

Time 

En
er

gy
 

Figure 1.1 The photoluminescence process with time depicted by left-to-right movement.
An excitation photon of a higher energy than the band gap causes electrons in the valence
band to jump up into the conduction band. Once in this higher energy state, the electron
loses energy through non-radiative processes until it is at the lowest unoccupied energy
state. It then returns to its initial energy state by releasing a photon with energy equal to
the band gap.
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To begin the process, electrons within the material’s valence band are excited into higher energy

states, typically through incursion of a high energy photon. Once in this higher energy state, the

electron decays through non-radiative processes within the conduction band to the lowest energy

within that band. Finally, with no other ways of reducing its overall energy, the electron jumps

back into the highest energy state in the valence band, releasing a photon in the process, as shown

in Fig. 1.1. In molecules, the lowest energy of the conduction band is analogous to the lowest

unoccupied molecular orbital, while the highest valence band energy is analogous to the highest

occupied molecular orbital. Since each emitted photon comes from the same transition, the energy

of the PL photons does not vary much, with the energy being material specific. Because of this, PL

can be easily measured using a spectrometer to select for the corresponding wavelength.

Multiple parameters can be studied when using PL for analysis. The peak wavelength and

intensity of the wavelength spectrum is commonly used to identify defects within crystal structures,

as well as assess doping quality and band gap in semiconductors [3]. The time between excitation

and photon emission, called the PL lifetime, can also provide valuable information about a ma-

terial. In particular, within the PL spectrum both the peak wavelength and overall intensity vary

with temperature. Similarly, the PL lifetime also shows measurable differences across different

temperatures.

While both PL intensity and lifetime exhibit temperature dependence, a lifetime-based model

should provide superior predictions. This distinction lies in the overall variability of PL intensity

with regard to experimental setup. Since intensity is looking simply at the total number of photons

measured, small variations in background light, the excitation source, optical alignment, and even

the sample itself can cause the measurements to vary wildly. Such variations can make it nearly

impossible to use an intensity-based sensor outside of the lab where it is initially built, and even

then it would only be useable with incredible care taken to keep all parameters exactly as they were

during calibration. PL lifetime, however, is able to bypass these difficulties as it is purely dependent
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on the material itself. A lifetime-based sensor, once calibrated, will be able to function in any lab

outfitted to make the measurement, regardless of background noise or other variables. Because of

this, this work is primarily focused on PL lifetime measurements, though spectrum measurements

are made as well, and form part of our final sensor model.

1.3 Materials

For a material to be considered for use in microfluidic temperature sensors, it must exhibit a certain

set of properties. The material must have a high quantum yield, which is the ratio of PL photons

emitted vs. the number of excitation photons absorbed. When this ratio is too low, it becomes very

difficult to get meaningful PL measurements, and parameters such as the lifetime can be artificially

shortened. Likewise, a material must have a fairly well defined PL peak to be analyzed. When

a material fluoresces in wide wavelength bands it can be difficult to separate out actual PL from

ambient light or noise. Finally, and perhaps obviously, the PL of the material must vary with

(a) (b) 

Figure 1.2 Images of resin chips containing samples of (a) CdTe quantum dots and (b)
Rhodamine B.
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Figure 1.3 Representative plots showing the change in measured PL data from 10 K to
300 K in CdTe quantum dots. Values have been normalized to clearly show shifts. (a) PL
spectrum, showing the wavelengths being emitted. (b) Time-resolved PL, showing the rate
of decay from higher energy states. The laser pulse arrives after a 10 ns delay, ensuring the
full excitation is visible.

temperature. Large changes in the PL as the temperature varies allow a sensor to be more sensitive.

Too small of changes limits the potential accuracy and makes the sensor difficult to use. Beyond

this, as mentioned in Sec. 1.1, the material samples used must be small, biologically non-invasive,

and provide localized measurements with a short response time.

This study focuses on two different materials: Rhodamine B (RB) and CdTe quantum dots

(QDs). Rhodamine B is a chemical dye commonly used in biotechnology applications [4]. It is

often used as a tracer to track the movements of specific chemicals throughout tissues. Quantum

dots are nanoscale semiconductor particles whose properties are dominated by quantum interactions.

As such, they have well defined electronic energy bands with separations determined by the size of

the particles. The QDs used in this study were sized to emit at 620 nm. Images of the samples used

are given in Fig. 1.2. Both of these materials fit the parameters outlined above, they exhibit a high

quantum yield and have well defined PL peaks in the wavelength spectrum. The variance of PL

with respect to temperature for CdTe QDs can be seen in Fig. 1.3. As temperature rises the peak
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wavelength tends to shift towards longer wavelengths, shown in Fig. 1.3(a), while the electrons

tend to spend less time in excited states, shown in Fig. 1.3(b). The width of the PL peak of CdTe

QDs shown in Fig. 1.3(a) is indicative of a size distribution of the QDs. A sharp shoulder observed

near 550 nm is a result of a long-pass filter used to remove stray laser light from the spectrum. The

relative shift in peak wavelength is very small, moving approximately 10 nm over a temperature

change of 290 K. In contrast, the change in lifetime is much more noticeable. Though not shown,

the PL of RB responds in similar fashion.

1.4 Overview

This thesis is split into 5 chapters. Chapter 2 contains an overview of general methods applied

to both materials, including experimental setup, data collection methods, and processes for fixing

sample temperatures. Chapters 3 and 4 each discuss material specific methods of data analysis

and results for Rhodamine B and CdTe quantum dots, respectively. Chapter 5 will restate the

conclusions of chapters 3 and 4 and discuss future work to be done.



Chapter 2

General Methods

2.1 Time-Correlated Single Photon Counting

Time correlated single photon counting (TCSPC) is the primary method used to measure the PL

lifetime of our samples. The basic principle of operation of this technique is a high speed timing

mechanism that is used to record the time between two external triggers. In this case, a start trigger

is supplied using a pulse generator. The stop trigger is sent by a detector once a PL photon has been

measured.

A typical TCSPC measurement begins with a reference pulse that triggers the charging of a

capacitor within the TCPSC module. The capacitor charges at a known rate, which allows the

amount of charge stored in the capacitor to serve as a record of how much time has passed. Once

a PL photon is measured the module halts the charging, and the stored charge is measured and

converted into a time value. This value is recorded in a histogram, and the process is repeated. After

many cycles, the generated histogram becomes an accurate representation of the time-resolved PL

from which the lifetime can be extracted.

While the theory behind TCSPC is fairly simple, a number of practical complications must be

7



2.1 Time-Correlated Single Photon Counting 8

Figure 2.1 Process of generating a histogram with TCSPC. A maximum of one photon is
measured per pulse and subsequently added to the histogram. From Ref. [5]

accounted for. The first are dead time and data pile-up. As seen in Fig. 2.1, measurement time

can be divided into bins marked on each end by laser pulses. Whenever a photon is measured, the

capacitor used for timing must be discharged before another can be recorded. This timing limitation,

combined with the mechanism’s reliance on reference pulses to provide start triggers, results in a

practical maximum of a single photon measured per bin. As a result, a bin containing more than

one photon only records the first, and any others are lost. If this occurs in a large number of bins,

the resulting histogram is skewed towards shorter times, resulting in an inaccurate representation of

the lifetime of the sample. To remedy this, incoming PL is attenuated through the use of neutral

density filters so that the PL photon count is less than five percent of the reference pulse frequency.

The lower count rate ensures that on average a photon will be measured in one out of every 20

bins. Using a Poisson distribution, a count rate of five percent of the reference pulse frequency
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Figure 2.2 Measured IRF histogram taken with the same setup as normal TCSPC data
collection, the only difference being the replacement of the sample with a scattering agent
(colloidal silica). The laser pulse width and irregularities in pulse shape are clearly seen.
This IRF also includes smaller contributions from other factors, such as detector response
time and spectrometer slit size.

corresponds to a 0.119 percent probability1of two photons being measured in the same bin. This

provides ample time for the timing mechanism to reset while also avoiding photon pile-up [6].

A final consideration to be accounted for is the equipment response. All measurements are taken

with non-ideal equipment, and as a result the histogram produced by TCSPC includes artifacts from

those extra contributions. Primary issues that must be accounted for include the width of the laser

pulse, irregularities in the laser pulse, spectrometer slit size, and non-zero response time of the

detector itself. The combination of these issues is known as the instrument response function (IRF).

To extract the PL lifetime from TCSPC data, the IRF must be removed from the measured data

through a deconvolution process. A representative plot of the IRF measured for our setup is given

1The probability of k events occurring in an interval is given by P(k) = λ ke−λ

k! where λ is the event rate. Using

λ = 0.05 and k = 2 gives a result of 0.00119, or 0.119 percent probability of two photons arriving in one bin.
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in Fig. 2.2.

The basic setup used for PL measurements is shown in Fig. 2.3. The configuration shown is

specific to time correlated single photon counting (TCSPC) measurements, but spectral PL data is

also taken using a similar setup. A 520 nm laser (Thorlabs TCLDM9 diode laser) is used to excite

the PL. The laser is pulsed using a pulse generator (Agilent 81110A) through a bias-T connection.

The pulse generator is set to give 5 ns laser pulses every 60 ns with an average power of 0.2 mW.

After the sample is excited, the PL is collected with a lens, which collimates the emitted light and

sends it through a 550 nm long pass filter to remove scattered laser light. The PL is then focused

into a spectrometer (JY Horiba Triax 550) which selects for the wavelength of interest (approx. 620

nm for CdTe QDs). The PL is then measured by a photomultiplier tube (PMT). For time resolved

PL measurement the pulse generator also sends a signal to trigger the TCSPC module. Once the

PMT measures a photon, another signal is sent to the module to trigger the stop. The time between

the two trigger signals is then measured and recorded as a data point for time resolved PL.

Figure 2.3 Optical experiment setup. Pulse generator sends out two signals, one to the
TCSPC module to start a timer, the other to a 520 nm laser diode. The resulting laser pulse
excites photoluminescence (PL) in the sample, which is held at a known temperature in a
cryostat or heater. Emitted light is then collected and focused into a spectrometer. PL is
then measured using a photomultiplier tube (PMT), which sends a signal to the TCSPC
module to stop the timer.
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2.2 Photoluminescence Spectra

While not directly useful for determining the PL lifetime of a material, measurement of the wave-

length spectrum provides valuable information for correlating optical properties with temperature.

The process is similar to that described in Fig. 2.3 with the omission of the TCSPC module. A

spectrometer is used to sweep a range of wavelengths and observe the resulting signal on the

detector. This information identifies the peak wavelength used in TCSPC as well as gives an idea of

the quality of the sample. In quantum dots, for example, a wider principle peak indicates a larger

distribution of dot size. Presence of peaks other than those expected from the sample are often

indicators of contaminants or other defects. Since these defects can affect the PL lifetime, it is

important to observe the PL spectrum of a sample to confirm the accuracy of lifetime measurements.

Because the spectrum also has some temperature dependence, it can be used alongside the

lifetime data to correlate with temperature. In CdTe quantum dots for example, a redshift was

observed in the spectral peak as temperature increases (see Fig. 1.3). This dependence was ultimately

used in a model designed to predict temperature in CdTe. This is addressed in more detail in Chapter

4 of this thesis.

2.3 Temperature Control

To correlate PL with temperature, spectra and lifetimes were measured over a wide range of known

temperatures. Temperature was split into two regimes: low temperature, ranging from 10K to 300K;

and high temperature, from 298K to 319K. The split was done to better assess the utility of a PL

based temperature sensor. The low-temperature regime provides a view of sensor response over a

wide range. The high-temperature regime is a more accurate representation of the range where such

a sensor would actually be used. As such, higher accuracy in the high-temperature range is desired.

The low-temperature regime was done using a commercially made cryostat (Cryo Industries
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Figure 2.4 Heating stage setup. Current temperature is measured using a thermocouple.
Temperature output is recorded using a thermocouple-measuring transducer and sent on to
a computer via a DAC board. A LabVIEW VI then employs a PID controller to determine
necessary output power. This power is sent on to a variable power supply, which applies
a current to a heating element embedded in the same chip that houses the sample. The
new temperature is measured by the thermocouple, and the cycle is repeated, forming a
feedback loop. This process allows the temperature to stabilize at the desired value.

custom-designed closed cycle cryostat) with built in temperature control. PL data was recorded in

steps of 10 K throughout the low range for CdTe QDs and in steps of 30 K for RB.

The high-temperature regime is achieved using a home-built temperature controller employing

a PID feedback loop. The resin chip that holds the sample was outfitted with three channels: one

for the sample itself, one for a heating element, and a third designed to get a thermocouple as

close to the sample as possible (see Fig. 2.4). Galinstan, a gallium based liquid metal, is chosen

as the heating element. This metal has a low viscosity, which allows it to fill the channel, and

a high enough resistivity to provide heat when a current is run through it. As the thermocouple

(TC, Type K, OMEGA Engineering) measures the current temperature, the signal is sent through

a thermocouple-measuring transducer (Phoenix Contact MINI MCR-SL-TC-UI-2864448) to a
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computer through a DAC board. A LabVIEW VI then determines how much current should be

applied to the heating element using a PID controller. This current is supplied by a DC power

source (BK Precision 1696) controlled by the same VI. As the applied current heats the sample,

the temperature is again measured by the thermocouple and the cycle is repeated, completing a

feedback loop. This allows the temperature to be controlled to within approximately 0.1 K. In the

high temperature regime PL data was recorded in steps of 1 K between 298 K and 319 K for CdTe

QDs. High temperature data was not taken for RB. For more details on operation of the heating

stage, see Appendix A.

2.4 Numerical Deconvolutions

As described in section 2.1, measured TCSPC data includes artifacts resulting from the width of

the laser pulse, irregularities in the laser pulse, spectrometer slit size, and detector response time,

together known as the instrument response function (IRF). This added response must be removed

from the measured data in order to extract the true decay curve and, by extension, the PL lifetime.

The IRF is removed through a numerical deconvolution process known as iterative reconvolution.

Once TCSPC data has been taken, the IRF is recorded by removing the sample and scattering laser

light into the detector while an equivalent measurement is done. With the IRF in hand, the standard

procedure for analysis is followed as outlined in Ref. [7]. The first step is to assume a functional

form for the actual decay. From there, an arbitrary set of initial parameters is selected to create

a test function for the decay. This test function is then convolved with the measured IRF and the

result compared to the measured TCSPC data. A regression fit is then done on the test function in

order to minimize the difference between the convolved result and the measured data. Once the fit

is complete, the lifetime value can be determined from the final parameters of the test function.

This success of this method is highly dependent on choosing the correct form of the decay.
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In simple cases a single exponential decay may adequately describe the process. When multiple

processes are involved in the decay itself, two or more decay mechanisms may need to be accounted

for, each with a corresponding amplitude and lifetime. At the extreme end a continuum of decay

mechanisms can exist [8].

For both Rhodamine B and CdTe multiple functional forms were assessed. Deconvolutions

were then done at each temperature using the best decay function for each material in an attempt to

describe the temperature dependence of the PL.

This concludes treatment of methods common to both Rhodamine B and CdTe quantum dots.

Chapter 3 includes discussion of specific methods and results for Rhodamine B. Chapter 4 focuses

on CdTe quantum dots, including a machine-learning based method for temperature prediction that

ultimately superseded the deconvolution method of characterizing TCSPC data.



Chapter 3

Rhodamine B

3.1 Deconvolutions

The numerical deconvolution method described in Sec. 2.4 (iterative reconvolution) was the primary

data analysis method used for Rhodamine B. In this case, the test function settled upon was a simple

exponential decay:

f (t) = Aexp
(
−t − t0

τ

)
(3.1)

Here the lifetime is represented by the parameter τ , with the two other fitting parameters being

the amplitude A, and the left/right shift t0.

3.2 Results

Lifetime data was collected at 11 temperatures between 15 K and 300 K. The resulting values are

plotted in Fig. 3.1. A general downward trend can be observed in the lifetimes as temperature

increases, though this only becomes apparent above 180 K. Similar measurements taken at different

times or with different samples are also depicted. The three data sets shown range in sample age,

with a freshly prepared sample (black), a sample after 3-4 months (red), and a sample after 9+
15
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months (green). The PL of Rhodamine B samples appears to degrade over time, as evidenced by

the general decrease in lifetimes as time passes. After extended periods, the trends exhibited by

fresher samples also begin to degrade. This is especially evident in lower temperature ranges.

Figure 3.1 Lifetime values of Rhodamine B. Measurements were taken with samples at
varying times since their preparation, showing a general decrease in lifetime as the sample
ages. No data was taken above 300 K.

3.3 Conclusions

The photoluminescence lifetimes of Rhodamine B do exhibit temperature dependence between 15

K and 300 K. General trends toward shorter lifetimes as temperature increases are present. However,

the PL appears to be dependent on the age of the sample as well. Because of this, a temperature

sensor incorporating Rhodamine B would need to be recalibrated often to remain accurate. In
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addition, the lifetimes only begin to show significant changes above 200 K. This high variability and

need for constant recalibration make Rhodamine B an unreliable choice for a temperature sensor. In

light of these shortcomings, data was not taken above 300 K with Rhodamine B.



Chapter 4

CdTe Quantum Dots

4.1 Deconvolutions

While Rhodamine B exhibits a simple PL decay, deconvolution fits on CdTe quantum dots (QDs)

require a more complex test function. Similarly good fits were obtained using both a double

exponential decay (4.1) and a stretched exponential decay (4.2) test function.

f (t) = Aexp
(
−t − t0

τ1

)
+Bexp

(
−t − t0

τ2

)
(4.1)

f (t) = Aexp

[
−
(

t − t0
τ

)β
]

(4.2)

The results of these fits are given in Fig. 4.1. The large number of fitting parameters and the

relative insensitivity of the fits on some of the parameters create a large uncertainty in the fit results.

To quantify that uncertainty, each fit was repeated 100 times on the same data set using slightly

different starting parameters each time. With more parameters it becomes possible to get low error

fits with a wider range of final results. This effect is less pronounced in the stretched exponential

fit, though still present. Even with the lower number of parameters, the overlap in uncertainties

between different temperatures would make it nearly impossible to determine the temperature from

a lifetime measurement.
18
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(b) (a) 

Figure 4.1 Results of deconvolution fits done using a (a) double exponential decay and
(b) stretched exponential decay. Fits were done 100 times for each temperature to produce
the points and error bars. All τ values have units of ns. β is a unitless quantity.

In light of this shortcoming, a different method of data analysis is necessary. A machine

learning architecture could provide higher accuracy while avoiding the uncertainties inherent in the

deconvolution method.

4.2 Machine Learning

To avoid the difficulties of deconvolution methods, a neural network was trained using TCSPC

and spectral data sets. Before the training could begin, however, the data was preprocessed in two

different ways. First, the TCSPC data was run through a logarithm operation. This allowed the

exponential nature of the decay to take on a more linear shape, giving more weight to points at

later times. Second, a (0,1) min-max normalization was done on both the TCSPC and spectral

data. This was done to increase the usability of the network in different situations. Variations

in optical alignment and detector sensitivity among other parameters can cause large changes in

the intensity of PL measured. A min-max normalization removes this uncertainty, and allows the
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resulting network to be useful in different situations.

Two neural networks were trained, one for each of the two temperature regimes as described

in Sec. 2.3. The low-temperature regime used data from 30 temperatures (ranging from 10 to 300

K in steps of 10 K). The high-temperature regime used data from 22 temperatures (ranging from

298 to 319 K in steps of 1 K). From these temperatures data was separated into 3 distinct sets for

the training process. The first, called the "training set," consists of approximately 80 percent of

the original data set. This set was used to train the network. Secondly, the "testing/validation set,"

which was used to test the neural network throughout the training process. This set contains the

majority of the remaining 20 percent of the temperatures. Finally, the "holdout set," is a group

of five randomly selected temperatures from each regime that were left out of the entire training

process. These temperatures were used after the training was complete to assess the overall accuracy

of the network.

In general, effective training of a neural network requires a large amount of data, much more

than the 30 or 22 temperatures measured in each regime. To remedy this problem, the data was

augmented using a cubic spline interpolation. In the low-temperature regime, interpolation was

done in steps of 1 K using the training and testing sets. This resulted in a set of 291 pairs of spectral

and TCSPC data ranging between 10 and 300 K. In the high-temperature regime, interpolation was

done in steps of 0.1 K, resulting in 211 pairs of spectral and TCSPC data between 298 and 319 K.

Once the data was prepared, the networks were trained using a mean squared error loss function

over 6000 training epochs using the training and testing sets. After the training, the performance

of the networks was assessed using the holdout set. For a more in-depth treatment of the machine

learning process used, see senior thesis by Charles Lewis [9].
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4.3 Results

The accuracy of the neural networks is determined using the mean absolute error (MAE) of the

holdout set in each regime. The individual networks’ predictions and accuracy are depicted in

Fig. 4.2. The temperature values predicted by the networks are plotted relative to their true values.

As such, the accuracy can be qualitatively determined by how close the points fall to the line y = x.

In the low-temperature regime, the network is effective except at two temperatures in the holdout

set: 70 and 90 K. Using the whole range the MAE of the holdout set for the low-temperature regime

is 7.7 K. When restricting the range assessed to only temperatures above 100 K the MAE is 0.4 K.

In the high temperature regime, the network is even more accurate, despite the wiggles that can be

seen, which are due to the magnified temperature scale. The MAE for this regime is 0.1 K.

(a) (b) 

Figure 4.2 Actual vs Predicted temperatures for both temperature regimes. Points lying
closer to the line y = x are more accurate. The results for the low-temperature neural
network are shown in (a) while the high-temperature regime is shown in (b). Overall, the
accuracy was high for both regimes with the exception of the 70 K and 90 K holdout points
in the low-temperature regime. Over the whole range in (a) the mean absolute error (MAE)
of the holdout set was 7.6 K, however over the range from 100 to 300 K the MAE drops to
only 0.4 K. In (b) the MAE was 0.1 K.
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4.4 Conclusions

Both the time-resolved photoluminescence and the photoluminescence spectrum of CdTe quantum

dots exhibit temperature dependence between 10 K and 319 K. Due to the complex nature of the

CdTe PL decay function, standard deconvolution methods could not be used to analyze the time-

resolved PL. Instead, neural networks were trained to predict temperature using the full TCSPC and

spectral data sets. The networks were highly accurate, especially in the high-temperature regime,

which was representative of the temperature range at which a microfluidic temperature sensor might

actually be used. CdTe quantum dots were found to be effective as a temperature sensing agent in

microfluidic devices.



Chapter 5

Conclusions and Future Work

Rhodamine B and CdTe quantum dots were assessed for use in a photoluminescence-based microflu-

idic temperature sensor. The temperature dependence of Rhodamine B PL was analyzed using a

numerical deconvolution analysis method. Results showed that the PL lifetimes exhibit temperature

dependence, though the dependence is only consistent above 200 K. Measurements taken months

apart also showed that the PL lifetimes tend to change over time as the sample degrades. The limited

range of usefulness and the need for constant recalibration due to sample decay make Rhodamine B

an unreliable choice for a temperature sensor. Due to the lack of promise shown by Rhodamine B,

no measurements were made above 300 K.

Assessment of CdTe quantum dots proved difficult using deconvolution analysis. The necessary

forms of the decay function had too many parameters for the PL lifetime to be accurately determined

by the regression methods involved. Instead, machine learning methods were employed to take

the raw spectral and TCSPC data and use them to predict the temperature. Two networks were

trained, one for each temperature regime. The networks were highly accurate, especially in the

high-temperature regime. Given the success of the network over the range representative of where a

microfluidic temperature sensor might be used, it was concluded that the PL of CdTe quantum dots

is a viable choice for these sensors.

23
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Looking forward, the next step is to test other types of quantum dots. CdTe is effective for

temperature sensing, but comes with its own drawbacks. After long periods the photoluminescence

of the QDs changes sufficiently that the network must be retrained in order to remain effective.

Other materials may not show those same changes in PL while retaining, or even improving upon,

the level of accuracy seen in CdTe.



Appendix A

Heating Stage Operation

The home-built temperature controller used for high-temperature regime measurements is described

in Sec. 2.3. Once the system has been built in accordance with the schematic given in Fig. 2.4 there

are some further operational quirks that should be understood for the heater to operate properly.

Following the same order described in Fig. 2.4, a feedback loop is formed beginning when

the temperature is measured by a thermocouple (TC, Type K, OMEGA Engineering) using a

thermocouple-measuring transducer (Phoenix Contact MINI MCR-SL-TC-UI-2864448). A com-

puter uses the measured temperature and a set target temperature to determine the current that

should be sent on to a heating element embedded in the chip housing the sample. This current

is supplied by a DC power supply (BK Precision 1696) controlled by the computer, allowing the

sample to be heated or cooled as required.

The thermocouple-measuring transducer used (Phoenix Contact MINI MCR-SL-TC-UI-2864448)

requires DC +24 V to operate properly. For the work described in this thesis, this voltage was

provided by a variable output DC power supply (Hewlett Packard 6002A) operating in constant

voltage mode. This could be replaced by another power supply capable of outputting the required

voltage should it be necessary. In order to maximize the effectiveness of the thermocouple, it is

advised that a thermally conductive paste be applied to the inside of the channel containing the

25
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Figure A.1 The front panel of the VI used to operate the heating stage.

thermocouple to ensure good thermal contact is made.

The signal from the transducer is sent on to a computer through a DAC board employing a GPIB

connection. From there, the amount of current to be applied to the heating element is determined by

a LabVIEW VI. This VI and required subVIs are located on the lab computers, under "C:\Heater

Control LabVIEW VIs", and online at https://byu.box.com/s/ii07ncsn286vwke9r9yefzcka5djdm53.

The main VI is "Microfluidic_temperature_currentPID_physics.vi". Required subVIs and control

files are stored alongside the main VI. They are as follows: "Control.ctl", "Number to HexSDP

Address.vi", "Set Current.vi", "Set Output.vi", and "Set Voltage.vi".

An image of the main VI front panel is shown in Fig. A.1. The current temperature and the

setpoint temperature are shown in the two graphs. Temperature data can be saved using the button

and address bar at the bottom right. Operation is done using the box at the right hand side of the

panel. All values that can be set by the user appear in boxes with white backgrounds. The numbers

currently shown are the default values. These will reset back to the defaults every time the program

https://byu.box.com/s/ii07ncsn286vwke9r9yefzcka5djdm53
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is opened. It is advised to keep a separate record of effective parameters so they are not lost upon

re-opening of the VI. The maximum voltage and current range parameters are dependent on the

power supply being controlled. For the one used in this thesis (BK Precision 1696) the maximum

output is 20 V and 10 A. Those values should not be exceeded.

PID values will need to be recalibrated for each new sample as the heating and cooling rates will

vary. That said, it is advised to keep the values small, less than or equal to 1, to allow the controller

to make full use of the range available to it. Too high of values result in the output current jumping

between the two extremes of the allowed range, limiting the effectiveness of the controller. Once

good PID values have been determined, the controller can be made to settle faster by narrowing

the allowed current range. For any given temperature, there exists a current that if used constantly

will result in the system settling on the desired temperature. While that current may not be easily

determined, use of a smaller current range roughly centered on that current greatly speeds up the

control process. A range spanning roughly 2 amps was found to be effective.

The necessary output current is supplied by a DC power source (BK Precision 1696) controlled

by the same VI. This power supply is connected to the computer by a nine-pin serial connection.

This connection must be made through a serial port on the computer. A serial to USB adapter will

not function properly. The galinstan heating element is accessed via two wires connected to the

chip via soldered connections. Before operation, check the quality of these connections. They can

be fragile and may need to be reconnected. A poor connection will cause power to be lost outside

the sample, reducing the effectiveness of the heating.
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