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ABSTRACT

TRACE ELEMENT ANALYSIS IN A NUMERICAL SIMULATION OF AN

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER

Andrew Joseph Sampson

Department of Physics and Astronomy

Bachelor of Science

fenix is a program designed to simulate an inductively coupled plasma mass

spectrometer using a particle-in-cell method call Direct Simulation Monte

Carlo. fenix specifically focuses on the supersonic expansion region in the

inductively coupled plasma mass spectrometer. I have been working on the

introduction of an analyte with the end result of comparing computational

results with experimental results. Initial testing has shown similar behavior to

the main element within the inductively coupled plasma mass spectrometer,

but has also revealed areas that need to be re-evaluated.
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Chapter 1

Introduction

1.1 Inductively Coupled Plasma Mass Spectrome-

try

Mass spectrometry is used to identify unknown molecules from the charge-to-mass

ratio of ions made from the molecules. In inductively coupled plasma (ICP) mass

spectrometry, a hot plasma (about 1 eV) is used to break a molecule into ions that

are processed by a mass spectrometer. A device that employs this process is called

an ICP mass spectrometer (ICP-MS).

A schematic of an ICP-MS is found in Fig. 1.1. In an ICP-MS, a nonreactive

gas, usually argon, flows into a chamber at atmospheric pressure. A nebulizer puts

thousands of tiny droplets of sample within the chamber. This argon/sample mixture

is then directed into a cylindrical area surrounded by a load coil, a large inductor with

an oscillating electric current. Through the application of Faraday’s law, a powerful

electric field is produced that ionizes the argon. This forces a phase change in the

argon from gas to a plasma. (The use of an inductor to couple energy with the plasma

gives rise to the name “inductively coupled plasma.”) During argon ionization and

1
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Figure 1.1 Schematic of an inductively coupled plasma mass spectrometer

afterwards, the sample experiences collisional heating and ionization from the hot

argon. The flow is then incident upon what is called the sampler cone of the ICP-MS

(see Fig. 1.1). At the tip of the sampler cone is a hole of diameter 1 mm that opens

into a vacuum region typically held at 1 torr. This pressure gradient between 760 torr

and 1 torr causes the mixture to undergo a supersonic expansion through the nozzle

of the cone into the vacuum/expansion region. A second cone called the skimmer

cone is 6.3 mm downstream from the sampler and skims off a collimated beam of ions

that travels onward to the mass spectrometer for analysis.

Because of the method used to introduce the sample via a nebulizer, the ICP-MS

is mainly used to identify trace elements/analytes in a solution. It has use in urine

testing, water sampling for metal toxins and other environmental analysis, cancer

diagnosis [1], and many other applications as well.
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1.2 Uncertainty in the Field

There are many areas of uncertainty in the field of ICP mass spectrometry. The effect

of the matrix in the region between the load coil and the sampler cone is one of these

areas of uncertainty. (The matrix is everything in the sampler other than the analyte

and it will be discussed with more detail below.) Matrix effects were studied as early

as 1988 with a paper published by Douglas and French [2]. They concluded, from a

very simple model, that the matrix effects would be negligible and not affect the ion

sampling distribution. This has been refuted by a number of authors, however [3].

To understand this phenomenon, a more thorough introduction to how an ICP-MS

is used will be needed.

Many times in ICP mass spectrometry it is desirable not only to identify the un-

known analyte, but also to find its concentration within the sample. To do this, the

user will premix a few aqueous solutions with known concentrations of the analyte

and analyze them with the ICP-MS. The counts received from the mass spectrometer

directly correspond to the known concentrations. Together they produce a concen-

tration calibration curve for the analyte within the original sample. Interpolation is

used to close the gaps between the data for the known concentration samples. The

original sample with unknown concentration is then analyzed with the ICP-MS and

compared with the calibration curve to find the concentration of the analyte from the

original sample.

As said before, the matrix is everything in the sample other then the analyte. For

example, if an analysis of blood is needed to determine whether lead is present, the

blood is the matrix. On the other hand when a calibration curve for lead is produced,

the aqueous base to the solutions of known lead concentrations is the matrix. Matrix

effects are observed when different counts from the mass spectrometer are received
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from the same concentrations of analyte when different matrices are used in the ICP-

MS [4]. For example, when a sample of blood is analyzed with the ICP-MS, it returns

a different count than a premixed solution of the same concentration. One way to

minimize matrix effects is to create the calibration curve from a solution with a matrix

similar to the one in the sample in question [5].

Another area of uncertainty discovered in experiments here at Brigham Young

University is that the analyte ion density drops more quickly approaching the nozzle

than does the neutral argon density [6]. This has proven difficult to explore because

of the difficulty of studying individual ion interactions with argon particles.

1.3 FENIX with the Introduction of Trace Ele-

ments

To further understand the difficulties faced in ICP mass spectrometry, our group at

BYU is working with Paul Farnsworth in the chemistry department to discover the

inner workings of an ICP-MS. We have written a code called fenix that simulates

the supersonic expansion through the sampler cone. The Farnsworth group has been

doing experimental research using the fluorescence of different analytes to measure the

analytes density through the sampler cone of the ICP-MS. Using fenix, our goal is

to help them understand their data by comparing results from our simulation to their

experimental results. Because argon has such a high excitation energy it is hard to

use fluorescence to view its density; therefore, Dr. Farnsworth has extremely limited

data on the argon physics. Because of the scarcity of argon data, it is necessary to

compare analyte data instead. This means fenix must have a trace element included

in its simulations. I have been working on adding trace elements to fenix with the

ultimate goal of comparing results with those obtained experimentally. There are
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many ways to introduce a trace element and only one way will be discussed in this

paper. Results from testing have been encouraging, and at the same time they have

revealed computational techniques that need to be improved.



Chapter 2

Computational Set-up

2.1 Direct Simulation Monte Carlo

Direct simulation Monte Carlo (DSMC) is a computational technique developed by

Graeme Bird [7] in the late 1960s to simulate fluid dynamics. DSMC keeps track

of each simulation particle’s position and velocity; it does not provide solutions to

the fluid equations. DSMC models representative particles in real positions with real

velocities, thus the term “direct simulation” is used in the title of the algorithm.

“Monte Carlo” refers to the continual use of a random number generator in selecting

particles for collision and calculating their velocities after collision.

Although DSMC uses a direct method for simulating a fluid, there are a few

approximations that it utilizes. The main approximation is forced on us because

of limited computer memory. Garcia [8] points out that if you were to simulate

every single particle of ambient air in 1µm3, there would be 27× 106 particles. That

roughly requires about 1.3 gigabytes of memory. That’s feasible, but that’s also

only 1µm3. The simulation region for introducing trace elements is roughly 50 mm3,

and there are 109 µm3 in 1 mm3. The memory required for the storage of particle

6
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information is about 6 × 1010 gigabytes. To solve this problem, Bird introduced the

idea of representative particles. One representative particle actually simulates Nef real

particles. This approximation is made under the assumption that a group of particles

will flow similarly to one particle in the same vicinity. Making this approximation

makes it possible to directly simulate a fluid with current computers.

The most important element of the simulation involves collisions between repre-

sentative particles. The collider, the algorithm that processes collisions, is designed to

simulate the effects of real particle collisions during the course of colliding represen-

tative particles with each other. First it picks two representative particles at random

that are relatively close to each other. The collider then picks them as a collision

pair if they pass a test on their relative velocity, ensuring that the collision rate is

proportional to relative velocity. The person running DSMC will code the collider to

use the type of potential desired between the colliding particles. The most basic po-

tential is the hard sphere scattering potential which treats particles like billiard balls

and collides them elastically. More complicated scattering potentials can be used if

desired. After the collision is processed, the direction of the two colliding particles is

randomly chosen, and the collider then picks two new particles to repeat the process.

For the collider to correctly simulate the effects of real particle collisions, three

things must happen. First the simulation region must be divided into collision cells;

an array keeps track of the simulation particles in each cell. The collider then uses

the information contained in this array to process collisions between particles in the

same collision cell. To best simulate real collisions, the collision cells need to be

smaller in size then a mean-free path and the time step tau must less than the

average collision time. Second, the accuracy of the simulation increases with the

number of representative particles in a cell. The more representative particles, the

better the statistics. For the statistics to be adequate, there should be about 20-30
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simulation particles per collision cell. The third constraint in the collider is that the

two colliding representative particles must have the same Nef for the statistics to

be modeled correctly. Remember that DSMC makes the approximation that several

particles will flow the same as one particle in the same area. The collider employs this

approximation by basically processing a collision between two real particles and then

applies the result to a pair of representative particles. This means that with every

representative collision, the collider processes Nef real collisions with Nef real collision

pairs. When adding a trace element in DSMC, two species are needed with different

densities. This causes a different Nef to be defined for each species’ representative

particles for the desired number of simulation particles in a cell to be reached. The

simulation would then have two different Nef ’s, N1
ef and N2

ef , for the different species.

When processing a collision, the difference |N1
ef − N2

ef | corresponds to real particles

that were computationally collided with no collision partners. This is why when

processing a collision between two representative particles in the traditional way, they

must have the same Nef . It poses the main problem when adding a trace element in

fenix and will be discussed in a later section. If any of the three constraints discussed

in this section are violated, it would be statistically incorrect and would give invalid

results in a simulation.

A more exhaustive explanation of DSMC can be found in Refs. [7] and [8].

2.2 Navier Stokes vs. DSMC

It could be asked why DSMC should be used when the fluid equations are generally

more simple to work with. The fluid equations are more readily used to solve fluid

dynamics, but they have limitations. The Navier Stokes equation for a compressible
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Figure 2.1 fenix geometry for introducing trace elements.

fluid is:

ρ

[
∂v

∂t
+ v · ∇v

]
= −∇P + µ

[
∇2v +

1

3
∇(∇ · v)

]
(2.1)

where v is the velocity vector, P is the pressure, ρ is the density, and µ is the viscosity.

The reason we cannot use (2.1) is because the Knudsen number is too large in the

expansion region of the ICP-MS. The Knudsen number is the ratio of the local particle

mean-free-path to the length scale of the simulation. If the Knudsen number is close

to or greater than about 0.1, then the assumptions made in fluid mechanics are no

longer a good approximation and a statistical approach should be used instead. In

ICP, the Knudsen number is too large in the expansion region to use fluid mechanics,

so we use DSMC.
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Figure 2.2 A picture of the torch and sampling cone in an ICP-MS. The

red box is drawn around the region simulated in fenix.

2.3 fenix

fenix is a particle-in-cell simulation that employs DSMC to simulate the ICP-MS,

and it has been a work-in-progress within our research group for the past four years.

Fig. 2.1 shows the basic geometry for fenix. To simplify many geometric calculations

in the simulation, fenix has been built with cylindrical symmetry. This allows the

program to approach a three dimensional problem in only two dimensions. Fig. 2.2

is an actual photograph taken of our simulation region within the ICP-MS.

The different colored polygons in Fig. 2.1 represent different masked areas. A

mask is a region marked for a particular action. The masks in fenix are for processing

reflections with the metal sampler cone. When a particle crosses the metal boundary

into a mask, the mask will tell fenix how to act on the particles and what type of

reflection to process. The masks are utilized as a simple organization tool.

fenix runs on a time loop that continually repeats until the program finishes.

There are four main actions that take place during with loop with a number of

supporting routines. First fenix simply moves the particles using the basic kinematic
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equation:

x = x0 + vτ (2.2)

where x is the new position in three-space, x0 is the old position in three-space, v is the

velocity in three-space, and τ is the time step. Next the collision cell each particle is

in is determined. Then metal boundary conditions are processed on the sampler cone

and particles reflect based on their mask. In other words, if a particle has moved into

a masked region inside the sampler cone, fenix will know that particle crossed and

metal boundary and reflects it accordingly. finally, collisions are processed between

representative particles cell-by-cell. fenix entails much more then these four steps,

but these four are the heart of the algorithm.

2.4 Limitations on fenix

Although fenix is a powerful tool for simulating fluid dynamics, fenix is bounded

by three main limitations: memory, axial cell volume, and the consequences of using

representative particles. fenix is limited by random access memory (RAM) because

of the great volume that is needed to simulate the introduction of trace elements.

Even though representative particles have been introduced, it does not free up enough

RAM because of fenix’s large geometry. An easy solution to this would be to use

a smaller geometry for trace elements in fenix. A smaller geometry would allow

the use of a smaller number of representative particles. Unfortunately, this would

also require an understanding of the trace-element-boundary conditions outside the

simulation region upstream from the sampler cone. This is not known; therefore, we

must stay with the larger geometry for the time being and find a way to get around

the RAM limitation.

Another limitation on fenix is the axial cell volume. The collision cells are defined
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by a two-dimensional, mesh grid that overlays Fig. 2.1. Since this is in cylindrical

symmetry, as the mesh is rotated about the z-axis, each square in the grid traces

out a toroid with a square cross-section. These toroids are the three-dimensional

collision cells. At the top of the simulation, these cells have a large volume. Since

the density is practically the same throughout the simulation upstream from the

sampler cone, these high volume cells have a large number of particles compared

with the cells on the radial axis of symmetry (axial cells) that have a mush smaller

volume. As stated before, DSMC requires about 20-30 particles per cell for statistics

to work correctly. Currently in a simulation of 5 million particles, there are about

two simulation particles per axial cell, and it uses about 3 GB of RAM. To get the

minimum of 20 particles per cell on axis, roughly multiply the number of particles by

ten giving 50 million simulation particles. This simulation requires about 14 GB of

RAM. The largest supercomputer available to our group has a maximum of 8 GB of

RAM per node. fenix currently can only run on 1 node giving it the limit of 8 GB.

It is possible to add particles until the 8 GB limit has been reached, but this also

requires more time to run the program to completion. The geometry for trace element

introduction has been loaded to the maximum RAM and takes roughly a month to

run to completion. That also gives about 15 particles per cell along the axis.

The final limitation in fenix is the consequence of using representative particles.

As explained in Sec. 2.1, a collision between two representative particles with two

different Nef ’s is inaccurate. This restriction can arise when introducing a trace

element because the trace element has a much smaller particle density than that of

the main element. Because of this difference, the trace Nef is naturally much smaller

than the main Nef to keep the ideal greater than 20 particles-per-cell requirement

for statistics. Their different Nef ’s create an unphysical result when a collision is

processed between the two different species. This has been a major roadblock in
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the development of trace elemental analysis in fenix, but a possible solution will be

presented in the next section.

2.5 Computational Approach to Trace Element Anal-

ysis

As mentioned above the idea of representative particles has made it difficult to add a

trace element in fenix. Cross-colliding these two simulation particles would be disas-

trous for the statistics in DSMC. To get around this problem, a simple approximation

is made using a fundamental property of trace elements. Because of its low density

a trace element should not noticeably affect the main element. We may exploit this

principle when processing a cross-collision. In effect, as in a normal collision, two

real particles are taken from the cross-colliding-representative particles: one from the

main element, and another from the trace element. A collision is processed between

the two real particles, and the effects of the collision are applied to the rest of the

trace-representative particle. The main element on the other hand is kept the same as

it was before the collision: all effects from the cross-collision are annulled, and it was

as if the collision never took place for the main element. Basically, the cross-collision

is processed as if the trace-representative particle collided with a main-representative

particle of the same Nef . This is statistically accurate for the trace element. On the

other hand, the main element acts as if it was never collided, thus not destroying the

statistical outcome. It is here that the constraint that a trace element should not

noticeably affect the main element is enforced: the main element’s properties never

change through cross-collisions. With this approximation, fenix is able to simulate

trace elements.



Chapter 3

Refinement of Numerical

Techniques

3.1 Trace Element Flow Properties

Three main checks were done to test the cross-collision algorithm discussed in Sec. 2.5.

These tests were: barium diffusion through the argon, a flow comparison between

barium and argon, and a temperature comparison between the barium and argon.

The first two checks are considered in this section, while the latter will be the subject

of the next section.

First, the diffusion of barium in argon will be considered. When the barium is

introduced, it is done with a radial-Maxwellian density profile with a radial full-width

at half-maximum of 1.5 mm at a location 5 mm upstream from the sampler cone (this

corresponds to z = 0 mm in the geometry). As this barium approaches the nozzle,

the barium should diffuse out causing the Maxwellian density distribution to widen

radially. Fig. 3.1 shows the density of barium in steady state in the radially symmetric

fenix geometry. The diffusion is small but discernible in this picture. The barium

14
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Figure 3.1 A contour plot of the barium density in fenix’s radially sym-

metric geometry.

diffusion is better seen in Fig. 3.2 which shows a graph of four different radial scans

of the barium density taken at four different z positions. The first scan is an average

radial density at the interval z =[0,1] mm, the second at [1,2] mm, the third at

[2,3] mm, and the fourth from [3,4] mm. This picture shows the diffusion of barium

through the argon as it approaches the sampler cone. Something else noticeable in

Fig. 3.2 is a consistent dip in barium density on axis. As of yet, we do not understand

this effect.

Next, a comparison is needed between the flow characteristics of barium and argon.

Fig. 3.3 is a plot of both argon and barium streamlines in fenix. It is observed that

although the streamlines start the at the same radii, the barium streamlines do not

overlay the argon streamlines exactly. The barium does follow the argon, especially

where there is high velocity through the nozzle, but its streamlines spread more than

the argon streamlines. This correlates with the barium diffusion. Because the barium

diffuses outward it has a flow pattern that will spread more radially than the argon.
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Figure 3.2 This plot shows four radial scans of barium density averaged

over a 1 mm each in z. The changing of the Maxwellian distribution shows
the diffusion of barium within the argon.
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Figure 3.4 The velocity magnitude of argon vs. barium along the axis of

symmetry in fenix.

Another result is the agreement between the barium and argon velocity magnitude

down the axis of the simulation. Fig. 3.4 shows the velocity magnitude of both argon

and barium along the central axis in fenix. They match closely until about z =5.52e-

3 mm which happens to be the end of the sampler cone nozzle. Following the nozzle,

the barium velocity is a little slower than the argon. This is actually a physical result.

Past the sampler cone, the mean-free-path increases causing the barium and argon

to be no longer tightly coupled. They feel the same pressure force and since barium

has a higher mass, it experiences less acceleration.

3.2 Barium and Argon Temperature Comparison

Since barium is introduced with a temperature of 3000 K and is in thermal contact

with 4900 K argon, the two should come to thermal equilibrium. Because argon is not

affected by the cross-collider (Sec. 2.5), the barium should be 4900 K after thermal

equilibrium. Figs. 3.5 and 3.6 show the temperature comparison for both a radial scan
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Figure 3.5 Radial temperature comparison of barium with argon averaged

over 2-4 mm in z upstream from the sampler cone.
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Figure 3.6 Axial temperature comparison of barium with argon.
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and an axial scan. On the radial scan, the barium has a much higher temperature

on axis than the argon. As the radius increases, the barium temperature converges

to the argon temperature. This is a completely unexpected result, and is physically

incorrect. The raised temperature of barium above that of the argon is also evident in

the centerline temperature in Fig. 3.6. It is a good sign, however, to see that barium

and argon have the same behavior down the axis. This shows the collider is trying to

bring about thermal equilibrium but fails as demonstrated by both Fig . 3.5 and 3.6.

This difference in temperature demonstrates a flaw in fenix that will be the subject

of the next section.

3.3 The Temperature Solution

In section 2.4, the 20-30 particles per cell requirement was emphasized. DSMC is a

code that thrives on enough particles to make statistics work; if there are not enough

particles, something will suffer. In the case of fenix with trace elements the barium

temperature on axis is higher than the argon. As a test to see if this really was the

issue, a matlab m-file (contained in the appendix called fenix9coll.m) was written

that simulates one collision cell in fenix. Collisions take place between an adjustable

amount of both barium and argon particles. In the fenix run that produced Figs. 3.5

and 3.6, there was an average of 8 argon particles and 20 barium particles in the axial

cells. Fig. 3.7 was produced by setting up fenix9coll.m with 8 argon and 20 barium

particles and time averaged the velocities of the barium particles. The time-averaged

velocity distribution was then fitted to a Maxwellian. To recreate the effect in fenix,

the argon used was at 4900 K. The time-averaged temperature of the barium was

5079 K (the fit returned 5049 K, off by .5% because it forces a Maxwellian fit to a

distribution that might not be 100% Maxwellian). Fig. 3.7 reveals the same behavior
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Figure 3.7 The red curve represents the Maxwell-Boltzmann distribution

the barium should have. The green curve shows a least-squares fit to the
histogram of the barium speed distribution. The effective temperature is a
value obtained from the fit. The calculated temperature from the barium
data itself is 5078.8 K.
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Figure 3.8 This is much better fit then Fig. 3.7. This is using 100 argon

particles instead of 10.

as fenix on axis. After increasing the number of argon particles from 8 to 100, the

new distribution is shown in Fig. 3.8. It is clear that with more argon particles in

the cell, the barium temperature converges to the argon temperature. In the outer

radial cells, there are on average about 100 argon simulation particles. This explains

why the barium temperature does not converge with the argon on axis, where there

are only an average of 8 argon particles, but converges in the outer radial cells. The

simple solution to this problem would be to add more argon particles, but this would

also lead back to the memory issues explained in Sec. 2.4. fenix is already at the

memory limits and can access no more.
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To correct these unphysical results without having to add more particles we are

developing a method that redefines how the argon gas is represented in fenix. This

method would not require the storage of argon simulation particles, freeing up memory

for other usage. fenix has been simulating argon long enough for us to be confident

in its results. For each collision cell in the simulation we know the argon density,

temperature, and flow velocity. With this information stored for every collision cell,

it is possible to create an argon particle on the fly as a collision candidate for barium.

The argon density information will determine how many collision candidates are cho-

sen. For each barium candidate, an argon particle will be created, using the standard

Box-Muller algorithm for reproducing a Maxwellian distribution. The fundamental

equations:

v⊥ = vth

√
−2.0 ln<i

θ = 2π<j

vx = v⊥ cos θ

vy = v⊥ sin θ

(3.1)

are used in the Box-Muller algorithm, where <i and <j are random numbers on

the unit interval. After the new argon particle’s velocity has been produced in this

way, the local flow velocity is added to it. This procedure thus produces a local

random-thermalized-argon particle to collide with the barium collision candidate. The

collider would then function as it normally does and process the collision. Instead of

trying to sample a full distribution from 8-100 argon particles, this method samples

from a local Maxwellian allowing collisions to be statistically sound and not require

extensive memory. Fig. 3.9 is again a time averaged plot of the barium distribution

after colliding with argon particles that were created on the spot from a Maxwellian

distribution at 5400 K. The temperature of the barium converged to 5401 K, an error

of ∼ 0.002%. Treating the argon this way will give us an opportunity to simulate the
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Figure 3.9 This picture uses the new method for colliding barium with

argon by creating a collision partner on the fly. Temperature of barium in
this distribution is 5401.05 K while the argon distribution was at 5400 K.
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trace element in fenix and bring us closer to comparing results with experimental

data.

3.4 Conclusion

We have discovered that the method discussed here for the introduction of an analyte

in fenix will work statistically with the hard-sphere model. On the other hand, the

way argon is treated must change to allow barium statistics to function properly.

These changes will be explored in the near future.
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Appendix A

Fenix8.f Segments of Code

A.1 crosscollider.f

c BEGIN CROSSCOLLIDER5

!This collider will work off the idea that Trace elements do not affect

! the main element. With this idea, the main element will act on the

! Trace element, but the Trace element will not act on the main element.

! In this case, only the Trace element will have changing values from the

! collision, but NOT THE MAIN ELEMENT. ITS VALUES WILL NOT CHANGE IN

! THIS COLLIDER, ONLY THE TRACE!!!

subroutine crosscollider5(xpf,ypf,zpf,vxpf,vypf,vzpf,psabsminf,

& xptf,yptf,zptf,vxptf,vyptf,vzpTf,psabsmintf,

& sigmaX,vrmXf,nincellmaxf,nc,collfracXf,

& cellistTf,cellistf,nincellmaxTf,nmsim,ntrsim,

& ncbegcoll,ncendcoll)

use constants

use geometry

use timestepvars

use toggles

use timings

use randomnumbers

use specievars

27
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implicit none

c Argument declarations

integer nmsim,ntrsim,nincellmaxf,nincellmaxTf

integer nc,cellistf(nincellmaxf,nc),cellistTf(nincellmaxTf,nc)

real(8) xpf(1:nmsim),ypf(1:nmsim),zpf(1:nmsim)

real(8) vxpf(1:nmsim),vypf(1:nmsim),vzpf(1:nmsim)

real(8) xptf(1:ntrsim),yptf(1:ntrsim),zpTf(1:ntrsim)

real(8) vxptf(1:ntrsim),vyptf(1:ntrsim),vzpTf(1:ntrsim)

real(8) psabsminf,psabsmintf,collfracXf(1:nc),vrmXf(1:nc)

real(8) sigmaX

!local variables

integer i,j,k,n,one

integer ncoll,ncbegcoll,ncendcoll,nincellm,nincellt

integer Ncand,k1,k2

real(8) tmp,tempmul,dvx,dvy,dvz,vrel2,vrel

real(8) phi,cp,sp,ct,st,fa,ft,div

real(8) vperp,stcp12,stsp12,stsp3,dvfac

real(8) r1,r2

real(8) vcm(3),vr(3)

real(8) vzavg,count

real ran90

c KLUGE

vzavg=0.

count=0.

if(verbose.eq.1) write(*,*)’ Crosscollider’

!Restart the counter

ncoll=0

!set some variables that will be used for the collider

div=1/(mar+mtrac)

fa=mar*div

ft=mtrac*div
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do i=ncbegcoll,ncendcoll

c control the random upward growth of vrmf

vrmXf(i)=0.999*vrmXf(i)

nincellm=cellistf(1,i)

nincellt=cellistTf(1,i)

!collide cells that meet certain conditions

if(nincellm.ge.1.and.nincellt.ge.1.and.mask(i).ne.mcdelete.and.

& Vc(i).ne.0.d0)then

!Compute the number of collision candidates

tmp=nincellt*nincellm*psabsminf*sigmaX*sqrt(vrmXf(i))*tau/

& (Vc(i))+ collfracXf(i)

Ncand=int(tmp)

collfracXf(i)=tmp-Ncand

!Top of candidate loop

do n=1,Ncand

!Randomly select 2 particles in cell: one argon and one Trace

!Argon

k1=nincellm*random(randcnt)+1.d0

randcnt=randcnt-1

if(randcnt==0)randcnt=randmax

!Trace

k2=nincellt*random(randcnt)+1

k2=ran90()*nincellt+1

randcnt=randcnt-1

if(randcnt==0)randcnt=randmax

!Convert k1 and k2 into particle indices

k1=cellistf(k1+1,i)

k2=cellistTf(k2+1,i)

!Compute the squared relative veloicty
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dvx=vxpf(k1)-vxpTf(k2)

dvy=vypf(k1)-vypTf(k2)

dvz=vzpf(k1)-vzpTf(k2)

vrel2=dvx**2+dvy**2+dvz**2

!update the maximum relative velocity squared in the this cell

vrmXf(i)=max(vrmXf(i),vrel2)

!Compute a collision if the relative velocity is favorable

! This is acceptance-rejection

r1=random(randcnt)

randcnt=randcnt-1

if(randcnt==0)randcnt=randmax

!top of vrelative acceptance rejection if

if(vrel2.gt.vrmXf(i)*real(r1**2))then

!Compute the center of mass velocity vector

vcm(1)=fa*vxpf(k1)+ft*vxpTf(k2)

vcm(2)=fa*vypf(k1)+ft*vypTf(k2)

vcm(3)=fa*vzpf(k1)+ft*vzpTf(k2)

!Compute the relative velocity

vrel=sqrt(vrel2)

!get the random scattering angle phi, then cos(phi) and sin(phi)

phi=twopi*real(random(randcnt))

randcnt=randcnt-1

if(randcnt==0)randcnt=randmax

cp=cos(phi)

sp=sin(phi)

!get the random cos(theta)and sin(theta)

ct=2.d0*real(random(randcnt))-1.d0

randcnt=randcnt-1

if(randcnt==0)randcnt=randmax

st=sqrt(1.d0-ct**2)
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!various factors for computing the relative velocity vector

!This is subtle - we are using the fact that all particles are

! at y=0

vperp=sqrt(dvx**2+dvy**2)

stcp12=st*cp*vrel

stsp12=st*sp*dvz

stsp3=st*sp

dvfac=1.d0/vperp

!New relative velocity vector

vr(1)=ct*dvx + dvfac*(dvy*stcp12+dvx*stsp12)

vr(2)=ct*dvy + dvfac*(dvy*stsp12-dvx*stcp12)

vr(3)=ct*dvz-stsp3*vperp

!*********************************

c kluge

c vr(1)=vrel*cp*st

c vr(2)=vrel*sp*st

c vr(3)=vrel*ct

!*********************************

!This is where we enact the trace particle collider. ONLY THE

! TRACE ELEMENT IS UPDATED, NOT THE MAIN ELEMENT!!!

vxpTf(k2)=vcm(1)-fa*vr(1)

vypTf(k2)=vcm(2)-fa*vr(2)

vzpTf(k2)=vcm(3)-fa*vr(3)

vzavg=vzavg+vzpTf(k2)

count=count+1.

c kluge: write velocities to file to look at distributions
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c write(382,340)vxpTf(k2),vypTf(k2),vzpTf(k2)

340 format(3(1pe12.4))

!count this collision in the back half diagnostic

if(zpTf(k2).lt.2e-3)then

ncoll=ncoll+1

end if

endif

!end of acceptance rejection

end do

! end of candidate loop

end if

! bottom of "legal cell" loop

end do

! bottom of loop over cells to process collisions

!Print the back half collision count diagnostic

write(*,*)’ # collisions in cross collider:’,ncoll

return

end

c END CROSSCOLLIDER5



Appendix B

Matlab m-files

B.1 fenix9coll

%This will be a one cell simulation to test the new collider for

%fenix9. Specifically it will test if the statistics will work for

%calling box-muller to create a single particle candidate or if it

%needs to create a whole distribution of particles for the barium to

%collide with. It also will test whether the small number of argon

%particles in a cell contributes to the horrible temperature

%difference in the simulation.

clear all;clc;close all;

format long e

%first define what type of simulation you want to run.

%massargon=1: loading the cell with argon particles

%massargon=2: using box-muller once to create one argon particle for

% a collision candidate

massargon=0;

%define the temperature for box-muller and density for determining the

% number of collision candidates.

atemp=5400;

adens=1.129e24;

bdens=adens/1000;

33
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mar=40*1.660538e-27;

kb=1.381e-23;

mbar=2.28e-25;

% mbar=mar;

vthar=sqrt(kb*atemp/mar);

vthtrac=sqrt(kb*atemp/mbar);

vrmX=(3.0*vthar)^2;

sigmaX=3.0e-19;

collfrac=0;

%define the timestep

tau=1.3e-9;

%set some variables that will be used in the collider

div=1/(mar+mbar);

fa=mar*div;

ft=mbar*div;

vcm=zeros(3,1);

vr=zeros(3,1);

%top of loop

num=1;

narsim=100;

nsteps=10000;

equali=10;

ntracsim=20;

temp=zeros(num,1);

for j=1:num

%open the file for writing

fid=fopen(’particledata.dat’,’w’);

%write the header file

fprintf(fid,’%16.8E %16.8E %16.8E %16.8E %16.8E %16.8E %16.8E\n’,...
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vthtrac,sigmaX,1.4e-3,mbar,atemp,0.0,1.0);

%if it is desired to load the cell with argon particles for the

% collider then define how many you would like to load

narsim=narsim;

fprintf(’narsim = %g\n’,narsim);

%then define the array that will keep track of the argon information

avels=zeros(3,narsim);

bvels=zeros(3,ntracsim);

%set the collider counter

ncoll=0;

vx=0;

vy=0;

vz=0;

vx2=0;

vy2=0;

vz2=0;

nn=0;

%duplicate counters

dup=zeros(narsim);

duptot=0;

ncollisions=0;

%start the main loop

display(’starting the loop’)

for nt=1:nsteps;

% fprintf(’nt: %g\n’,nt)

vrmX=vrmX*.999;

%start the collider on the particles

if(massargon==1)

for k=1:narsim

vtmp=vthar*sqrt(-2.0*log(1.0-.9999*rand(1,1)));

theta=2.0*pi*.9999*rand(1,1);

avels(1,k)=vtmp*cos(theta);
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avels(2,k)=vtmp*sin(theta);

vtmp=vthar*sqrt(-2.0*log(1.0-.9999*rand(1,1)));

theta=2.0*pi*.9999*rand(1,1);

avels(3,k)=vtmp*cos(theta);

end

end

%compute the number of collision candidates

tmp=ntracsim*adens*sigmaX*sqrt(vrmX)*tau+collfrac;

Ncand=floor(tmp);

collfrac=tmp-Ncand;

%top of the candidate loop

for n=1:Ncand

%pick an argon particle from the cell if massargon=1

if(massargon==1)

k1=floor(narsim*.9999*rand(1,1)+1.0);

vxa=avels(1,k1);

vya=avels(2,k1);

vza=avels(3,k1);

else

%if you want to pick it on the fly, then use box-muller

vtmp=vthar*sqrt(-2.0*log(1.0-.9999*rand(1,1)));

theta=2.0*pi*.9999*rand(1,1);

vxa=vtmp*cos(theta);

vya=vtmp*sin(theta);

vtmp=vthar*sqrt(-2.0*log(1.0-.9999*rand(1,1)));

theta=2.0*pi*.9999*rand(1,1);

vza=vtmp*cos(theta);

end

%pick the barium particle
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k2=floor(ntracsim*.9999*rand(1,1)+1.0);

vxb=bvels(1,k2);

vyb=bvels(2,k2);

vzb=bvels(3,k2);

%compute the squared relative velocity

dvx=vxa-vxb;

dvy=vya-vyb;

dvz=vza-vzb;

vrel2=dvx^2+dvy^2+dvz^2;

%update the maximum relative velocity

vrmX2=max(vrel2,vrmX);

vrmX=vrmX2;

%Acceptance/rejection

if(vrel2>vrmX*.9999^2*rand(1,1)^2)

%make the duplicate count

if(massargon==1)

dup(k1)=dup(k1)+1;

ncollisions=ncollisions+1;

end

%compute the center of mass velocity

vcm(1)=fa*vxa+ft*vxb;

vcm(2)=fa*vya+ft*vyb;

vcm(3)=fa*vza+ft*vzb;

%compute their relative velocity

vrel=sqrt(vrel2);

%get the random scattering angle: phi

phi=2.0*pi*.9999*rand(1,1);

sp=sin(phi);

cp=cos(phi);

%get the random cos(theta), and then sin(theta)

ct=2.0*.9999*rand(1,1)-1.0;
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st=sqrt(1.0-ct^2);

vr(1)=vrel*cp*st;

vr(2)=vrel*sp*st;

vr(3)=vrel*ct;

%update only the trace element

bvels(1,k2)=vcm(1)-fa*vr(1);

bvels(2,k2)=vcm(2)-fa*vr(2);

bvels(3,k2)=vcm(3)-fa*vr(3);

end

end

bvx2=mean(bvels(1,:).^2);

bvy2=mean(bvels(2,:).^2);

bvz2=mean(bvels(3,:).^2);

T(nt)=mbar/kb/3*(bvx2+bvy2+bvz2);

%fprintf(’ T = %g \n’,T)

if(nt>=equali)

%start sums for the temperature keeper

for i=1:ntracsim

vx=vx+bvels(1,i);

vy=vy+bvels(2,i);

vz=vz+bvels(3,i);

vx2=vx2+bvels(1,i)^2;

vy2=vy2+bvels(2,i)^2;

vz2=vz2+bvels(3,i)^2;

ncoll=ncoll+1;
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%write the velocities to file if past the equilibrium mark

fprintf(fid,’%16.8E %16.8E %16.8E %16.8E %16.8E %16.8E %16.8E\n’,...

bvels(1,i),bvels(2,i),bvels(3,i),0.0,0.0,0.0,0.0);

end

if(massargon==1)

%make the duplicate count

duptot=duptot+sum(nonzeros(dup)-1);

dup(:)=0;

end

end

end

fprintf(’ number of collisions: %g\n’,ncollisions)

fprintf(’ number of duplicates: %g\n’,duptot)

fprintf(’ collision frac: %g\n’,duptot/ncollisions)

display(’ ’)

fprintf(’ number of entries: %g\n’,ncoll);

vx=vx/ncoll;

vy=vy/ncoll;

vz=vz/ncoll;

vx2=vx2/ncoll;

vy2=vy2/ncoll;

vz2=vz2/ncoll;

temp(j)=mbar/3/kb*(vx2+vy2+vz2-vx^2-vy^2-vz^2);

fprintf(’ barium temperature: %g\n’,temp(j))

display(’ ’)

end

% plot(temp)

% vx=0;

% vy=0;

% vz=0;

% vx2=0;
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% vy2=0;

% vz2=0;

% for k=1:narsim

% vx=vx+avels(1,k);

% vy=vy+avels(2,k);

% vz=vz+avels(3,k);

% vx2=vx2+avels(1,k)^2;

% vy2=vy2+avels(2,k)^2;

% vz2=vz2+avels(3,k)^2;

% end

% vx=vx/narsim;

% vy=vy/narsim;

% vz=vz/narsim;

% vx2=vx2/narsim;

% vy2=vy2/narsim;

% vz2=vz2/narsim;

% temp=mar/3/kb*(vx2+vy2+vz2-vx^2-vy^2-vz^2);

% fprintf(’argon temperature: %g\n’,temp)

display(’all done’)

% fclose(fid);

B.2 maxwell

This is a the maxwellian fitter.

close all;

% This is going to be my maxwell solver

loadnow=input(’Do you want to load the datafiles? (1-yes and 0 -no): ’)

if loadnow==1;

clear all

load particledata.dat

end

format long e
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%initializations of different variables

conts=particledata(1,:);

%variables for barium loading

sigma=conts(2);

tracwidth=conts(3);

particleskip=conts(7);

%variables for the desired maxwellian

vth=conts(1);

m=conts(4);

T=conts(5);

kb=1.381e-23;

% T=3000;

% vth=sqrt((kb*T)/m);

% m=6.68e-26;

% vth=1057;

vmax=10*vth;

bins=100;

dv=vmax/bins;

v=0:dv:vmax;

%This is the real distribution of my particles

% mxwl=2e-9*v.^2.*exp(-2e-6*v.^2/2);

mxwl=(m/(2*pi*kb*T))^(3/2)*4*pi*v.^2.*exp(-m*v.^2/(2*kb*T));

%plot(v,mxwl,’r-’,’linewidth’,2);

[a,b]=size(particledata);

vxp=particledata(2:a,1);

vyp=particledata(2:a,2);

vzp=particledata(2:a,3);

xp=particledata(2:a,4);

zp=particledata(2:a,6);

ntracsim2=particledata(2:a,7);

ntracsim=nonzeros(ntracsim2);

%set it to the number of particles in the collision loop

ntracsim=input(’enter the number of entries: ’);

fprintf(’you have %g blocks to go through\n’,length(ntracsim));

k=0;

nn=0;
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epsilon=m/(kb*T)

A1=(m/(2*pi*kb*T))^(3/2)*4*pi

averagefreq=1;

count=0;

Vhtot=zeros(1,bins);

Vxtot=zeros(1,bins);

Vytot=zeros(1,bins);

Vztot=zeros(1,bins);

Patot=v.*0;

%Hard code the first guess

% A1=2e-9;

% epsilon=2e-6;

vxm=0;

vym=0;

vzm=0;

for i=1:length(ntracsim);

Vxhist=zeros(ntracsim(i),1);

Vyhist=zeros(ntracsim(i),1);

Vzhist=zeros(ntracsim(i),1);

i

count=count+1;

for q=1:ntracsim(i);

nn=nn+1;

k=k+1;

Vxhist(k)=vxp(nn);

Vyhist(k)=vyp(nn);

Vzhist(k)=vzp(nn);

end

Vhist=sqrt(Vxhist.^2+Vyhist.^2+Vzhist.^2);

%Compute means for diagnostics

% fprintf(’<x> = %g\n’,mean(Vxhist))

% fprintf(’<y> = %g\n’,mean(Vyhist))

% fprintf(’<z> = %g\n’,mean(Vzhist))

vxm=vxm+mean(Vxhist);

vym=vym+mean(Vyhist);

vzm=vzm+mean(Vzhist);
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%set up the edges needed for histograms

if(i==1)

de=(vmax)/(bins-1);

edges=0:de:vmax;

edges2=-vmax:2*de:vmax;

end

%Create the histograms

Vx=hist(Vxhist,edges2);

Vy=hist(Vyhist,edges2);

Vz=hist(Vzhist,edges2);

Vh=hist(Vhist,edges);

%normalize Vh,Vx,Vy,Vz

A=trapz(edges,Vh);

Vh=Vh./A;

A=trapz(edges2,Vx);

Vx=Vx./A;

A=trapz(edges2,Vy);

Vy=Vy./A;

A=trapz(edges2,Vz);

Vz=Vz./A;

%this does the approximation on individual time steps

% x=zeros(2,1);

% x(1)=A1;

% x(2)=epsilon;

% [epsilon,A1]=newtn(edges,x,Vh);

% Pa=A1*v.^2.*exp(-epsilon.*v.^2/2);

%this is the time average

Vhtot=Vhtot+Vh;

Vxtot=Vxtot+Vx;

Vytot=Vytot+Vy;

Vztot=Vztot+Vz;

% Patot=Patot+Pa;

if count==averagefreq

Vhav=Vhtot./averagefreq;

Vxhav=Vxtot./averagefreq;
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Vyhav=Vytot./averagefreq;

Vzhav=Vztot./averagefreq;

% Paav=Patot./averagefreq;

%this does the approximation in side the averaging

x=zeros(2,1);

x(1)=A1;

x(2)=epsilon;

[epsilon,A1]=newtn(edges,x,Vhav);

Paav=A1*v.^2.*exp(-epsilon.*v.^2/2);

%calculate the effective temperature

Teff=m/(2*pi*kb)*(A1/(4*pi))^(-2/3);

%compute the averages

vxm=vxm/averagefreq;

vym=vym/averagefreq;

vzm=vzm/averagefreq;

%CREATE THE SUBPLOTS

% Create the speed plot

% subplot(2,2,1)

bar(edges,Vhav);

axis([0 3000 0 2e-3])

hold on

plot(v,mxwl,’r-’,’linewidth’,2);

plot(v,Paav,’g-’,’linewidth’,2);

%print the effective temperature on the figure

s=sprintf(’Effective Temperature = %g’,Teff);

text(1500,1e-3,s);

t=sprintf(’Cross-Colliding Maxwell-Boltzmann distribution, Timestep %g’,(i)*particleskip);

title(t);

legend(’Time Averaged Histogram’,’Maxwell-Boltzmann’,’Time Averaged Fit’)

xlabel(’Speed’)

ylabel(’Probability Density’)

hold off
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% %create the vx plot

% subplot(2,2,2)

% bar(edges2,Vxhav);

% s=sprintf(’Averaged Histogram of Vxp, <vxp> = %g’,vxm);

% title(s)

% axis([-4500 4000 0 7e-4])

%

% %create the vy plot

% subplot(2,2,3)

% bar(edges2,Vyhav);

% s=sprintf(’Averaged Histogram of Vyp, <vyp> = %g’,vym);

% title(s)

% axis([-4500 4000 0 7e-4])

%

% %create the vz plot

% subplot(2,2,4)

% bar(edges2,Vzhav);

% s=sprintf(’Averaged Histogram of Vzp, <vzp> = %g’,vzm);

% title(s)

% axis([-4500 4000 0 7e-4])

count=0;

Vhtot(:)=0;

Vxtot(:)=0;

Vytot(:)=0;

Vztot(:)=0;

Patot(:)=0;

% pause

end

% break

clear Vxhist Vyhist Vzhist Vhist

k=0;

% break

end

This is the Newton solver that employs Newton’s method needed for maxwell.

% This is going to be my maxwell solver for a maxwellian distribution

function [epsilon,A]=newtn(v,guess,Vh)



B.2 maxwell 46

n=length(v);

x=guess;

format long e

y=f(x,n,v,Vh);

while (abs(y(1))>1e-5 || abs(y(2))>1e-5);

x1=x-Df(x,n,v,Vh)\f(x,n,v,Vh);

x=x1;

y=f(x,n,v,Vh);

end

epsilon=x(2);

A=x(1);

return

%these are my functions that solve the derivative and the normal

function out=f(x,n,v,Vh)

sum1=0;

sum2=0;

out=zeros(2,1);

for i=1:n;

sum1=sum1+x(1)*v(i)^4*exp(-x(2)*v(i)^2)-Vh(i)*v(i)^2*exp(-x(2)*v(i)^2/2);

sum2=sum2+Vh(i)*x(1)*v(i)^4*exp(-x(2)*v(i)^2/2)-x(1)^2*v(i)^6*exp(-x(2)*v(i)^2);

end

out(1)=2*sum1;

out(2)=sum2;

return

function out=Df(x,n,v,Vh)

sum1=0;

sum2=0;

sum3=0;

sum4=0;

out=zeros(2,2);

for i=1:n;

sum1=sum1+2*v(i)^4*exp(-x(2)*v(i)^2);

sum2=sum2+Vh(i)*v(i)^4*exp(-x(2)*v(i)^2/2)-2*x(1)*v(i)^6*exp(-x(2)*v(i)^2);

sum3=sum3+Vh(i)*v(i)^4*exp(-x(2)*v(i)^2/2)-2*x(1)*v(i)^6*exp(-x(2)*v(i)^2);

sum4=sum4+x(1)^2*v(i)^8*exp(-x(2)*v(i)^2)-.5*Vh(i)*x(1)*v(i)^6*exp(-x(2)*v(i)^2/2);

end

out(1,1)=sum1;
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out(1,2)=sum2;

out(2,1)=sum3;

out(2,2)=sum4;

return
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