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Classification of continuous phase transitions and stable phases.
II. Four-dimensional order parameters
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%e have classified continuous phase transitions in physical systems where the order parameter

transforms as a four-dimensional representation of a three-dimensional space group. For most ac-
tive four-dimensional space-group representations the "phase diagrams" are obtained. %'e also give

prescriptions to lift the degeneracy, occurring at the fourth-degree polynomical expansion of the free

energy, between phases preserving maximal isotropy subgroups and to distinguish images yielding

the same quartic potential. In two cases we have found that the symmetry is reduced to the

minimal one after the phase transition.

I. INTRODUCTION

Recently we classified' all possible second-order phase
transitions allowed by the Landau theory for physical sys-
tems whose order parameter transforms as a six-
dimensional representation of a space group. A complete
"phase diagram" —a list of stable phases versus regions in
the coupling constant space —was obtained for most of
the active six-dimensional space-group representations.
Out of 43 six-dimensional active representations corre-
sponding to points of symmetry in the Brillouin zone, 32
representations were treated.

The procedure to carry out such a project was detailed
in previous works. We outline it briefiy in the follow-
ing.

(1) Space-group representations with equivalent images
are grouped together (the image of an irreducible repre-
sentation, irrep, is the set of distinct matrices of the irrep
and it forms a finite group).

(2) Landau and Lifshitz conditions (necessary condi-
tions for continuous phase transitions) are imposed to sort
out active images.

(3) These active images are further classified according
to distinct types of the fourth-degree expansion of the free
energy (different images can give rise to the same fourth-
degree potential and the largest group that leaves the
quartic potential invariant is called the centralizer of the
potential).

(4) A complete list of isotropy subgroups and their in-
variant vectors for each active image is computed.

(5) Each type of fourth-degree potential is minimized in
every region of the coupling constant space.

In the last two steps we have been using Kim s minimi-
zation technique with the complete table of isotropy sub-

groups computed by Stokes and Hatch. For further de-

tails we refer the reader to Ref. 1 which also contains ex-
tensive references. In this way the phase diagrams are
readily obtained for potentials consisting of less than five
linearly independent fourth-degree invariant polynomials.
The minimization becomes quite tedious if there are more
than four linearly independent fourth-degree invariant po-
lynomials, though the same procedure' is used.

In this paper we carry out the above project for four-
dimensional active space-group representations corre-
sponding to points of symmetry in the Brillouin zone. A
similar project was carried out by Toledano and
Toledano, who listed 13 different types of quartic poten-
tial complying with both the Landau and Lifshitz condi-
tions. Michel, Toledano, and Toledano" enumerated all
irreducible subgroups of O(4) and found 27 centralizers,
22 of which comply with the Landau condition but not
necessarily with the Lifshitz condition. Part of the 27
centralizers are not related to images of space-group rep-
resentations due to the requirement that the group must
comply with the periodicity of a crystal lattice in three di-
mensions. Recently the effective Hamiltonians with these
quartic potentials were further analyzed' by
renormalization-group methods. It was found that only
five Hamiltonians have stable fixed points.

We have found 27 active images out of 42 distinct im-
ages of four-dimensional space-group representations cor-
responding to points of symmetry. (We warn the reader
not to confuse them with the above-mentioned 27 central-
izers. The two sets are different. ) These active images
yield 14 distinct fourth-degree potential types (we will
denote them as "FD"). In other words there are 14 cen-
tralizers associated with active images and 8 of the 22
centralizers found in Ref. 11 are either Lifshitz inactive or
irrelevant to space-group representations. %e shall
analyze 10 quartic potential types in this paper.

The outline of each section of the present paper is as
follows. For each distinct quartic potential type, its cen-
tralizer is identified using the notation used in Ref. 12.
(In order to avoid excessive digression and confusion, we
refer the reader to Ref. 12 for details. Here our intention
is to match our notation with that of Ref. 12.) The free
energy is expanded to fourth-degree in order-parameter
components (to sixth-degree in the case where the fourth-
degree expansion is isotropic). The "orbit space" for the
potential is depicted and the "phase diagram" is present-
ed. %e point out discrepancies with the results of
Toledano and Toledano, if any. We discuss the degenera-
cies between phases, the degree at which, in the polynomi-
al expansion, free energies for different images begin to be
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different, and what needs to be done to lift these degenera-
cies. %e also check whether the Ascher' and the
Michel-Radicati' conjectures on minimal symmetry
breaking hold.

II. MATHEMATICAL PRELIMINARIES

For four-dimensional irreducible representations of
space groups, Gufan and Sakhnenko stated that there can
be at most 24 images satisfying the Liftshitz condition but
not necessarily the Landau condition. Toledano and
Toledano reported 22 active four-dimensional images.
We have found 5 additional active images. As a whole we
have found'5 132 distinct images for all space-group rep-
resentations corresponding to points of symmetry. In our
notation for images the first letter stands for dimension
(A for one dimension, 8 for two, C for three, D for four,
etc.). The second number stands for the order of the im-
age group and the last letter for each different image with
the same dimension and order. In Fig. 1 we show group-
subgroup relations among all four-dimensional active im-
ages. A solid line means a "direct" group-subgroup rela-
tion (the set of matrices representing the lower-order
group is a subset of that of the higher-order group), and a
dashed line means an "indirect" group-subgroup relation
(the latter set is not identical to but only equivalent to a
subset of the former set).

Any group invariant polynomial P(tN); }can be expressed
as a polynomial of basic invariant polynomials DN(((};)

and N&(P;) in the form,

P(y;)=yqp(Di, D2, . . . ,D„}Np(y;),
P

where N, =1 and qp(DiDz, . . . ,D„)are polynomials of
D and for some integers vent, (Np) ~ are again polynomi-
als of D, but D are algebraically independent from each
other. See Ref. 3 for some examples. The set of D and
X& is called the integrity basis. A polynomial expansion
of the free energy truncated at some degree can also be
written in the form of Eq. (1}.

If Eq. (1) is applied to quartic interaction terms as used
in the renormalization-group methods, it yields the fami-
liar equation

Since Io '=I2 ——(g,.P;} is the only polynomial identity
that can be formed at fourth degree, the rest of I 's are
fourth-degree basic invariant polynomials. Here

qi(Di D2 . D. )=&oI2+& iI'i" + ' ' '

is linear in D~ (except that it is quartic in I2) and

qp(Di, D2, . . . ,D„)=1(P) 1)

for some I„'sidentified as NIi's.
Thus it is natural for us to find the basic invariant po-

lynomials D 's and Np's for each image before we at-

D584a

DI

0 72b

4b 4e

So

FIG. 1. Group-subgroup trees of active four-dimensional images. Solid lines mean direct inclusion and dotted lines mean indirect
inclusion. The notations for images are the same as those of Ref. 15.
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TABLE II. Fourth- and sixth-degree basic invariant polynomilas for Table I.

—10{7))0)+7)zk)]
—10(7)j0i+ 71zk) ]
—10(7)jgj —7)zgz)]

g))(27)2+6/2) —67Ig'j]
—7)'2)+ 30(7) i&i —7)kz) ]
—57) l

—307)j(l + 107)g'22]

Ii =71)+Pi+7)z+P~
I2 )j(j lzkz

I4 =71)7)2+.(i(2
I5"=7)jkj(7) j —Pj) —7)zk(7)2 —4)
I4 =7)jgj(7)2 —gz) —7)zgz(7) i

—gi)
I7 7))7)2( )1 7)2)+gjgz(01 02)
Is"——7) (7)2(gj —gz)+gjgz(7)l —7I2)

I9 =7)jgz(7)j g2) g)7)2(gl 7I2)

I')0' ——7) jgz(gj —7)2) —g)712(7) j
—gz)

J(4) I(4)+2I (4)

g(4) I(4) +2I(4)

I2 71)g)7)202(7ll+gl 712 g2)

I3"=7)')7)2+ 7)')pal+ g)gz+ g'(7)2

I4 ' ——7I jkj(711 gj) 71242(7)2 gz)

15 =7)j(j(7)2—$2) 7)242(7)1 pj)
IP' =7))7)2(7)i —7)2)+gjk(dj —02)
I7"=7))712(pj —pz)+gjgz(7) j —7)2)

I(j 7) j(2(7I1 $2) g)7I2(/j 7I2)

I9"=7)jgz(gi —71') —g)7)2(71 j —02)

+5(7)2+/2+671/'2)(71 j+gj)+57)jgj(7) j+gj)+57)g'2(7)2+(2)
I'j'j'=7I jk[(71'—dj) —5(71j —ki)(7)v+02)] —7)zk[(7)z —dz) —5(7)2 —42)(7)j+0j)]
I12 7))7)2[(7)j 712) 5(71) 7)2)(/)+42)]+gj(2[(pj $2) 5(gl $2)(71)+712)]
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I14 7) jkj[(7)2 02) (7)2 gz)(7) i+4)]—7)202[(7)j gj) {7)j 0j )(7)2+02)]
I )5 =7))7)2[(pj —pz) —(gl —(2)(7)(+7)2)] +gjgz[(7) I

—7)2) —(7) j
—7)2)(pl+ (2)]

I 16 =7)1(2[(7)2—gl ) —(7)2—(1)(7)i+(2)]+7)2(l [(7)l
—Pz) —(7) l

—(2){7)2+pl )]
I",,' =117),+ 157))()+457)jgj+9(i+117l2+ 1571/'2+457)$2+ 9/2

I js' =w ig)[3(g j+ gi) —10nigj] —nzgz[3(92+ 02) —107)202]

Il9 7)jkj[( )2 02) (7)1+k(){7}2 02)1+71202[(7)j dj) {7)2+02){7)j 01}]
I20 7)j )2[3(7))02+417)2) 7)1712 9gl(2] gjgz[3{7)j(2+()7)2) gl(2 97)I7)2]

I21 )j(2[3(7))7)2 + gl(2) 7)l(2 9'V(7)2]+()7)2[3( )1 )2+ Pl(2) (1 )2 991(2]
I22 gjgz[( 9)+)z)+5(V)+02) 10( 1lkl+ )202)] Pjkz[(gj+ gz)+ 5( gl+ )2)

I23 7) j(zf(7}j+g2)+ 5(Pl +7)2) 10(71)4) +71202)]+0)7)2[(Pl+7)2)+ (7)I+ f2)
I24 = 71 )712[(7)j —7)2) +5( $j —pz) —10(7)lgj —7)2(2) ]—gj(2[(pj —g2) +5(7) l

—7)2)
I(6) 1 1~2~2(~2+~2}+~2(2(~2+3(2)+(2~2(~2+3/2)+9(2/2((2+(2)

+67) jgj(7)2+3(2)+67)g'2{7)j+3(j)+7)jg)7)zgz{87)/+24()+87)2+24(2)
I24' ——7/)/)[{57)2 —3/2)+(7)2 —gz}(271 )+6/)) —67)g'2] —7/2/2[(57) j —3/j)+(7/j—
I'2'7' =7))7)2[11(7)1—7)2)+15(dj —dz)+10{7)lkl —7)24)1+kjcz[9(ej—dz)+5(7)1
Izjj' ——7) j(2[117)l —9gp+ 15/j —57)2—307)2(2+ 107)jgj]+() 7)2[117)2—9/j+ 15/2

tempt to write the Landau potential. Though in some
cases there is no unique way to separate D~'s from I(II5's,
we can in any case choose a set I D „Dz,. . . ,D„jsuch
that they are algebraically independent. In Table I we list
space-group representations and the fourth- and sixth-
degree basic invariant polynomials for each four-
dimensional active image. %e use the international sym-
bols' for space groups and those of Ref. 6 for representa-
tions. In Table II we list specific forms of the basic in-

variant polynomials, and in Table III we list the number
of linearly independent (but not necessarily basic) invari-
ant polynomials at each degree up to the sixteenth-degree
for each active image.

When the vector representations, whose transforming
matrices are the matrices of the image itself {in this sense
we can unambiguously call the vector representation the
image), of an image group and its subgroup have the same
number of invariant polynomials at each degree up to a



33 CLASSIFICATION OF CONTINUOUS PHASE TRANSITIONS. . . . II. 6215

certain degree, their invariant polynomials are identical up
to that degree. In this case the free energies for different
images are identical up to that degree. Thus Table III and
Fig. 1 are very useful in determining the degree to which
the free energy should be expanded to distinguish images.

The Landau potential expanded up to the fourth-degree
in the order-parameter components P; can be written in

the following generic form:

G($;)=—I2($;)+ —, AOIi(p;)+ g A~I~"'(p;)

=—g + —,ri (AD+A)A)+AiA2+ . ),
2

(2)

where ri =Ii(p;) =pi+p2+pi+p4, I'"'(p;) are linearly
independent fourth-degree invariant polynomials, and

I' '/Iz. —The coupling constants (a, AO, Ai, . ) car-
ry pressure and temperature dependence of the free ener-

gy. As me go across the transition temperature, a changes
sign. The positivity condition,

AD+A iA i+A2A2+ )0, (3)

is assumed as usual. The directional minimum along a
direction specified by (A, i, l,2, ) is given by

2=
AD+A iA, i+Aiki+

(4)

1 Q
Go(A, i, A2, ) = ——

4 AD+A /A. ]+A2A.y+

The absolute minimum is located at rio in the direction
where Ga(A, i,k2, ) takes the minimum value or where
AD+ A i A i+ Az A2+ is minimized. The points
(A, Az, . . .) occupy a localized region called the orbit
space. ' The absolute minimum is found at the point on
the orbit space boundary where the contour

AD+A il, i+Aii2+ =k

moving from k=0 to k=ca makes the first contact.
When the orbit space is higher than three-dimensional it
is hard to visualize this procedure geoinetrically. We pro-
ject the orbit space further onto a two-dimensional plane.
The projection depends on the coupling constants A s.
Thus we shall frequently use a two-dimensional contour

A„A,»+A@AY ——k .

Its slope and moving direction as k increases from 0 is
shown in Fig. 2 for each pair of signs of A, and A~.

Once we build the orbit space relevant to a quartic po-
tential, the Phase diagram can be obtained readily. The
simplest but not the most efficient way to build the orbit
space is to give random values for the order-parameter
components. A more efficient way is to anticipate the or-
bit space boundary using some known properties of the
orbit space. The vector space P; (i =1, . . . , n) consists of
disjoint orbits. We have tabulated orbit structures for the
four-dimensional active images in Table IV. (We remind
the reader that for a given orbit representative there are a
number of equivalent vectors yielding the same numerical
values for all group invariant functions. } It is known'

FIG. 2. Slope and movement of the contour A A,„+A„A~=k
as k increases from 0 to + 00, shown for each pair of signs of
A„and Ay.

that low-dimensional orbits corresponding to isotropy
subgroups of lower indices tend to form the orbit space
boundary. However, there are cases where portions of the
boundary are made of high-dimensional orbits. In such
cases we need to solve the boundary conditions (see Ref. 8)
to find those portions.

It is therefore important to find the orbit structure for
each image. In order to achieve this we first find the iso-
tropy subgroups using the subduction criterion, ' identify
those matrices 1(g ) belonging to a particular isotropy
subgroup H also, and then solve a set of linear equations
I'(g )P=P, (g~EH) to find the orbit representative. In
Table V we list "orbit parameters" for one-dimensional
orbits, which occur frequently in the text.

III. FD1—(0/D2, ,'0/D2):
IMAGES D384e, D192a, D192c

The free energy up to the fourth-degree is given by

G= I2+ —,(AcIg—+AiI'i ') .2 4

0.25

Pll
I

Pl

FIG. 3. Orbit space A. l for F01.

The orbit space is depicted in Fig. 3. The stable phases
are listed in Table VI.

Only two phases, Pl and Pl 1, can be realized at fourth
degree. It takes a sixth-degree expansion to realize P3 and
P10. [Up to the sixth-degree the integrity basis is the
same as that of the adjoint representation of SO(9), see
Ref. 10.]

The three images D384a, D192a, and D192c are identi-
cal up to the tenth degree as can be seen in Table III. The
image D 192a begins to be different from others at twelfth

degree and the other two can be distinguished only at six-
teenth degree. Since both I'1 and F1 1 correspond to max-
imal isotropy subgroups for each image, neither the Asch-
er nor the Michel-Radicati conjecture is violated.



JAI SAM KIM, HAROLD T. STOKES, AND DORIAN M. HATCH 33

TABLE III. The number of linearly independent invariant polynomials at each degree for each

image.

FD

FD1

FD2

FD3

FD4

FD5

FD6

FD7

FD8

FD9

FD10

FD11

FD12

FD13

FD14

D384a
D192a
D 192c

D128a
D64a
D64b
D64d
D 32a

D 32c

D 144a
D 72a
D 72b

D24c
D24e

10

18

13

8
10

8

13

1L

13

14

17

10
15

17
17

31

10

10
14
11
11
19

14
19

19

19

25

6
17

13
23

22
23

12

14
15

16
22
18
19
31

24
32

33

35

43

63

119

11
17
17

24
41

43
43

14

11
12
11

17
18

20
30
24
24
44

30
44

17
58

13
21
22

31
58

57
58

15
17
16

29
43
35
37
65

45
65

67

69

22
75

129

249

18
30
30

84
84

162

Pl

0.5— 0.5 P4

P l2 0.25—

—0.0625 0.0625
I

O. l2 5 0.2 5

FIG. 4. Orbit space (A, ~, A,z) for FD2.
Xq

FIG. 5. Orbit space (k&, A,3) for FD3.
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TABLE IV. The entire orbit structure of each image. The orbits of maximal isotropy subgroups are
marked with asterisks.

Image

D384a

D192a

Orbit

P10
P11*
C1
C5
C7
C8
S1
S2
4Dl

Invariant
vector Image

D 192c

Orbit

P1
P3*
P10
P 1 1

Cl
C5
C7
C8
4D1

Invariant
vector

a 0

a a

a b

a a

a b

D192b

P 10'
P11
C1
C7
CS
Sl
4D1

P 14'

P11*
P12'
Cl
C?
C8
C9
S2
4D1

P3+

P11
Cl
C2
C3
C8
Clo
C12
Sl
4D1

a —a
0 0
a b
b b

b —b

b c

D32b

P3
P11
P12
Cl
C7
C8
C9
4D1

Pl
P3
P4
Ps'
Cl
C2
C3
C8
4D1

a 0
a a
a a

a 0
a a
a 0
a 0
a b
a 0
a 0

a b

a —a
0 0
a b

b b

b —b

D128a Pl

P11
Cl
C2
C5
C8
C10
S1
S2
4D1

P3*
p4+
Cl
C2
C8
S2
4D1

P3
P4
Pl 1

a 0
a a
a 0
a b
a 0
a a

a b
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Orbit

TABLE IV. (ContI'nued).

Invariant
vector Orbit

Invariant
vector

P11
C1
C2
Cs
CS
C10
C11
4D1

C1
C2
CS
CS
4D1

C1
C2
CS
4D1

D32c
P3'
P4'

C1
C2
C3
C8
C9
C10
C11
C12
C13
4D1

a 0
0 a
a a
a —a
0 0
b 0
0 b

a —b
b b
b —b
b c

D32e

D 24b

C11'
4D1

C1'
4D1

4D1

C1
C11'
C12'
4D1
4D1'

0 0
a —b

e

0 0
a —b
b a

D144a P1
P2'

P8
C1
C2
C3
C4
C10
C11
4D1

0 b
0 0
a 0

a b
a —b
c d

D72a

D72b

P2
C1
C2
C4
4D1

C1'
C11
4D1

0 0
a —b
C

D48e PS'

C3
CS
C lo
C12
C13
C14
4D1

0 a
0 —a

a —a —a
0 0 b
a b b

b —b —a
b c d

D 12a

C12
C14
4D1

C1'
c»'
481

0 0
a —b
c d

C10
C13'
4D1
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TABLE V. Orbit parameters (Ref. 8) for one-dimensional orbits occurring frequently in the text.

Phases

Pl
P2

P3

p4

P10

Pll
P12

P13

Invariant
vector

a 0 0 0
0 a 0 0
a a 0 0

a 0 a 0

a 0 0 a

a 0 0 —a

a 0 —a 0

0 a 0 a

0 a 0 —a

a a a 0

a a a a

a a a —a

1

2

1

2

1

2

1

2

1

2

1

2

1

3

I

1

4

1

4

1

16
1

16

4

1

9
1

8

1

8

1

8

1

4

1

4

1

9
1

8

1

8

1

8

1

9

Region Phase

TABLE VI. "Phase diagram" for FD1. IV. FD2—( T/Dg', T/Dg)»: IMAGES D 192b AND D96a

The free energy up to the fourth-degree is given by

A1&0
A1&0

P11
Pl G= I2+ 4 (Ap—I2+A]II +A2Ig ) .

2
(9)

TABLE Vil. "Phase diagram" for FD2.

The orbit space is depicted in Fig. 4. The stable phases
are hated in Table VII. The phase P3 is not realized at
this stage but can be realized at the sixth-degree. [Up to
the sixth-degree the integrity basis is the same as that of
the adjoint of SO(8).]

Quadrant

A1&0, A2&0

A1&0, A2(0

A1(0, A2&0

Phase

P12

Pll

Pl
P12

Region

everywhere

everywhere

12A1+A2 & 0
12A1+A2 & 0

Octant

A1&0, A34&0 0'&8&90'

Phase

P5
Pll

Region

—2A1+A3+A4 &0
—2A1+A3+A4 &0

TABLE IX. "Phase diagram" for FD4.

A1&0, A2(0 Pl
Pll

—12A1+A2 &0
—12A1+A2 (0 90' & 8 & 180' P3

Pll
—2A1 —A3+A4 & 0
—2A1 —A3+A4 &0

A»O, A, «0 0'&e(45 P3
Pll

—2A1 —A3+A4 & 0
—2A1 —A3+A4 &0

TABLE VIII. "Phase diagram'* for FD3.
45'(8 & 180' P4

P 1 1

—2A1+A3 —A4 & 0
—2A1+A3 —A4 (0

Quadrant

A1&0, A3&O

A1&0, A3 (0

A1&0, A3&0

A1(0, A3(0

P4
Pl 1

P3
Pll

Pl

Pl
P3

Region

—2A1+A3 &0
—2A1+A3 (0
2A1+A3 &0
2A1+A3 &0

everywhere

—2A1+ A3 & 0
—2A1+A3 (0

Al &0, A34&O 0'(8(45' Pl
P3

45'(8 (180 Pl
p4

Al &0, A34&0 0 (8&90
90 (8(180' Pl

P3

everywhere

—2A1+A3 &0
—2A1+A3 «0

—2A1+A3 &0
—2A1+A3 &0

—2A1+A4 & 0
—2A1+A4 &0
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0 — C I I Cl 0 C ll i Cl

—0.2 5— —0.2 5

0
x , (8) l. 2 l.2

8 = 99.4625

0.25 0.25

Cl Ci

—0.25 —0.2 5

—0.6 0
X, , (8)

0.6 —0,6 0 0.6

8 = I I 6,56 51 9=I50

0.25

Cl 0

'»4i]j'!l!Id:gj&@
"'"-". :::"::i'!~~&g.

"

C I l

—0.25 —0.2 5—

I

0 0.4 —l.2
x, , (8)

A $ cosg+ A 3sing} for FDQ.FIG. Orbit space (A, S, A. ~ cos +

64b are dis-cs D128a and D64others. Images
th degree. Toledanotinguished r e t

Toledano missed

1-

an o

' o b roups are rea-
fz.

'
h maximal isootro y su g

However, iniz
'

D128a, D64b, and
es wit o

ized for images Dl a,
the case of image D64a, Pl

. In the caseb aximal isotropyro subgroup.spondlng ax ro'n to a su max'
and I'1 toof image B32a,

p
P3 P4, and P cSince the p

'

aximal isotropy su gro
ages, M c e-es the Mic e- t c
Ascher conjecture
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TABLE X. (a) "Phase diagram" for FD5. (b) The limitin an les 0g "g 4,
e in erva « tan ( —2). All angles are in degrees.

(a)

Ag)0, A)3&0
and

35&0, A)3)0
A»0, A, , &0

and

35&0, A)3&0

Octant

0'&0&90

90 &8&180'

0'&8&116.56'
116.56' & 19 & 180'

Phase

C1
C11
Cl

C1
C1
C11

0&/&(L

everywhere

everywhere

41. &0

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0

19.4712
19.1566
1S.9913
18.9691
19,0892
19.3561
19.7SOO

20.3778
21.1749
22.2077
23.5283
25.2117
27.3678
30.1628
33.8594
38.9000
46.1123

85.0
89.0
89.995

116.65
120.0
125.0
130.0
135.0
140.0
145.0
150.0
155.0
160.0
165.0
170.0
175.0
180.0

57.4296
74.9563
88.9296
85.5898
62.6322
49.0588
40.8673
35.2644
31.2069
28.1641
25.8293
24.0119
22.5871
21.4707
20.6044
19.9474
19.4712

yI. FD~ gp2, D2)»: IMAGES D64c AND D32b

The free energy to the fourth degree is given by

0
G = I2+ —,(AOI—q+A iI'i '+A3I3 '+A4I4 ')

'I, + ,' IA,I',—+A, II-"

where A34 —+(A3+A )' tane=A /A 0'

icted in Fi
e or it spaces at several representative angles 6 d-

p' 'n Fig. 6. The stable phases are listed in Table IX.
are e-

The images D64c and D32b are distinguished t ha t e

P11 corr
-degree expansion of the free energy Th b'e or ~t point
corresponds to a maximal isotropy subgroup in the

case of image D64c but belongs to an orbit CS corre-

+A 3 ~[cos(8)I~3 '+sin(e)Iq ']I,

0.25—
P2 PI

0.5 — Pe

—0.25—
I2.5

FIG. 8. Orbit s. Orbit space (a~~, a~0) for images D96d and D24b.
FIG. 9. Orbit s ace

and D72b.
pace (A, ~+2k,3, o)7) for images D144a D72a
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sponding to a submaximal isotropy subgroup in the case
of image D32b. Thus the Ascher conjecture is violated
but not the Michel-Radicati conjecture.

VII. FD5—(Cs/C~sD~/Dz~: IMAGE D32e

The free energy to the fourth degree is given by

6= I2+——,'(Al)I2+AlIl '+A3I3 '+ASI5 ')
2

I2—+ —, I A0I2+ A l 3[cos(8)Ill '+ sin(8)Il3"' ]

+A, I',"I, (12)

A l, 3 =+(A i+A3 )', tan8=A3/A l, 0'(8( 180'.
The orbit spaces at several representative angles 8 are de-
picted in Fig. 7. The stable phases are listed in Table X(a)
and the limiting angle gL at each 8 is listed in Table X(b).
The angle g is defined as

tang=

The Michel-Radicati conjecture is intact. In Ref. 4 this
image was missed and in Ref. 12 it was shown to have a
stable fixed point in the renormalization-group fiow.

VIII. FDS—(DgXDg): IMAGE D96d AND D24b

The free energy to the sixth degree is given by

I2+ 4 AOI2+ 6 (~OI2+~lI l0 +~2I ll +
2

(13)
At the fourth degree the above free energy is isotropic and
thus insufficient to single out a particular direction. Thus
we have expanded the free energy up to the sixth degree.
The terms omitted in the dots belong to image D24b. The
orbit space (oi0,cr») is depicted in Fig. 8, where we have
defined the orbit parameters o;=I '/I2. Since the free
energy (13) is monotonic in o; the absolute minimum
occurs again on the orbit space boundary. Thus only the
phase Cl is realized. Toledano and Toledano listed two
phases (I,II) for f6, which are equivalent according to our
computation.

Image D24b yields eight linearly independent (but alge-
braically dependent) sixth-degree invariant polynomials.
However, detail analysis is not needed in this case. Only
one phase is available at lower temperature.

IX. FD11—(D„XD„):
IMAGES D144a, D72a, AND D72b

The free energy to the sixth-degree is given by

G =—I,+ —,
' [A,I,'+A;, (I',"+2I',")t

+-.' [~0I23+I lI2(II" +»l3")+I 2II67'] (14)

X. FD12—(DgyD„): IMAGES D48e AND D24d

The free energy to the fourth-degree is given by

X(+ 2X~

PI
l

The orbit space relevant to the fourth-degree free energy
is the projection of that of image D128a onto the dotted
line in Fig. 5. At the fourth degree the phases Pl, P2,
and C1 yield the same absolute minimum and so do the
phases P4, PS, C10, and C11.

For image D72b a quartic potential is sufficient if we
just need to distinguish the two phases C1 and C11.
However, for the other two images it is essential to in-
clude the sixth-degree terms in the free energy. The orbit
space (A, l+2A3, rrl7) , is depicted in Fig. 9. A general
sixth-degree potential in the form of Eq. (14) has been
treated in Ref. 20, where the procedure for obtaining the
phase diagram was illustrated in the case of BaTi03. The
contour is the same as in Ref. 20. Only the orbit space
needs to be replaced. Due to the concavity of the contour,
only the orbits Pl, P2, P4, and P8 can yield the absolute
minimum in any region of the coupling constant space
(A l 3,8„82).To obtain the phase diagram, we compare
the absolute minimum value, Eq. (10) of Ref. 20 at two
competing phases. Toledano and Toledano missed two
images D144a and D72a and thus listed only two phases
Cl and Cl 1 off7.

Image D72b is distinguished at the sixth degree and the
images D144a and D72a begin to have different free ener-
gies at the eighth degree.

Since the orbit P4 belongs to C2 and P8 to C4 in the
case of image D72a, the Ascher conjecture is violated.
But the Michel-Radicati conjecture holds.

C5:

Quadrant

313)0, A4P)O

313 &0, A4P ~O

213 (0, A4P ~0
313 ~0, A4P (0

Phase

PS,P6

P11,P13

P1

P1
P1 1,P13

Region

everywhere

everywhere

everywhere

—2A'1 3+34..)0
—2A13+A4P gO

TABLE XI. "Phase diagram" for F012. p5, p6
CIS

CI 0

C I4

FIG. 10. Orbit space (A, i+2K,3, A.4+2'&) for F012.



6224 JAI SAM KIM, HAROLD T. STOKES, AND DORIAN M. HATCH 33

6= I—i+ —,
' [AoIz+ A i s(I'i '+2I s ')

+A' (I' '+2I' ')] .

The orbit space is depicted in Fig. IO. Despite the addi-
tional invariant polynomial I& '+ 2I'2 ', the degeneracy be-
tween pairs of phases (P5,P6) and (P 1 1,P13) is not lifted.
Inclusion of the sixth-degree terms, I2i' and I'z3', in the
free energy will lift the degeneracies and five phases
(P 1,PS,P6,P 11,P13} become well separated. If the
sixth-degree terms are strong two more phases, C3 and
CS, will become available also. This is in contrast to the
previous result. Toledano and Toledano listed six one-
dimensional orbits for stable phases. The sixth-degree
free energy for the image D48e can be readily minimized
using Eq. (10) of Ref. 20 or treating the sixth-degree
terms perturbatively depending on the strength of the cou-
pling constants. For image D24d there are many sixth-
degree invariant polynomials, and it is quite difficult to
obtain the phase diagram. We suffice ourselves by listing
the stable phases in Table XI obtained at the fourth de-
gree.

The images D48e and D24d are distinguished at the
sixth-degree expansion of the free energy, whereas
Toledano and Toledano indicated that a twelfth-degree
potential was needed to distinguish fs from fs. The point
Pl belongs to an orbit C3 of a submaximal isotropy sub-

group in case of image D48e and to the generic orbit 4D 1

of the minimal isotropy subgroup in case of image D24d.
Thus the Michel-Radicati conjecture is violated.

XI. F013—(C~gD„}:IMAGES D24c AND D24e

The free energy to the fourth-degree is given by

6=—I + , [A —I +A', (I', '+2I' ')

+A' (I' '+2I' ')+A I' ']

I2+——,
' {AoI~i+A'[cos(8)(I',s'+2I~~')

2 2

+sin(8)(I' '+2I' ')]+A I' ) ),

where

(16)

A'=+[(A'i 3)'+(A4 i) ]'~',

tan8= A 4 2/A i s, 0' & 8 & 180'. The orbit spaces at several
representative angles 8 are depicted in Fig 11. .The stable
phases are listed in Table XII(a}and the limiting angle gL

at each 8 is listed in Table XII(b). The angle g is defined
as

(a) "Ph~s~ diagram*' for FD13. (h) The limiting angles gL(8) to he used in (a). Note
that gL is not defined in the interval tan '(2) & 8 & 90'. All angles are in degrees.

(a)

A6)0, A')0
and

A6(0, A')0

Ag)0, A'(0
and

A«0, A'(0

Quadrant

0'(e(90
90'(8(180'

0'(8(63.43'

63.43 (8(180'

Phase

C l 1,C12,C14
C11,C12,C14
Cl

C11,C12,C14
Cl
C11,C12, C14

Region

everywhere

0&g&gL

0&g&gL

everywhere

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
63.40
90.25
95.0

14.0362
14.3933
14.8875
15.5423
16.3914
17.4844
18.8948
20.7355
23.1881
26.56S1
31.4587
39.1842
53.7940
86.0016
79.3723
47.9054

100.0
105.0
110.0
115.0
120.0
125.0
130.0
135.0
140.0
145.0
150.0
15S.O
160.0
165.0
170.0
175.0
180.0

36.3199
29.7075
25.3811
22.3393
20.1039
18.4134
17.1122
16.1021
15.3183
14.7168
14.2676
13.9S01
13.7505
13.6608
13.6774
13.8009
14.0362
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8= 30

O. I 2 5 O. I 2 5

C I I

C I 2
C I4

—CI
CI I

C I2
CI4

Ci

—0.12 5 —0.125

0,2 l.2 0.2 I ~ 2

8 = 65.4549 8 = 75,9658

O. I 25 O. I25

Cil
C I 2
CI4

—O. I25— —O. I 2 5

0 —0.2
x' (8)

0.8

8=l55

O. I 2 5 O. I25—
s i"'.

—0.125

, . .., , .. . . ,...,..., ... C l I

C I:;--:::::::;-"'::-':-::::...:.'':::::::::::=::..
:::: C I 2

G I4

—O. l 2 5

C I I

CI2
C I4

"",i,-':",'I,';i

ls

—0.5 0

FIG. 11. Orbit space [A6, (A, ~+2A31cose+(Aq+2A2)sin8] for FD13.
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TABLE XIII. "Phase diagram" for FD6. Various limiting angles are defined in Eqs. (18al—(1gf and their inverses.

A)2)0, A34)0

0 &/&90', 0'& 8(90'

90 (8&180'

P5
P12

P3
P12

—4A) —A2+2A3+2A4) 0
—4A) —A2+2A3+2Ag (0
—4A) —AP —2A3+2A4) 0
—4A) —A2 —2A3+2A4 &0

90'&P&Pci, 0'&8&90'

90'& 8(8c)

P1
P12

P3
P1
P12

—12A) —A2+2A3+2A4) 0
—12A) —A2+2A3+2A4 &0

—2A)+A3 (0
—2A)+A3) 0, —12A) —A2+2A3+2Ag) 0
—12A) —AP+2A3+2A4 &0

8c) &8(180 P3
P12

—4A) —A2 —2A3+2Ag) 0
—4A) —AP —2A3+2Ag (0

Pc& &/ &180', 0'&~&90'

90' & 8 & min(8c), 180'}

8c) &8(180'

Pl
P3

P3
P12
P1

everywhere

—2A)+A3) 0
—2A)+A3 (0
—4A) —AP —2A3+2Ag) 0
—4A) —A2 —2A3+2Ag &0, —12A) —A2+2A3+2Ag &0
—12A) —AP+2A3+2A4) 0

A)2) 0, A34 &0

0'&(( &0ci, 0' & 8 (45'

8 & min(8c„180'}

8cz & 8(180'
90'(P (Pci

P3
P12

P4
P12

P4
Pl
P12

—4A) —A2 —2A3+2A4) 0
—4A) —A2 —2A3+2A4 (0
—4A) —A2+2A3 —2A4) 0
—4A) —A2+2A3 —2A4 (0
—2A) +A4 &0
—2A)+Aq) 0, —12A) —A2+2A3+2A4, )0
—12A) —A2+2A3+2Ag (0

Pc&(/&Acies~ 0'&e(45'
4ci &4&4cz

45' (8( 135'

(( C l & (( & NC2b

Pcq; & P & 180', 0' & 8 & 45'

4cz. &(t &180'

45'(8 & 180'

max(&crab, yc, ) (((t & 180'

P3
P12
P1

P4
P12
Pl

P3
Pl

P4
P1

—4A) —AP —2A3+2A4) 0
—4A) —A2 —2A3+2Ag &0, —12A) —A2+2A3+2Aq &0
—12A) —AP+2A3+2A4) 0

—4A) —A2+2A3 —2A4) 0
—4A) —A2+2A3 —2AP &0, —12A) —A2+2A3+2A4 &0
—12A) —A2+2A3+2A4) 0

—2A)+A3 &0
—2A)+A3) 0

—2A)+A4&0
—2A)+A4) 0

0'&4 &4ci, 0'&8&90' Pl everywhere

90'&8(min(8, 180 }

A) z&0, A34)0

Pl
P3

—2A, +A, )0
—2A)+A3&0

Hcp (8(180

Pcq & P & 90', 0' & 8 & 90'

90 (8&8c3

Pl
P11
P3

Pl
Pll

Pll
Pl
P3

—12A)+A2+2A3+2A4) 0
—12A)+AP+2A3+2A4 (0, —4A)+A2 —2A3+2A4 (0
—4A) +A2 —2A3+2A4) 0

—12A) +A2+2A3+2Aq )0
—12A) +A2+2A3+2Ag (0
—12A) +AP+2A3+2Ag (0
—12A)+A2+2A3+2A4) 0, —2A)+A3) 0
—2A)+A3&0



33 CLASSIFICATION OF CONTINUOUS PHASE TRANSITIONS. . . . II. 6227

TABLE XIII. (Continued).

Al g &0, A34) 0

49C3&8& 180' Pll
P3

—4A1+A2 —2A3+2A4 & 0
—4A 1+A2 —2A3+2A4) 0

90'&$(180', 0 (0(90'

90'& 6 & 180'

P5
Pll

—4A1+AP+2A3+2A4) 0
—4Al+A2+2A3+2A4 &0

—4A) +A2 —2A3+2A4 )0
—4A )+A2 —2A3+2A4 &0

A12 &0, A34 &0

0'&4 &Oc4 0'&8&45'
0'&4 &Pc4.

45'& e &180'
0' & P & min(pc4b, 4) c3)

Pl
P3

P1
P4

—2A)+A3)0
—2Al+A3 &0

—2A)+A4) 0
—2Al+A4 &0

Oc4; &4 &4)c3, 0'&8(45'
Oc4 &4&kc3

45' & 8& 135'

fc4b &4) (Pc3

Pl
Pll
P3

Pl
Pll
P4

—12A&+A, +2A, +2A, )0
—12Al+A2+2A3+2A4 &0, —4A)+Ay —2A3+2A4 &0
—4A)+A2 —2A3+2A4) 0

—12A)+A2+2A3+2A4) 0
—12A

& +A2+2A3+2A4 & 0~ —4A 1+A2+2A3 —2A4 & 0
—4Al+AP+2A3 —2A4) 0

pc3 & p & 180', 0' & 8 & 45'

45' & 8 & min(HC4, 180')

~c4 & & 180

Pl 1

P3

Pll
P4

Pll
P1
P4

—4A1+A2 —2A3+2A4 &0
—4A l+A2 —2A3+2A4) 0

—4A] +A2+2A3 —2A4 & 0
—4A 1+AP+2A3 —2A4) 0

—12A )+A2+2A3+2A4 &0
—12A &+A2+2A3+2A4) 0, —2A)+A4) 0
—2A l+ A4 &0

tang=
A' I2+ 4 (AOI2+A1I1 +A2I2 +A3I3 +A4I4 )

2

The phases C12 and C14 are not distinguished with the
fourth-degree free energy. Thus we are again compelled
to include the sixth-degree terms (I21',I23', I24') to lift the
degeneracy between phases with maximal isotropy sub-

groups in the case of image D24c. However, in the case
of image D24e, the two phases Cl and Cll are dis-
tinguished at the fourth-degree, though the order parame-
ter components cannot be specified to the last detail for
C1, which the sixth-degree terms should provide. But a
twelfth-degree potential is not needed as indicated in
Ref. 4.

Although we have chosen the basis of the two images in
such a way that the fourth-degree potentials are identical,
the images D24e and D24e are not group-subgroup relat-
ed as we can see in the tree diagram Fig. 1. Thus the
Aseher conjecture need not be cheeked. In the case of im-
age D24c the point Cl does not belong to an orbit of a
maximal isotropy subgroup but corresponds to the
minimal isotropy subgmup, leading to the violation of the
Michel-Radicati conjecture.

XII. PD6—(D&XD~): IMAGE D32c

The free energy to the fourth degree is given by

I2+ —,
' IA0I2—+A12[cos(p)I', '+sin(p)I12 ']

TABLE XIV. Examples of maximal symmetry breaking.
Space-group representations and their isotropy subgroups are
listed.

Irrep

Space
group
C 12/C10
C 14/C13
C14/C13
4D1

P3P3
Td (I43m; No. 217)

D~ (I4m2; No. 119)
D' (I4c2; No. 120)
D' (I4c2; No. 120)
D~2 (F222; No. 22)

P,@P3
Tp, (Im3; No. 204)

DqI, (Fmmm; No. 69)
D2p (I'ddd; No. 70)

Dqq (Fddd; No. 70)
D& (F222; No. 22)

+A3 4[cos(8)I3 '+sin(8)I4'4']], (17)

where A12 ——+(A1+A2)', tant)) =A2/A1, 0'&p & 180',
and A3 4 +(A 32+ A4)'~, tan8=A4/A3, 0'& 8& 180'.

It is not in general an easy task to analyze a potential
with more than four independent invariant polynomials.
We have included this image because it could be analyzed
without much difficulty. The orbit spaces at several
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0o QO

P3 P3P4

O. I5

P4/=82'

PI2

—Pl

PI2

5QO

P3

PI2

6Q
II

P4

Pl

PI2

—0.05

0.075

/=87. 5

PI

P5

PI2

QO

P3
Pl

P$

P I2

P4

PI2

P4
P

PI2

—0, 075

0.075

PI2

Pll 0

PI2

P II

PI2

QO

PI2

P I I

/=90' P3 PI P3P4 Pl

—0.075

0, 075
Pll QO

P I2

Pll 6Q P II 95 P« l70

—0.075

0.05 P I I QO

P5
I

Pl
P4 P3

P ll g Qo

P4

Pll 60o P II

98o
P5 P3 p4

—O. t5 Pl —Pl Pl

FIG. 12. (a) Orbit space (A. icos/+)(2sinp, A3cose+A4sin8) for FD6 is sketched at various angles {tb,e). g is specified in each
frame. The scales of the horizontal axis are —0.0S&x &0.3S for 0'&g&9S'; —0 1. &x &0.3 for @=100, —0.15&x &0.25 for

~ 2 &x &0.2 for 8=135, and —0.3 &x &0.1 for 8=170. (b) Subregions in the coupling constant space with the corre-
sponding stable phases for each quadrant of (A & 2, A3 4) In each quadrant the horizontal axis extends 0'(8& 180', and for the verti-
cal axis only the portion 60 & P & 120 is included to enlarge that portion.

representative angles ($,6)) are depicted in Fig. 12(a). The
stable phases are listed in Table XIII. Considering the
complexity of the stability regions we provided Fig. 12(b).
The limiting angles Pc„(()c2„(()c»,((c3, Pc4„$c4bare
given by

tan((()c)) = —12,

tan(pc2, ) =4 tan6) —8,

tan((()crab) =4cot8 —8,

(18a)

(18b)

(18c)
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FIG. 12. (Continued).
90~

tan(yc, ) =12,
tan(PC4, ) = 8 —4 tan8,

tan(yc4b ) =8 —4 cote .

(18d)

(18e)

(18f)

The limiting angles 8&i, 8cz, 8c3, and 8c4 are given as in-
verse functions of Eqs. (18b), (18c), (18e), and (18f),
respectively. All maximal symmetry phases are realized
with the quartic potential and the Michel-Radicati conjec-
ture is not violated.

XIII. SUMMARY AND CONCLUSIONS

We have obtained the phase diagrams for ten types of
quartic potentials condensed from 23 images of four-
dimensional active space-group representations corre-
sponding to points of symmetry. Qur list of phases agrees
with that obtained by Toledano and Toledano, except for
the following eases:

(i) FD3—images D64b and D 64d; they missed.
(ii) FD5—image D32e; they missed.
(iii) FD8—image D96d; their list contains a pair of

equivalent phases.
(iv) FD11—images D144a and D72a; they missed these

images and consequently missed four phases, Pl, P2, P4,

and P8.
(v) FD12—image D48e; their list of stable phases is

wrong and only a sixth-degree potential is sufficient to lift
degeneracies between phases.

(vi) FD13—image D24c and D24e; a sixth-degree po-
tential is sufficient to lift degeneracies between phases.

Although the degeneracies between phases can be lifted
by sixth-degree terms, we noticed that in most cases the
free energy needs to be expanded to quite a high degree to
distinguish different images that are group-subgroup re-
lated.

Four (FD1, FD3, FD5, and FD11) of the five quartic
potentials having stable fixed points' in the
renormalization-group flow have been analyzed in this pa-
per. Thus physical systems described by these four quar-
tic potentials can undergo continuous phase transitions re-
gardless of fluctuations. The remaining quartic potential
with the centralizer ( F/C2; F' /C)'2does not correspond
to any space-group representation because icosahedral
symmetry cannot be a symmetry of a three-dimensional
crystal lattice.

It is interesting that phase transitions induced by order
parameters transforming according to two images, D24c
and D24d, can yield the minimal symmetry. Vfe include
the space-group changes for these two cases in Table XIV.
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