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to vibrational modes and phase transitions
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We describe group-theoretical methods for projecting out global distortions in a crystal from dis-
tortions that are localized at a single site. We present a simple method for determining which sets
of distortions are independent. We discuss and resolve the difficulties that arise when considering
physically irreducible representations, which are reducible on the complex numbers. We illustrate
these methods with examples. Applications of these methods to crystal vibrations and phase transi-
tions are presented and illustrated with the BaTi03 structure.

INTRODUCTION

A crystal has the symmetry described by a space
group. We define a distortion to be any change in the
crystal which breaks this symmetry. Examples of distor-
tions are (1) atomic displacements, such as in a lattice vi-
bration or also in a displacive phase transition, (2)
changes in site occupation probabilities, such as in an
order-disorder phase transition, and (3) changes in the
directions of magnetic dipoles, such as in a spin wave or
in a magnetic phase transition.

These distortions are "global. " They are distributed
over the entire crystal. These distortions also have a mi-
croscopic characteristic. They can be broken down into
individual "local" distortions. For example, a lattice vi-
bration can be broken down into displacements of indivi-
dual atoms. The displacement of an individual atom is a
local distortion. The lattice vibration is a global distor-
tion which consists of a large collection of these local dis-
tortions.

Distortions in a crystal are often classified by irreduc-
ible representations (IR's) of the space group. In lattice
vibrations, the IR's classify the normal modes of oscilla-
tion. In phase transitions, the IR's classify the order pa-
rameters.

Given a local distortion at a site in a crystal, group-
theoretical methods can be used to obtain global distor-
tions of which this local distortion is a part. In this pa-
per, we show how this can be done in a systematic way.
We also show how to resolve the difhculties that arise
when considering physically irreducible representations,
which are irreducible on the real numbers but reducible
on the complex numbers. We give examples that demon-
strate how these methods can be applied.

PROJECTION OF GLOBAL DISTORTIONS

Consider a crystal with space-group symmetry G. Sup-
pose we want to obtain global distortions classified by an
IR I of G. When we say that a distortion is classified by
a particular IR of the space group, we mean that it can be
broken into independent parts which transform like basis
functions of the IR:

8(g)g, (r) = g P, (r)D (g),;, (1)
j=l

where QG(r) are basis functions of the IR, g is an element
of the space group, D (g) is the d -dimensional matrix
onto which the IR maps g, and 8(g) is an operation g on
the crystal. Elements of the space group are active
operators (see pp. 47 —50 in Ref. 1). They transform the
crystal (via a rotation, reflection, translation, etc.) and
leave the coordinate axes fixed. Functions P, (r) are "at-
tached" to the crystal and move with it, so that

&(g)g;(r)=P;(g 'r) .

To obtain the possible global distortions of a certain
type, we consider all possible local distortions of that
type. For example, if the global distortion is to be a lat-
tice vibration or a displacive phase transition, we consid-
er possible displacements for each of the atoms in the
unit cell. Let ro be a site of a local distortion. The ele-
ments of the space group which leave ro fixed form a
point group H. Just as global distortions can be classified
by IR's of the space-group G, local distortions can be
classified by IR's of the local point-group H. These local
distortions at ro can be broken into parts which trans-
form like basis functions of the point group IR:

gH

0(h)g; (r)= g P, (r)D (h),;, (3)
j= 1

where g; (r) are basis functions of the point-group IR, h

is an element of the point-group H, and D (h) is the d
dimensional matrix onto which the IR maps h. All the
d functions g; (r) are associated with the same point ro.

We must consider each point-group IR which classifies
the type of local distortion we need. For example, if the
global distortion is to be a lattice vibration or a displacive
phase transition, we consider "vector IR's" of the point
group. These are the IR's whose basis functions trans-
form like components of vectors, representing atomic dis-
placements.

Let the basis functions f, (r) of the point-group IR I H

be local distortions at the site ro, and let the basis func-
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tions P; (r) of the space-group IR I be global distor-
tions. We use the well-known projection operator tech-
nique (see pp. 54 —56 in Ref. 1) to obtain the global distor-
tions in terms of the local distortions:

dependent on the previous sets if there exists a set of
coefficients Ak; (at least one of them nonzero) such that

yGj y yoj'A J (10)
j', k

g, J(r)= g D (g),*,8(g)$1(r) .
gGG

(4) If we apply the operation 8(g) to both sides of this equa-
tion, we obtain

We have omitted the usual multiplicative constant in
front of the summation. Note that the global distortions
are projected out from a single local distortion. We can
use any one of the basis functions P; (r) to obtain all pos-
sible global distortions. Here, we arbitrarily choose the
first basis function $1(r). Also note that in Eq. (4), the
index j is arbitrarily chosen. For each value of j, Eq. (4)
produces a set of d global distortions that transform like
the d basis functions of I

The expression in Eq. (4) can be cast in a more useful
form if we break the space-group 6 into cosets with
respect to the point-group H.

G'1 I

0k' Ak i D''(g )i i 'g fk' (g )k'k Aki
j', k, k'

Since fk are independent functions, their coefficients
must be separately equal to each other in the above equa-
tion. This leads to the matrix equation,

A~D (g)=D (g)A~

Since this must hold for any choice of operator 8(g),
g CG, we have from Schur's lemma (see Theorem 1.3.7
on p. 19 in Ref. 1) that the matrix A must be a constant
times the unit matrix:

6=gg H. (5) Ak, =iV 5k, , (13)

The first coset representative g& is chosen to be the iden-
tity operator. The others are chosen arbitrarily from
each coset.

Equation (4) now becomes pe = y gi'qGi' (14)

where iU is some constant which may be different for
various values of j'. Putting this back into Eq. (10), we
obtain

g, '(r) = g 0(g )P, '(r),

where

P, '(r) = g D (g ),*, g, ', (r),

dH

g; J(r)= g a;„P„(r),
k=1

(6)

(7)

This means that the only way the new set of basis func-
tions can be linearly dependent on the previous sets is for
QG1J to be some linear combination of g, ',g&
and for $2~ to be the same linear combination of
gz ',gz, g2, . . . and for $3J to be the same linear com-
bination of g& ',g3,g3, . . . etc.

From Eqs. (6)—(8), we find that Eq. (14) is exactly
equivalent to

aJk= g D (h),*'D (h)k, .
hcH

(9) ak
J

(15)

Equation (6) breaks the global distortion into a sum over
local distortions at sites g, ro, g2ro, g3ro, . . . . The func-
tion g, ~(r) is a local distortion centered at ro. (The local
distortions at different sites are assumed to be indepen-
dent. ) The operation 0(g ) transforms the crystal, carry-
ing the local distortion with it. Therefore, the function
8(g )P;~(r) is a local distortion at site g ro.

INDEPENDENT SETS OF DISTORTIONS

An index j appears in Eqs. (6)—(9). For each value of j,
a set of global distortions P, ~(r) is generated. For some
values of j it may happen that the functions g; ~(r) are all
zero. Furthermore, the nonzero sets of functions gen-
erated using different values of j may not all be linearly
independent. We need some criteria for determining
which values of j generate linearly independent sets of
global basis functions.

Suppose that we have generated some sets of basis
functions that are linearly independent. We label these

We then try another value of j and generate anoth-
er set of basis functions g; J. This new set is linearly

Equation (14) implies Eq. (15), and Eq. (15) implies Eq.
(14). Thus if there exists a set of coefficients A,~ (at least
one of them nonzero) which satisfies Eq. (15) for all
values of i and k, then the set of functions g, ~ is not
linearly independent from the previous sets of functions
ittG . Conversely, if there exists no solution to Eq. (15) ex-
cept all aJ =0, then the set of functions P, J is linearly in-
dependent from the previous sets of functions g, ~ . If we
form for each set j the d X d -dimensional vector,

L 11 12 ' ' a Id » 21 22
J=~ J J J J J J J

(16)

then the test for independence of sets of basis functions
simply becomes a test for linear independence of the vec-
tors aJ.

This result is actually quite remarkable. The
coeScients aJk directly specify only the part of the global
distortion which occurs at site ro. We have thus shown
that the independence of global distortions can be unam-
biguously determined from the independence of the part
of those distortions that occur at the single site ro.
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PHYSICALLY IRREDUCIBLE REPRESENTATIONS

g; Jphy, (r)= g &(g )g phy, (r), (17)

Physical distortions in a crystal must be described by
real functions. This requires the matrices of the space-
group representation to be real. If a space-group IR is
complex, we form a physically irreducible representation
from the direct sum of the IR with its complex conjugate.
Such a representation can always be brought to real form
using a similarity transformation. This representation is
reducible with respect to complex numbers but irreduc-
ible with respect to real numbers.

We can obtain global distortions in this case using
equations very similar to Eqs. (6)—(9):

In both cases, i = 1,2, . . . ,d, where d
2
d phyg To test

for independence, we form the d Xd -dimensional vec-
tor a~ as in Eq. (16) using the components,

d
phys

czJ = ~ eJ''k ~ +i'k, physi'&i'=1
(24)

and then proceed as in the previous section. Note that
we do not need to consider the sets of basis functions of
I . Testing the independence of the sets of basis func-
tions of I also automatically tests the independence of
the sets of basis functions of I

Let us next consider IR's of type 2, where the IR is
equivalent to its complex conjugate and the characters
are real (see p. 20 in Ref. 1). For this case, we want

where

dG
phys

firn, phys( ) P phys (gm )ii'fi' j,phys(

d

Ol'1, phys( ) y aI'k, phy Pk( r )
k=1

(18)

(19)

D (g)
0

0
S 'D h„, (g)S= DG (25)

We require here that both d -dimensional matrices
D (g) be identical, element by element, in the block diag-
onal matrix. One set of basis functions of I are

a; k phys
—g Dp„y, (h);~D (h)k,

heH
(20)

and a second set of basis functions of I are
In the above equations, D h, are matrices of the physi-
cally irreducible representation. The complex conjuga-
tion has been droPPed since elements of Dphy~ are real,
i.e., we use the physically irreducible representations in
their real form.

The method described in the previous section for deter-
mining the independent sets of distortions cannot be
directly applied to the distortions g, Jh„, obtained here.
In this case, Eq. (13) does not follow from Eq. (12), since
Schur's lemma is only valid for true irreducible represen-
tations.

The solution to this difhculty is straightforward. We
use basis functions of true IR's when testing for indepen-
dence of sets. We thus need to transform the basis func-
tions g, ~h„s obtained from Eqs. (17)—(20) into sets of basis
functions which belong to true IR's. To do this, we need
a matrix S which transforms the representation into
block diagonal form.

Let us first consider IR's of type 3, where the IR is not
equivalent to its complex conjugate and the characters
are complex (see p. 20 in Ref. 1). For this case, we want

d
phys

J = ~ J
Ik ~ s'k physi'=1

and for the other vector the components,

(28)

phys

ik ~ i'k, physi'=1

There is also the possibility that the IR I of the
point-group H may be complex. In this case, we form
Physically irreducible IR's rphy, with matrices Dphy
which we use instead of D in Eqs. (17)—(20). All other
results in the preceeding discussion remain the same.

phys

g, '(r)= g P, ' „„(r)S,
i'=1

Both of these sets are independent and must be both used
in testing independence from other sets. We thus form
two d Xd -dimensional vectors, aj and aJ, as in Eq. (16)
using for one vector the components,

D (g)
S 'D

phy, (g)S = 0
D (g)* NUMBER OF INDEPENDENT SETS OF DISTORTIONS

The basis functions of I are

phys

P; '(r) = g g „,(r)S;;,

and the basis functions of 1 * (the complex conjugate of
I )are

The number of independent sets of distortions that can
be obtained by using different values of j in Eqs. (6)—(9) is
exactly equal to the number of times the point-group IR
I appears in I $H, the representation of H subduced
by the space-group IR I, formed by restricting the ma-
trices of I to elements of H. The number of indepen-
dent sets can thus be calculated from '

phys

g, *'(r)= g QG~„h„,(r)S.,

i'=1
(23) n = g y (h)*y (h), (30)
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where ~H~ is the number of elements in H, and g and y
are characters of the matrices in the IR's I and I, re-
spectively. Tables of these subduction frequencies may
be found in Refs. 5 and 6.

The cases for reducible representations which are phys-
ically irreducible must be considered separately. For
type 3 IR's, the number of independent sets is given by

D (x,y, z) =(1),
0 0 1 0
0 0 0 1

1000
0 1 0 0

(33)

n =—
~

g y h, (h)*y (h),1 1

heH
(31)

and for type 2 IR's, the number of independent sets is
given by

n = —
H~

g X h„,(h)*X (h) .
1 1

4 heH
(32)

EXAMPLES

We now present some examples which demonstrate the
principles and methods described above. In these exam-
ples, the labels of space-group IR's are from Ref. 7. The
choices of matrices for these IR's are from Ref. 8. The
labels of point-group IR's are from Ref. 1.

Example 1

Consider space group No. 22 F222, space-group IR
I =l. , (four dimensional}, site ra= (x,0,0) (Wyckoff po-
sition e), point-group H=2, and point-group IR I = A.
The elements of the point-group H are x,y, z and x,y, z.
The matrices onto which I and I map x,y, z are

These results can be easily understood. For type 3 IR's,
the n independent sets of 2d basis functions of I phys are
constructed from n independent sets of d basis functions
of I and n independent sets of d basis functions of
I *. Since I h, contains I once and I ' once, the
summation in Eq. (31) gives us n for each of these IR's,
and therefore we must multiply the weighted character
sum by —,

' to obtain n.
For type 2 IR's, the n independent sets of 2d basis

functions of I phy are constructed from 2n independent
f d basis functions of I Since I h contains I

twice, the summation in Eq. (31) gives us 2n twice, and
therefore we must multiply the weighted character sum

by —,
' to obtain n.

When the point-group representation is reducible but
physically irreducible, we can simply substitute g h„, for

in Eqs. (30)—(32) without any further changes. All of
the complex IR's that occur for crystallographic point
groups are type 3. Thus, in Eq. (30), for example, the
summation gives us the number of independent sets of
functions that can be constructed from basis functions of
I plus the number of independent sets of functions that
can be constructed from basis functions of I *. Since
the basis functions of I and the basis functions of I
are independent from each other for a type 3 IR, the
summation correctly gives us the total number of in-
dependent sets of functions that can be constructed from
basis functions of I phy Similar considerations also apply
to Eqs. (31) and (32).

From Eq. (30), we find that there are n =2 independent
sets of basis functions. From Eq. (9), we calculate the
components of the vectors a~:

a'=(1,0, 1,0), a =(0, 1,0, 1),
a3=(1,0, 1,0), a =(0, 1,0, 1)

(34)

We see that only two of these vectors are independent,
and we choose j = 1 and j =2 for generating the two in-
dependent sets of basis functions. From Eqs. (6}—(9), we
obtain

4i
' =gi)4i —@g3}iti —~(g~}it& +

it2 '=@g2)WP—~(g4 Wi +6(g6}it i +
qG1 —g(g )qH+ g(g )qH+ g(g )qH+

it4
'= g~ }itP+@g4 }Pi ~(g6)it P+

4P'= ~(g2)WP ~(g~)iti ~(g6 W P+

0z'=~«i)Ni —~(g3)it i +(9(g~)Pi +

6 '=~(g2 WP+g4)it i +6'(g6 WP+

44'=~(gi )0F+ g3)Pi —I9(g»it i +

(35)

Note that we have removed a common factor from each
of these equations in Eqs. (34) and (35). We have carried
these calculations out to six different sites so that it can
be seen explicitly that each of the above eight functions
are linearly independent of each other. In Table I, we
give the six coset representatives g, , the sites g;rp, and the
IR matrices D (g, ). Note that global distortions do not
contain a contribution from local distortions at every site

g ro. For example, the global distortion P,
' has contri-

butions from the local distortions at glro g3ro gsro but
no contribution from g2rp g4rp g6rp.

Let us extend this example further by considering a
particular type of local distortion: atomic displacements.
We see from Eq. (33) that the x component of a vector
transforms like the basis function of the point-group IR.
Thus, the local distortion itj, can be an atomic displace-
ment in the x direction. Substituting this into Eqs. (35),
we find that the global distortion QGi' consists of a dis-
placement of the atom at giro in the x direction, a dis-
placement of the atom at g3ro in the —x direction, a dis-
placement of the atom at gsro in the —x direction, etc.
The global distortion itjz

' consists of a displacement of
the atom at gzro in the —x direction, a displacement of
the atom at g4ro in the x direction, a displacement of the
atom at g6ro in the —x direction, etc. Note that the
operations H(g ) in Eqs. (35) not only move the local dis-
tortion to the site g ro, but may also reorient the distor-
tion. For example, consider the term —g(g4)QP in the
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TABLE I. The coset representatives g;, the sites g;ro, and the matrices D (g; ) used in example 1.
The rows of the matrices are separated by slashes.

gt.

x,y, z
X,y, Z

x+ —,y+ 2,z1

1 1

g ro

(x,0,0)
(X,0,0)
(x+ ~, —', 0)

D (g;)

{1,0,0,0/0, 1,0,0/0, 0, 1,0/0, 0,0, 1)
(0,0,0,1/0, 0, 1,0/0, 1,0,0/1, 0,0,0)
( —1,0,0,0/0, —1,0,0/0, 0, 1,0/0, 0,0, 1)

(0,0,0,—1/0, 0,—1,0/0, 1,0,0/1, 0,0,0)

(
—1,0,0,0/0, 1,0,0/0, 0,1,0/0, 0,0,—1 )

(0,0,0,—1/0, 0, 1,0/0, 1,0,0/ —1,0,0,0)

expression for Pz '. The function —gP represents a dis-
placement of the atom at ra= (x,0,0) in the —x direction.
When 0(g4) operates on this, the displaced atom is now
at g4ro = (x + —,', —,', 0), and, since g4 =x + —,',y + —,',z, the
operation also reorients the atomic displacement from
the —x direction to the x direction.

0 0 0 1

0 0 1 0
Dg„, (X, yZ )=

0 1 0
1 0 0 0

(36)

The transformation matrix that brings these matrices
back to block diagonal form is

1+i 0
—1+i 0

0 1+i
0 1 —i

1 —i
—1 —i

0
0

0
0

(37)

Example 2

Consider space group No. 52 Pnna, space-group IR
I =S, (two dimensional), site ro=(0, 0, 0) (Wyckoff posi-
tion a), point-group H= 1, and point-group IR I
The elements of the point-group H are x,y, z and X,y, z.
The space-group IR S, is type 3. Its complex conjugate
is IR Sz. We form the physically irreducible representa-
tion I phy via an appropriately chosen similarity transfor-
mation on the direct sum of S, and S2 so that the result-
ing four-dimensional matrices are real. We denote this
physically irreducible representation by S&Sz. The ma-
trices onto which I and I phy map x,y, z are

D (x,y, z) =( —1),

From Eq. (31), we find that there is n = 1 independent set
of basis functions. If we form the vectors a~by& we obtain

a'„„,=(1,0, 0, —1), a h„,=(0, 1, —1,0),

a~hz, =(0, —1, 1,0), a h„,=(—1,0,0, 1) .
(3&)

Each of these vectors is a multiple of the vector (l,i), so
that only one of these vectors is linearly independent. We
choose j =1 for generating the set of basis functions.
From Eqs. (17)—(20), we obtain

0i,,'h„.=@gi )4P+ ()(g2)WP+

$6 1 — g(g )qH+ g(g )yH+

6,,'h„.=@g3Wi +~(g4)Wi +

A, Ih,.= —~(g i )0i + @g 2 )PF+

(40)

Note that we have removed a common factor from each
of these equations in Eqs. (39) and (40). We have carried
these calculations out to four diA'erent sites so that it can
be seen explicitly that each of the above four functions
are linearly independent of each other. In Table II, we
give the four coset representatives g, , the sites g;ro, and
the matrices D~„„,(g; ).

Let us extend this example further by considering the
local distortions to be atomic displacements. We see
from Eq. (36) that any component of a vector transforms

The first two vectors seem to be independent of each oth-
er, and this demonstrates how the method fails for reduc-
ible representations. We must form instead the a~ vec-
tors for IR S, using Eq. (24), and we obtain

a'= —,'(1+E, —1+'i), a =
—,'( —1+i, —1 i), —

(39)
a = —,'(1 i, 1+—i), a =

—,'( —1 i, 1 ——i) .

TABLE II. The coset representatives g;, the sites g;ro, and the matrices D (g; ) used in example 2.
The rows of the matrices are separated by slashes.

X)y)Z

gro

(0,0,0)
(-,', 0,0)

D (g;)

(1,0,0,0/0, 1,0,0/0, 0,1,0/0, 0,0, 1)
(1,0,0,0/0, 1,0,0,/0, 0,—1,0/0, 0,0,—1 )

(0,0,—1,0/0, 0,0,1/1,0,0,0/0, —1,0,0)

(0,0, 1,0/0, 0,0,—1/1,0,0,0,/0, —1,0,0)
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like the basis function of the point-group IR. Thus, the
local distortion gi can be an atomic displacement in any
general direction. We form three independent sets of
basis functions of I from atomic displacements in the
x,y, z directions, respectively. Substituting these, one at a
time, into Eqs. (40), we obtain three independent sets of
basis functions of I . For example, in the first set, using
an atomic displacement in the x direction for gi, we find
that the global distortion g, 'h„, consists of a displace-
ment of the atom at g, ro in the x direction, a displace-
ment of the atom at g2ro in the —x direction, etc. In the
second set, using an atomic displacement in the y direc-
tion for gi, we find that the global distortion g, 'h„, con-
sists of a displacement of the atom at g, ro in the y direc-
tion, a displacement of the atom at g2ro in the —y direc-
tion, etc. In the third set, using an atomic displacement
in the z direction for gi, we find that the global distor-
tion g, ph~, consists of a displacement of the atom at g, ro
in the z direction, a displacement of the atom at gzro in
the z direction, etc.

Example 3

Consider space group No. 158 P3c1, space-group IR
I = A~ (two dimensional), site ro=(0, 0,z) (Wyckoff'po-
sition a), point-group H =3, and point-group IR I = 'E.
The elements of the point-group H are x,y, z; y, x —y, z;
x+y, x,z. The point-group IR 'E is type 3. We form the
two dimensional physically irreducible representation E*
from 'E and its complex conjugate E. The space-group
IR 3 z is type 2. It is equivalent to its own complex con-
jugate. We form the physically irreducible representation
Fphy$ via an appropriately chosen similarity transforma-
tion on the direct sum of A z with itself so that the result-
ing four-dimensional matrices are real. We denote this
physically irreducible representation by A ~ 3~. The ma-
trices onto which I ~&~, and I ppys map the elements of the
point group are

D h„, (y, x —y, z) =

The transformation matrix that brings these matrices
back to block diagonal form is

S=—'
2

1 i i

i 1 1

l 1 1

(42)

a~= —,'( —1, —1, 1, —1) a =
—,'(i, —i, i, i),

a =
—,'( i, i—,i, i), —a = ——,'(1, —1, 1, 1),

a =
—,'( i, i, i—, i), a——=

—,'( —1, —1, 1, —1) .

(44)

Only the first two of these vectors are linearly indepen-
dent. We choose j =1 for generating the set of basis
functions. From Eqs. (17)—(20), and we obtain

fi, „'h,.=~(gi)0i —g»4i +

42, phys ~(gl W2 @g3 )02 +

i;p'h. .= -~(g, )&Hi+6(g4 @Hi+

P4, h ~(g2 W2 @g4 W2 +

(45)

From Eq. (32), we find that there is n = 1 independent set
of basis functions. If we form the vectors aphys we obtain

aphid,
= (1,0,0, 1,0, 0, 0,0),

aphid, =(0, —1, 1,0,0, 0, 0,0),
(43)

aph„, = (0,0, 0, 0, 1,0, 0, 1),

aphid, =(0,0,0,0,0, —1, 1,0) .

All four of these vectors seem to be independent of each
other, and this again demonstrates how the method fails
for reducible representations. We must form instead the
a vectors for IR Az, two for each vector aphyz and, us-

ing Eqs. (28) and (29), we obtain

a'= —,'(1, —1, 1, 1), a'=
—,'(i, i, —i, i),

D ph„, (x+y, x,z) =

D h„, (y, x —y, z) =

D „„,(x+y, x,z)=

1

2

1 i/3

1

2

0

0

1

2

0

0

0

0

1

2

0

0

1

2

1

2

0

0
1

2

0

0

2

l
2

0

0

1+3
I
2

0

0

l
2

(41)

Note that we have removed a common factor from each
of these equations in Eqs. (44) and (45). We have carried
these calculations out to four difFerent sites. In Table III,
we give the four coset representatives g;, the sites g;ro,
and the matrices D p„„,(g; ).

Let us extend this example further by considering the
local distortions to be atomic displacements. The two
atomic displacements which transform like basis func-
tions of the two-dimensional point-group IR E lie in the
plane perpendicular to the three-fold symmetry axis and
are perpendicular to each other. We arbitrarily choose
the second basis function to be an atomic displacement in
the direction of the hexagonal y axis. The first basis func-
tion is thus an atomic displacement in a direction perpen-
dicular to the hexagonal y axis. In terms of the hexago-
nal x,y, z coordinates, the two basis functions are atomic
displacements in the directions, (&4/3, &1/3, 0) and
(0, 1,0), respectively.
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TABLE III. The coset representatives g;, the sites g;ro, and the matrices DG(g, ) used in example 3.
The rows of the matrices are separated by slashes.

x,y, z
x+y, y, z + —,

'

x,y~z + 1

x+y, y, z +—

g ro

(o,o, z)
(o,o,z+-,')
(0,0,z+ 1)

(0,0,z+ —)

D (g;)

(1,0,0,0/0, 1,0,0/0, 0,1,0/0, 0,0, 1)

(0,0,1,0/0, 0,0,—1/ —1,0,0,0,/0, 1,0,0)

( —1,0,0,0/0, —1,0,0/0, 0,—1,0/0, 0,0,—1 )

(0,0,—1,0/0, 0,0, 1/1,0,0,0,/0, —1,0,0)

APPLICATION TO LATTICE VIBRATIONS

The IR's of the space group classify the normal modes
of the lattice vibrations (see, for example, Ref. 9). Modes
classified by different IR's are nondegenerate, i.e., they
oscillate at different frequencies. Modes classified by the
same IR are d -fold degenerate (or d „„,-fold degenerate
for reducible but physically irreducible representations).
The total number of d -fold degenerate normal modes
classified by a given space-group IR is equal to the total
number of independent sets of basis functions of the
space-group IR which can be generated by basis func-
tions of the vector IR's of the point group at each kind of
atomic site.

This is best illustrated by example. Consider a
perovskite crystal like BaTi03. Its space-group symme-
try is No. 221 Pm3m. Ba is at (0,0,0) (Wyckoff position
a), Ti is at ( —,', —,', —„') (Wyckoff position b), and 0 is at
(0, —,', —,') (Wyckoff position c). Let us consider the modes
of oscillation classified by the three-dimensional space-
group IR X,+. There are three different types of sites oc-
cupied by atoms.

The Ba site has point-group symmetry m 3m. The vec-
tor IR for this point group is T,„. Using Eq. (30), we find
that n =0, i.e., no sets of basis functions of Xi+ can be
generated from basis functions of T,„at the Ba site. Ba
atoms do not oscillate in any of the modes classified by
Xi+.

The Ti site also has the point-group symmetry I3m,
and for this case we find that n =1, i.e., one set of basis
functions of X,+ can be generated from basis functions of
T&„at the Ti site. Using Eqs. (6)—(9) and substituting
atomic displacements for the basis functions Pk, we ob-
tain

el (O) yol +y03+

z (O)=zoi+zo2+

P3 '(0)=xo2+xo3+

(47)

APPLICATION TO PHASE TRANSITIONS

In the Landau theory of phase transitions in solids, '

the distortions which accompany transitions are classified
by IR's I of the space group of the higher-symmetry
phase G. Using Eqs. (6)—(9), we can obtain global distor-
tions

hatt,
1 which transform like basis functions of I . The

distortion accompanying a phase transition is a linear
combination of these:

where the Ol, 02, and 03 atoms are at (0, —,', —,
' ), ( —,', 0, —,

' ),
( —,', —,', 0), respectively.

All together, then, the two independent sets of basis
functions of X,+ can be generated from atomic displace-
ments of the Ti and 0 atoms. The normal modes of oscil-
lation are linear combinations of these sets. Each mode is
two-fold degenerate, one of the form, a P i

'( Ti )

+b g& '(0), and the other of the form,
a/2 (Ti)+hfdf (0), where a., b are constants. The values
of a, b cannot be determined by symmetry arguments.
They can only be determined by solving the dynamical
matrix equations which require some knowledge about
the interatomic forces. From symmetry arguments alone,
we can only say that there are two sets of two-fold degen-
erate modes classified by the space-group IR X&+. In
each mode, the Ti and 0 atoms oscillate, but the Ba
atoms do not.

P, '(Ti) =yr;, + . it '(r)= g r), P, '(r) . (48)

'(Ti)=z;, + . (46)

'(Ti) =x;,+

where y~;& denotes a displacement of the Til atom in the
y direction. The Ti 1 atom is at ( —,', —,', —,

' ).
The 0 site has point-group symmetry 4/mmrn. The

vector IR's for this point group are A2„and E„. Using
Eq. (30), we find that n =0 for A2„and n =1 for E„.
One set of basis functions of X,+ can be generated from
basis functions of E„.

The coefIicients g,- are constants which constitute a d-
dimensional vector g=(rj„rjz, . . . , rIdG) called the order
parameter. The relative weighting of the distortions
P, '(r) in the summation determines the space-group G'
of the lower-symmetry phase. The elements g'EG' are
simply those operations in G which leave the distortion
P J(r) invariant.

As an example, consider possible displacive phase tran-
sitions in the perovskite crystal BaTiO3 (space group No.
221 Pm 3m ). In the previous section, we examined the
normal modes of oscillation classified by the IR Xi+ of
the space group. We use the very same approach in clas-
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tt'z Rz, cd' Rz, cd&+ ' ' 'G1
(49)

where R, is a rotation about an axis in the z direction.
The Cdl, Cd2, Cd3, Cd4 sites are at (0,0,0), (1,0,0),
(—,', —,', —,

' ), ( —,',—,',—,'), respectively. Suppose the order parame-
ter is g=(a, 0), where a is an arbitrary constant. Then,

sifying the possible displacive phase transitions in
BaTi03, according to IR X1+.

For example, if the order parameter is g=(a, 0,0)
where a is an arbitrary constant, then, from Eq. (48), the
distortion is simply att i~. From Eqs. (46), we find that
this distortion consists of a displacement of the Ti1 atom
in the +y direction. The sign on the direction depends on
the sign of a. Similarly, from Eqs. (47), we find that this
distortion also includes a displacement of the 01 atom in
the +y direction and a displacement of the 03 atom in
the +y direction. Again, the sign on the direction de-
pends on the sign of a. However, whatever the sign of a,
the displacement of the 03 atom is in the same direction
as that of the 01 atom. Note that the value of a is
different for each set of distortions. Thus the magnitude
of the 0 displacement is different from the magnitude of
the Ti displacement. The sign on the direction of the 0
displacements also may or may not be the same as that of
the Ti displacements. These questions cannot be
answered by symmetry arguments alone. As with the
modes of oscillation, no Ba atoms are displaced in this
phase transition. The lower-symmetry space-group 6'
determined by this distortion is P4/mmm with the four-
fold symmetry axis in the y direction and a cell doubling
in that same direction.

We can also consider distortions which consist of
molecular rotations. A molecular rotation transforms
like a pseudovector. We therefore use basis functions of
point-group IR's that transform like pseudovectors. As
an example, consider possible phase transitions in the
perovskitelike crystal RbzCdF4 (space-group No. 139
I4/mmm) where the corner-linked octahedra CdF6 ro-
tate like nearly rigid units. "' We want to generate glo-
bal distortions from local rotational distortions centered
at the Cd site, ro=(0, 0,0) (Wycko6' position a). The
point-group symmetry at that site is 4/mmm. The pseu-
dovector IR's for this point group are 32 and E . If we
consider, for example, global distortions that transform
like basis functions of the two-dimensional space-group
IR Xz+, we find from Eq. (30) that n =1 for A2 and
n =0 for E~. One set of basis functions Xz+ can be gen-
erated from basis functions of 2 z .

1 1 Rz, C13 Rz, cd4+G1

from Eq. (48), the distortion is simply a1b, ~. From Eqs.
(49), we see that this distortion consists of rotations of the
octahedra centered at Cd3 and Cd4. The two octahedra
rotate in opposite directions. The octahedra centered at
Cdl and Cd2 do not rotate at all. The lower-symmetry
space-group 6 determined by this distortion is
P4/mbm.

Likewise, we can consider order-disorder phase transi-
tions where the distortions are changes in occupation
probabilities. These probabilities transform like scalars.
We therefore use basis functions of the unit IR's of the
point groups. As an example, ' consider the grandite
garnet Ca3Fe2„Alz(, )Si30,2 (space group No. 230
Ia3d). The Fe and Al atoms are randomly distributed
among the sites generated from ro = (0,0,0) (Wyckoff posi-
tion a). The occupation probability I' F, of the Fe atom is
the same at every one of these sites. An order-disorder
phase transition occurs which takes this crystal to space
group No. 70 Fddd. The distortion accompanying this
transition transforms like a basis function of the three-
dimensional space-group IR I ~+. The point group of the
Fe-Al site is 3. The local distortion is the change 6 in the
occupation probability PF, . The scalar function 6 trans-
forms like the basis function of the point-group unit IR

. We find from Eq. (30) that n = 1 for this IR. One set
of basis functions of I ~+ can be generated from basis
functions of A:

gi '=5, +5~ —5, —54+

g2 '=5, —5~ —53+54+
qGi=5 —5 +5 —5 +

(50)

where 6, is the change in P„, at the ith site. Sites 1,2,3,4
are at (0,0,0), ( —,', 0, —,'), (0,—,', —,'), ( —,', —,', 0), respectively. In
this phase transition, the order parameter is g=(a, 0,0).
Thus, depending on the sign of a, sites 1 and 2 become
enriched (or depleted) in Fe atoins, and sites 3 and 4 be-
come depleted (or enriched) in the Fe atoms. The magni-
tude of 6, is the same at each site.

In Ref. 8 are listed all of the phase transitions classified
by each space-group IR associated with k points of sym-
metry. Approximately 15000 phase transitions are con-
tained in the list. For each phase transition listed, the or-
der parameter and the space group of the lower-
symmetry phase are given, along with some other useful
information as well. Using the information in that list,
we can use the methods described in this paper to obtain,
in a very straightforward way, the distortions accom-
panying each of those transitions.
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