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Intensity-dependent phase-matching
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In high-order harmonic generation by an intense laser, intrinsic phases can develop at the atomic level between
the laser field and the individual emitted harmonics. Because intrinsic phases can vary rapidly with the laser
intensity, they can strongly influence phase matching to the extent that the laser intensity varies within the
generating medium. Previously reported measurements of broad far-field harmonic emission patterns as
well as measured asymmetries in the emission with respect to the axial positioning of the medium in the
focus can be explained by intrinsic phases. An experimental method for further study of intrinsic phases is
proposed that involves harmonic generation in two counterpropagating laser beams. The periodic intensity
modulation created by the two beams coupled with the intensity-dependent intrinsic phases allows harmonic
light to propagate in directions with otherwise extremely poor phase-matching conditions.
1. INTRODUCTION

High-order harmonic generation by a strong laser field
in a gaseous medium is a highly nonlinear process. An
interesting phenomenon associated with high-order har-
monic generation is the development of intrinsic phase
variations at the atomic level between the phase of the
laser field and the phases of the individual emitted
harmonics. These phase variations occur most promi-
nently in the intensity range of the harmonic plateau,
where many harmonic orders are generated with approxi-
mately the same conversion efficiency. Many theoretical
models1–6 that describe the atomic dipole response to a
strong laser field inherently contain marked intensity
dependences of these intrinsic phases that differ with
harmonic order, although this fact has received little at-
tention in the literature. In this paper we investigate
the effects of intensity-dependent phases on the overall
phase matching of harmonic generation in a laser focus
where the intensity varies spatially.

The dipole response of Xe, which has been calculated
for a 1.064-mm laser field by numerical integration of
the Schrödinger equation in three dimensions, and which
has been reported on in the literature,7–10 shows strong
dependences of the harmonic phases on the laser in-
tensity. (Again, the phases were not emphasized previ-
ously.) Figure 1(a) shows the square amplitude of the
calculated 13th-harmonic component of the dipole oscilla-
tion as a function of laser intensity. Figure 1(b) shows
the amplitude of the same data plotted in polar coor-
0740-3224/95/050863-08$06.00
dinates where the azimuthal coordinate is the phase of
the harmonic. Along the curve, the laser intensity con-
tinually increases from the center outward. The filled
squares in both plots correspond to calculated points, and
the connecting curves were determined from a cubic spline
of the dipole harmonic amplitude in complex notation as
a function of the laser field amplitude. The spline pro-
vides the smoothest possible connection of the points; if
the further points were to be calculated they might well
deviate from these connecting curves. Although it is not
easily seen in the figure, the curve spirals outward in the
clockwise direction with only momentary setbacks to an
ever-decreasing phase [more easily seen in Fig. 3(a) be-
low]. The calculations of the other harmonic orders gen-
erated in Xe, orders up to the 33rd, show similar behavior.
In this paper we use the calculation of the 13th-harmonic
dipole response in Xe to represent the behavior of high-
order harmonic emission in general. It may be expected
that the phase-matching calculations presented in this
paper would remain qualitatively similar if they were in-
stead based on any of a number of models.1–6

Recently, experimental conditions were created in
which the harmonics could be thought of as emerging
from a single plane in the laser focus rather than from
a three-dimensional volume.11,12 The very long focusing
geometry and the low gas density minimized geometrical
and refractive phase mismatches so that the harmonic
far-field angular distributions could be more directly as-
sociated with the atomic response to the radial laser
intensity distribution in the focus. The appearance of
1995 Optical Society of America
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(b)
Fig. 1. (a) Single-atom response for the 13th harmonic gen-
erated in Xe plotted as a function of laser intensity. (b) Sin-
gle-atom response for the 13th harmonic generated in Xe plotted
in a polar format where the azimuthal coordinate corresponds to
the phase of harmonic emission relative to the laser’s phase.

broad wings in the harmonic far-field angular profiles
under such conditions indicates the presence of strong
intensity-dependent intrinsic phases, in agreement with
the theoretical models. In other experiments performed
by Balcou and L’Huillier,13 observations were made that
suggested the presence of intensity-dependent phases,
in the case brought about by axial changes of the laser
intensity within the generating medium.

2. RADIAL INTERFERENCES FROM
INTENSITY-DEPENDENT PHASES
From the experimental results of Refs. 11 and 12 it was
determined that the phase of high harmonic emission has
a strong dependence on the laser intensity. The conclu-
sion is based on an observation of the far-field angular
profiles of high-order harmonics emitted from a laser fo-
cused into various noble gases. The measurements dif-
fer from similar measurements14–16 in which harmonics
of typically higher order were investigated with tighter-
focused geometries and at higher gas pressures and for
which the far-field patterns have been explained in terms
of geometric and refractive phase mismatches. In con-
trast, in the experiments of Refs. 11 and 12 geometric
and refractive phase mismatches were minimized, and
the harmonics can be understood as coming from a plane
at the laser focus. Under these conditions the far-field
patterns of the harmonics are seen to have broad struc-
tures with widths approximately equal to the width of
the emerging laser profile.

Because high-order harmonics have wavelengths much
shorter than the laser wavelength, the broad features in
their far-field patterns imply either that the harmonics
are generated in an extremely small area or else that they
have strong phase variations across their wave fronts as
they emerge from the focus. The first possibility is dis-
missed because it implies that harmonic production rates
have extremely sharp dependences on the laser intensity
instead of the gradual dependences that have been ob-
served in the intensity range where the harmonic plateau
appears.4,9,17 For example, in the absence of phase varia-
tions the emitting region of the qth harmonic in the focus
must be q times narrower than the laser distribution in
order for its far-field pattern to have the same width as
the emerging laser, and this implies a harmonic produc-
tion law that follows the laser intensity raised to the ex-
traordinarily high power of q2, assuming a Gaussian laser
distribution. The remaining possibility, phase variations
across the individual harmonic wave fronts, which may
arise from a variety of effects, can be associated with the
radially varying laser intensity in the case of the experi-
ments of Refs. 11 and 12 because other possible sources
of phase inhomogeneities were excluded by experimental
design.

Consider harmonic emission from a single atom. The
qth-harmonic component of the field emitted from an atom
stimulated by a laser can be written as18
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where dq is the amplitude of the qth-harmonic component
of the atomic dipole, IL is the laser intensity, v is the laser
frequency, kq > qk is the qth-harmonic wave number, fL

is the phase of the laser at the atom, and fq is the atomic
intrinsic phase, which depends on the laser intensity. It
has been assumed that r points in a direction very nearly
perpendicular to the dipole moment vector. Implicit in
this formulation is an adiabatic assumption in which the
details of the past history of the laser pulse are not
important.

When more than one atom is present we may sum over
the emission of the individual atoms if it is assumed that
each atom is not influenced by emission from neighbor-
ing atoms. Consider emission from a collection of atoms
lying in the plane of a laser focus. The component of
the electric field that oscillates with the frequency of the
qth harmonic in the far-field zone (Fraunhofer approxi-
mation) is19
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where we have assumed azimuthal symmetry and have
performed the angular integration that gives rise to the
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Fig. 2. Schematic depicting how an intensity-dependent phase
variation of the qth-harmonic emission can cause the harmonic
light to scatter into angles off axis. A change of Dr in radius
corresponds to a change of DI in laser intensity. The associated
change in the harmonic phase Dfq causes the light to scatter
into an angle u , DfqyskqDrd.

zeroth-order Bessel function. We have employed cylin-
drical coordinates where r 

p
r2 1 z2, and the atomic

distribution has been chosen to lie in the plane z  0.
N0 is the area density of atoms, which we take to be con-
stant. Equation (2) is the spatial Fourier transform (or
Hankel transform) of the qth-harmonic emission distribu-
tion in the laser focus. For a Gaussian laser the intensity
in the plane of the focus is given by20
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where w0  2lf#yp is the laser beam waist. In the plane
of the laser focus we have fL  0.

The intrinsic phase fq can cause the harmonics to
scatter into the broad angles observed in the experi-
ments because of its radial dependence. Figure 2 shows
a schematic of the scattering process that arises from this
phase. The laser intensity translates into a radial phase
variation of the qth harmonic according to the nature of
fq. The rate at which the intrinsic phase of the qth-
harmonic emission changes with radius in the laser focus
can be roughly estimated from

DfqyDr , kqu , (4)

where u ; ryz is the angle from the laser axis through
which the far-field distribution extends.

For the experiments of Refs. 11 and 12, harmonics of
1.054-mm light with orders in the mid 30’s and below
were seen to emerge with angles as wide as 10 mrad from
the laser axis. Estimate (4) gives for the 13th harmonic
Df13yDr , 0.25p mm–1, which implies a phase change of
p over a radial distance of only 4 mm, one fifteenth of
the laser focal radius w0  60 mm (1ye2 intensity point).
Over the distance 4 mm, the laser intensity varies at most
by 8%. It is implied not that the phase must vary with
this rate at all intensities but only that it varies with
at least this rate at some intensities. This turns out to
be a conservative estimate in view of Fig. 1, and we will
comment on this further in Section 3.

Figure 3(a) shows the square amplitude and phase of
the 13th-harmonic component of the Xe dipole plotted as
a function of radius in a Gaussian laser profile with peak
intensity 4.5 3 1013 Wycm2. This is based on the same
numerical data of Refs. 7–10 as shown in Fig. 1. As we
mentioned above, the phase tends to decrease continually
with increasing intensity. Figure 3(b) shows the far-field
intensity profile calculated from Eq. (2) by use of the fo-
cal emission distribution of Fig. 3(a). The intensity pro-
file corresponds to an instant in time when the laser in-
tensity in the focus is at 4.5 3 1013 Wycm2. The dotted
curve is a repeat of the calculation with the intrinsic phase
f13 held constant. With this phase excluded, the far-field
pattern becomes much brighter and concentrates near the
laser axis with little evidence of wings. Nevertheless, the
total emitted light is the same in the two cases, as can
easily be proved by application of Parseval’s theorem to
the Fourier transform involved in finding the far-field
pattern [Eq. (2)]. The azimuthal symmetry means that
the portions of the distribution that are farther from the
axis carry more energy (proportional to u). In fact, with
the phase included, much of the energy is scattered into
angles beyond those shown in Fig. 3(b); the central struc-
ture has only ,10% of the energy. It should be noted,

(a)

(b)
Fig. 3. (a) Single-atom response for the 13th harmonic gener-
ated in Xe plotted as a function of radius in a Gaussian laser focus
with peak intensity 4.5 3 1013 Wycm2 (solid curve). The dotted
curve is the phase of harmonic emission relative to the laser’s
phase indicated on the right vertical axis. (b) Far-field intensity
distribution calculated from the planar emission distribution of
(a). The dotted curve is a repeat of the calculation performed
with the intrinsic phase held constant. The dotted curve has
been divided by a factor of 10. The dashed curve depicts the
laser intensity profile. The units on the horizontal axis can also
be written as rywszd, where wszd > w0zyz0.
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however, that the total emitted energy need not be con-
served with a change in the intrinsic phase if we consider
emission from a volume for which the far-field pattern is
not simply a Fourier transform of a planar distribution.

It might be asked whether the lack of harmonic emis-
sion from the center of the focus in the case of strong
ionization of the medium (ignoring the refractive index)
might be sufficient to cause broad wings in the far-field
pattern in the absence of intensity-dependent phases.
The answer is no because the lack of emission in a re-
gion affects the far-field pattern no more profoundly than
does the jagged shape of the solid curve in Fig. 3(a). If
emission is excluded from a region in the center of the
focus, the far-field pattern remains similar to the dotted
curve in Fig. 3(b) when fq is held constant.

3. FINITE THICKNESS OF THE
INTERACTION REGION
We may extend the formulation of Eq. (2) to describe emis-
sion from a three-dimensional volume in the laser focus.
This involves an additional integral in the z direction.
The component of the electric field that oscillates with
the frequency of the qth harmonic, again in the far field,
is9,10,12,13
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In this case, N0 is the volume atomic density, which we
have taken to be a constant for z1 # z0 # z2 and zero
elsewhere. Equations (2) and (5) are similar in form ex-
cept for the term kqr2z0y2z2, which is a phase mismatch
that occurs because of the thickness of the medium when
the harmonic light propagates to points off axis in the far
field. Near the focus, the Gaussian laser intensity enve-
lope may be written as20
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and the local phase of the laser field written as
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where z0  pw0
2yl is the Rayleigh range. The first

term in the phase of the laser field fLsr0, z0 d is associ-
ated with the radius of curvature of the laser wave front
Rsz0 d  z0 1 z0

2yz0, the second term is the Gouy shift, and
the final term arises as a result of the phase mismatch
of the optical index Dk  kq 2 qk. Significant ionization
introduces in both Dk and N0 additional r0, z0, and t de-
pendences because of atomic depletion and the refractive
effects of free electrons. The latter can also affect the
propagation of the incident beam. In the present paper
we consider only short pulse durations (t # 1 ps) and low
gas density (N0 # 3 3 1016 cm–3 , 1 Torr) so that Dk may
be taken to be zero and N0 constant.

Figure 4 shows the far-field profile of the 13th harmonic
similar to that of Fig. 3(b), except that it is calculated
from Eq. (5) assuming emission from a volume centered
at the origin with thickness z0y5 (one tenth of the confo-
cal parameter). This is approximately the experimental
condition of Refs. 11 and 12. Except for a slight diminu-
tion in the signal away from the axis center, the distri-
bution looks the same as that from a plane [Fig. 3(b)].
This is in agreement with the claim made in Refs. 11 and
12 that the experimental conditions allow the harmonics
to be thought of as emerging from a plane. In typical
high-harmonic generation experiments the accumulated
energy of individual harmonics is measured for an entire
laser pulse. The dotted curve is the calculated far-field
accumulated energy pattern for the same conditions as for
the solid curve. Each point is obtained by integration of
the emission harmonic intensity over a temporally Gauss-
ian laser pulse with peak intensity 4.5 3 1013 Wycm2. As
the laser intensity changes, the radial distribution of in-
trinsic phases in the laser focus changes so that the fea-
tures in the harmonic far-field emission pattern evolve
and shift position with time. Thus the more-defined fea-
tures seen in the snapshot are smoothed out. Figure 4 is
in good agreement with the far-field patterns measured
in Refs. 11 and 12.

The approximation that the harmonics emerge from a
plane becomes less valid for angles in the far field away
from the axis. When this happens the interpretation of
Eq. (4) must be altered because the thickness of the gen-
erating medium becomes important. Figure 5 shows a
schematic depicting the phase error introduced by the
medium thickness when harmonics propagate into angles
off axis. It is this effect that degrades the emission at
the wide angles in Fig. 4. Harmonic light emitted from
the beginning and the end of the medium follows sepa-
rate paths with a length difference of lu2y2, where l is the

Fig. 4. Far-field intensity distribution of the 13th harmonic
generated in a medium of thickness z0y5 centered in a laser
focus with peak intensity 4.5 3 1013 Wycm2 (solid curve). The
dotted curve is a repeat of the calculation in which the temporal
integration over a Gaussian laser pulse has been performed to
yield the accumulated energy as indicated on the right verti-
cal axis.
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Fig. 5. Schematic showing the phase error that occurs as a
result of the thickness of the generating medium when the
harmonics emerge into angles off the laser axis.

thickness of the medium. A phase difference of p occurs
at an angle u ,

p
2pykql. At greater angles the phase

difference increases beyond p, but this does not necessar-
ily mean a resurgence in the signal because all locations
between the beginning and the end of the medium emit
with varying degrees of phase error. In the experiments
of Refs. 11 and 12 the gas target thickness was 1 mm,
which causes a phase difference of p when the 13th har-
monic is directed off axis by 9 mrad, approximately the
maximum angle for which signal was observed. Thus, if
the harmonic light were scattered by very abrupt radial
phase changes arises from the atomic dipole, say, from
sudden slips of p as might occur for resonance structures,
the thickness of the medium would have prevented the
light from scattering into the extremely wide angles im-
plied by Eq. (4).

Figure 6 shows the same calculation of the far-field pat-
tern as the solid curve in Fig. 4, except that the thick-
ness of the active medium was increased to z2 2 z1  z0

(one half of the confocal parameter). The laser inten-
sity in the center of the focus was again assumed to be
4.5 3 1013 Wycm2, and no temporal integration was in-
cluded. If the intensity profile were to be temporally
integrated over a laser pulse as in the calculation for
the dotted curve in Fig. 4, the many bumps would be
smoothed out as the pattern evolved in time. As is evi-
dent, the angular structure of the far-field pattern is radi-
cally different from that of Fig. 4. This to a large degree
is due to geometric phase mismatches12,17 caused by the
phase terms fLsr0, z0 d and kqr2z0y2z2 in Eq. (5). Geo-
metric phase mismatches within the laser focus have
been described by L’Huillier et al.10,21 Because of the
medium’s thickness, the interpretation of harmonic emis-
sion from a plane fails, and the estimate of Eq. (4) can
no longer be used. The pattern in Fig. 6 is no brighter
than the pattern in Fig. 4 (normalized in the same way)
even though the medium is five times thicker. The dot-
ted curve is a repeat of the calculation in which the intrin-
sic phase f13 has been held constant. The radical change
in the pattern shows that intensity-dependent phases re-
main important even in the presence of strong geomet-
rical phase mismatches, although their effects become
intermingled.

4. AXIAL INTERFERENCES FROM
INTENSITY-DEPENDENT PHASES
If the harmonic-generating medium is thick enough, the
laser intensity can significantly vary along its axis within
the medium, and intensity-dependent phases can vary
axially as well as radially. Experimental observations
by Balcou and L’Huillier13 showed that the intensities
of individual harmonics generated with a tight focusing
geometry (i.e., the generating medium’s thickness ap-
proximately the same as the confocal parameter) are
strongly dependent on the longitudinal position of the
laser focus with respect to the gas distribution. The
strong dependence on position was explained primarily
through phase-matching geometry by which the harmonic
production is expected to be symmetric with respect to
the longitudinal position of the laser focus relative to
the gas distribution. However, their data showed strong
asymmetries. Although other possible explanations for
the asymmetries were not ruled out (absorption, gas jets
nonuniformity), they suggested that an intrinsic phase
may be responsible. Under these conditions, axial phase
variations of the atomic dipole response influence the
phase matching.

Figure 7 shows the far-field on-axis intensity of the
emitted 13th harmonic as a function of longitudinal posi-
tion of the generating medium (solid curve). The thick-

Fig. 6. Far-field intensity distribution corresponding to emis-
sion of the 13th harmonic generated in a medium of thickness z0
centered in a laser focus with peak intensity 4.5 3 1013 Wycm2

(solid curve). The dotted curve is a repeat of the calculation
performed with the intrinsic phase held constant. The dotted
curve has been divided by a factor of 4.

Fig. 7. Far-field axial intensity of the 13th-harmonic emission
as a function of the longitudinal position of the gas distribution in
the laser focus. The dotted curve is a repeat of the calculation
performed with the relative phase held constant. The dotted
curve has been divided by a factor of 4.



868 J. Opt. Soc. Am. B/Vol. 12, No. 5 /May 1995 Peatross et al.
Fig. 8. Proposed experimental setup for studying intensity-
dependent intrinsic phases. Harmonics are generated in
counterpropagating beams focused off mirrors with holes in
their centers.

ness of the medium was fixed at z2 2 z1  z0, the same
as for Fig. 6, and the center of the medium sz1 1 z2dy2
was varied. We chose to examine the on-axis intensity
of the harmonic in the far field rather than the energy
in the entire angular pattern because the spectrometer
used in the experiments of Balcou and L’Huillier ac-
cepted a cone angle of harmonic light much narrower
than the laser beam.22 However, a direct comparison
cannot be made with their data because we did not include
the temporal integration of the intensity and we used
a square medium distribution, which has different geo-
metric phase-matching properties from a smoother gas-jet
profile. However, the asymmetry in the curve is qualita-
tively similar to the asymmetries observed in the exper-
iments. The dotted curve is a repeat of the calculation
with the intrinsic phase held constant. Aside from an
overall increase in the harmonic intensity, the absence of
the phase causes the details of the pattern to shift and to
become symmetric. Thus the intrinsic phase variations
that are due to an axially varying laser intensity are seen
to influence harmonic production significantly and likely
play a role in explaining the asymmetries in the data.
Figures 4, 6, and 7 are all normalized in the same way so
that their heights can be compared directly.

5. PHASE MATCHING IN
COUNTERPROPAGATING BEAMS
A recent technique23 for separating harmonic light from
the laser beam allows for a new method of examining
intrinsic phases. With this technique it is possible to
observe harmonics generated in two counterpropagating
laser beams. Figure 8 shows a schematic of a proposed
experimental setup that uses mirrors with holes in them.
When the two annular beams are focused into the genera-
ting medium the holes in the beam centers fill in to pro-
duce a central peak similar to that of a usual laser focus
surrounded by faint rings. Because of the nonlinearity of
high-order harmonic generation, the harmonics are emit-
ted primarily from the central peak, and they emerge as
usual, centered along the laser axis so that much of their
energy lies inside the holes. The holes are necessary be-
cause of the lack of suitable materials able to transmit
the vacuum ultraviolet.

The counterpropagating beams produce a periodic in-
tensity variation throughout the laser focus that is ideal
for the study of intensity-dependent intrinsic phases. In
particular, the situation of one strong beam and one weak
beam is interesting because, in the absence of intensity-
dependent phases, phase matching for harmonic genera-
tion in the direction of the weak beam is extremely poor.
However, when intensity-dependent phases are present,
significant harmonic emission in the direction of the weak
beam is possible, and the strength of the emitted light de-
pends sensitively on the nature of the phases. This can
occur even when the intensity of the weak beam is far too
low to generate high-order harmonics alone.

Consider a small region and a brief time interval in
the focus of two counterpropagating laser beams with
local field strengths E1 and E2. The total field in this
neighborhood can be approximated as the sum of two
plane waves:

Etsz, td 
E1

2
exps2ivt 1 ikzd 1

E2

2
exps2ivt 2 ikzd

1 c.c. (8)

The two counterpropagating fields produce a stationary
periodic intensity modulation described by

Itszd  I1fs1 2
p

I2yI1d2 1 4
p

I2yI1 cos2 kzg . (9)

The maximum and minimum intensities of the periodic
structure are I1s1 6

p
I2yI1d2. Even when one field is

much weaker than the other, say, I2  I1y100, the inten-
sity variation of the combined field can be rather high,
more than 30%. When the fields are of unequal ampli-
tude (assume E1 larger than E2) there is net propagation
of the field in the direction of the stronger beam. The
phase of this propagating field is vt 2 kz 1 Fszd, where
Fszd is a periodic phase distortion that goes to zero when
E2 is zero. The phase distortion can be written in the
interval f2py2 $ kz 2 np $ py2g as

Fszd  kz 2 tan21
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where n is an integer.
The phase distortion Fszd introduces a microscopic

phase mismatch for harmonic generation that is periodic
over the interval ly2. The total intensity is also periodic
with this interval, so one can determine an effective dipole
emission by considering phase matching over this length.
The effective dipole emission in the direction of beam 1 is

dq
Eff sI1, I2d 

2
l

Z l/4

2l/4
dzjdqhItszdjj

3 exphhhifqhItszdj 1 iqFszdjjj . (11)

Both phase terms fqhItszdj and Fszd tend to degrade the
emission according to how they vary over the interval.
One can obtain the effective dipole emission in the direc-
tion of beam 2 from Eq. (11) by interchanging the limits of
integration and the positions of I1 and I2 in Eq. (10). In
this case, Fszd tends to suppress harmonic emission very
sharply because it varies much more rapidly. However
the intensity-dependent phase fqhItszdj can compensate in
part for the extremely poor phase matching in the direc-
tion of beam 2. The effective dipole emission of Eq. (11)
can be used to calculate the macroscopic phase matching
of the entire laser focus in the usual way by use of Eq. (5).
However, the calculation is complicated by the fact that
the individual local intensity of each beam must be con-
sidered at each place and time in the focus.
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Fig. 9. Effective emission for the 13th harmonic in the direc-
tion of the weak beam when two beams of intensities I1 and
I2  I1y100 are counterpropagated (solid curve). The dotted
curve is the effective emission in the direction of the strong beam.
The dashed curve is the single-atom response identical to that
shown in Fig. 1(a).

Figure 9 shows the effective dipole emission for the
13th harmonic in the two directions as a function of I1,
where I2 is held at I2  I1y100. The solid curve (rapidly
fluctuating) is the effective emission in the direction of
beam 2. The dotted curve is the emission in the direction
of beam 1. The dashed curve is the usual single-beam
emission curve (valid for I2  0). If the intensity-
dependent phase f13 is held constant, then the effective
emission in the direction of beam 2 drops by more than
10 orders of magnitude and the emission in the direction
of beam 1 increases to be close to that of the single-beam
emission curve. One may also use this experimental ar-
rangement using two beams to study the dependence of
the intrinsic phases on laser polarization ellipticity by
varying the polarization of one of the beams.

6. CONCLUSION
Intrinsic phases play a major role in high-order harmonic
generation phase matching. They also strongly influence
the coherence of the emerging harmonic beams inasmuch
as the resulting interferences cause the light to scatter
into wide angles where the various structures involve dif-
ferent phases. In the quest to find ways to increase har-
monic conversion efficiency by improving phase-matching
conditions, intrinsic phases will have to be considered.
To this end, it may be possible to find situations in which
intrinsic phases can be played against geometrical phase
mismatches in order to improve over all phase matching.
To do this, we must learn much more about the intrinsic
phases.
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