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ABSTRACT
In this paper, we consider the problem of quantifying parametric uncertainty in classical empirical interatomic potentials (IPs) using both
Bayesian (Markov Chain Monte Carlo) and frequentist (profile likelihood) methods. We interface these tools with the Open Knowledgebase
of Interatomic Models and study three models based on the Lennard-Jones, Morse, and Stillinger–Weber potentials. We confirm that IPs
are typically sloppy, i.e., insensitive to coordinated changes in some parameter combinations. Because the inverse problem in such models
is ill-conditioned, parameters are unidentifiable. This presents challenges for traditional statistical methods, as we demonstrate and interpret
within both Bayesian and frequentist frameworks. We use information geometry to illuminate the underlying cause of this phenomenon
and show that IPs have global properties similar to those of sloppy models from fields, such as systems biology, power systems, and critical
phenomena. IPs correspond to bounded manifolds with a hierarchy of widths, leading to low effective dimensionality in the model. We
show how information geometry can motivate new, natural parameterizations that improve the stability and interpretation of uncertainty
quantification analysis and further suggest simplified, less-sloppy models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0084988

I. INTRODUCTION
Interatomic potentials (IPs) are a foundational tool in compu-

tational materials science.1 They allow modelers to make efficient
predictions of materials properties without reference to the com-
plicated sub-atomic structure. Recently, there has been considerable
interest in applying methods of uncertainty quantification (UQ) to
IPs.2–5 UQ assesses the reliability of materials predictions, leveraging
tools from statistical inference.6 Statistical analysis of similar inverse
problems in physics has motivated the study of sloppy models.7
Sloppy models lead to extremely ill-conditioned inverse problems
and pose several challenges for standard statistical methods.8,9 This
work considers the application of UQ to IPs in the context of
sloppy models. We focus on the structural uncertainties of the IPs

as opposed to the random errors that come from the details of the
simulation.10 We find that many IPs are sloppy, which leads to chal-
lenges in interpreting UQ results, and use information geometry to
mitigate some of these challenges. (We will be using the terms “IPs”
and “models” largely interchangeably in this paper, with “models”
used in more generic settings, and “IPs” when specifically thinking of
the training and predictions of interatomic models, i.e., potentials.)

Classical IPs have been widely used in materials science to cir-
cumvent the computational cost of quantum calculations, such as
density functional theory (DFT), by approximating the interaction
energy between atoms without considering the electrons. However, a
universal functional form that can describe all types of atomic bond-
ing has not been discovered. Thus, IPs are often designed for specific
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purposes, resulting in a plethora of models.11 Efforts such as the
Open Knowledgebase of Interatomic Models (OpenKIM)12 aim to
organize and standardize these IPs.

In the development of classical empirical IPs, the parameters
are typically fit to match experimental or first principles data of some
microscopic properties, such as the lattice parameters and elastic
constants of single crystals or the potential energy and atomic forces
associated with various atomic configurations.13 They are then used
in conjunction with simulation codes to predict other properties that
are not used in the fitting process. Thus, UQ is relevant for assessing
the reliability of these out-of-sample predictions.

In this paper, we are primarily interested in parametric uncer-
tainty, i.e., uncertainty in the model’s parameters, which is quan-
tified through, for example, a Bayesian posterior distribution or
confidence regions on the parameter space. In our formulation,
the IP is used in two evaluation scenarios: one that makes predic-
tions for the training data (e.g., energy and forces), and a second
that makes predictions for other material quantities of interest. By
varying the parameters, the IP traces out a set of possible predic-
tions for each scenario. The set of predictions made by an IP for
each evaluation scenario generates a corresponding model mani-
fold,8 which can be studied using methods of information geometry.
The IP parameters act as coordinates on the model manifold and
distances on the manifold measure statistical identifiability. The UQ
process propagates uncertainties from training data to uncertain-
ties in parameters via the (pseudo) inverse of the first evaluation
scenario. These uncertainties then propagate forward through the
second scenario to give uncertainties in the predictions for the quan-
tities of interest. The inverse of an evaluation scenario is not given
explicitly but is only accessible through iterative evaluations of the
scenario. Consequently, the first uncertainty propagation process is

FIG. 1. Uncertainty propagation in information geometry. An IP is described by
several parameters, collectively forming a parameter space (top center). By con-
sidering the predictions for all allowed parameter values for a given evaluation
scenario, the model (IP) maps out a set of possible predictions in data space,
known as the model manifold (bottom left, right). Uncertainty in training data
(bottom left) is propagated through the inverse function to uncertainties in para-
meter space, represented here by contours of constant likelihood, i.e., cost, in
the parameter space. Parametric uncertainty can then be propagated forward
in another evaluation scenario to material quantities of interest, such as lattice
constant, elastic constant, and bulk modulus (bottom right).

the more challenging one and the focus of this study. Given the para-
metric uncertainties, they can then be propagated to other quantities
of interest, for example, as in Ref. 14. This entire process is illustrated
in Fig. 1.

Many UQ methods have been developed to propagate uncer-
tainties in data to uncertainties in parameters.15 In materials science,
Markov Chain Monte Carlo (MCMC) sampling of the Bayesian pos-
terior is the most common approach. Being a Bayesian method, this
requires a prior distribution, and several prior distributions have
been used, including uniform,16–22 normal,23 Jeffreys prior,24 and
maximum entropy.25 Other approaches to UQ include F-statistics
estimations,26 ANOVA-based methods,27 and multi-objective opti-
mization.28 Other fields have used the profile likelihood method;29–31

to the best of our knowledge, ours is their first application to IPs.
The study of inverse problems in statistical physics has identi-

fied an important property of many multi-parameter models, known
as sloppiness. Sloppy models are characterized by predictions that are
insensitive to coordinated changes in combinations of parameters.32

Inverse problems for sloppy models are extremely ill-conditioned
and, as we will show below, present obstacles for standard UQ
methods, and there is broad interest in developing UQ methods
that leverage the effective low-dimensionality of these problems to
improve UQ performance.33–35 Sloppiness was first systematically
studied in 2003 by Brown and Sethna in the context of systems biol-
ogy models.7 The relevant object is the Fisher Information Matrix
(FIM)36 that quantifies the information that data in a given evalua-
tion scenario carry about parameters in a model. Eigenvalues of the
FIM provide a local measure of sloppiness. For sloppy models, the
FIM eigenvalues span many orders of magnitude and have many
small eigenvalues. These small eigenvalues correspond to sloppy
combinations of parameters, i.e., those that are ill-constrained by
data.8,37–39

Although sloppy models are usually identified by their charac-
teristic FIM spectrum, the theory of sloppy models is couched in
the tools of information geometry, i.e., the application of differen-
tial geometry to statistics.9,40 The key object is the model manifold,
which comprises the set of all predictions a model makes within a
given evaluation scenario for all allowed parameter values. As we
show in Sec. II E, the model manifold is embedded in data space.
This space is useful because the distance corresponds to statistical
identifiability. In other words, points that are distant on the model
manifold are statistically distinguishable, while nearby points are
not. Statistical identifiability therefore induces a Riemannian metric
on the parameter space that is given by the FIM. Using the FIM,
one can, in principle, measure the “information distance” across the
manifold. We refer to such a distance as the manifold’s width. This
width depends on the direction in which the distance is measured.
For sloppy models, widths in some directions can be many orders of
magnitude larger than in other directions. This hierarchy of widths
suggests that the model exhibits a low effective dimensionality.8,41–44

When a model manifold is very thin, the parameters associated with
the thin directions are unidentifiable from data.

Sloppy models are ubiquitous in many scientific fields, includ-
ing critical phenomena,42 systems biology,9,37,45–48 power systems
stability,49 particle accelerators,50 and others.39 In molecular mod-
eling, it has been shown that IPs typically exhibit the same char-
acteristic sloppy FIM spectrum;2–4,51 however, the techniques of
information geometry have not yet found application to IPs. As
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materials models increase in complexity, especially with the advent
of machine learning models,5,52–54 sloppiness will become increas-
ingly relevant. This underscores the importance of understanding
the effects of sloppiness on IPs and other materials science models.

This work reports on several novel results applying sloppy
model analysis to the UQ of IPs. Since sloppy models are ill-
conditioned, they pose unique challenges for standard UQ methods.
Results are often highly sensitive to details of the problem formu-
lation and difficult to interpret. We illustrate these challenges with
both Bayesian and frequentist UQ methods, introducing the pro-
file likelihood methods to the material modeling community. A new
contribution of this work is the application of information geom-
etry techniques to bear on this problem and discuss how they can
illuminate and mitigate these challenges.

This paper is organized as follows: First, we precisely formu-
late the problem in Sec. II A and discuss using the FIM as a local
analysis of sloppiness in Sec. II B. Then, we discuss the Bayesian
methods in Sec. II C. We follow Frederiksen et al.4 and introduce an
effective sampling temperature to estimate the model accuracy. This
study is the first extensive study of the role of this sampling tem-
perature in the identifiability of the model parameters. We describe
frequentist methods in Sec. II D; to the best of our knowledge,
ours is the first application of profile likelihoods to IPs. Finally, we
describe information geometric tools, specifically geodesics, central
to our sloppy model analysis in Sec. II E. This study is the first
application of information geometry to interatomic potentials. In
particular, we demonstrate that the same global properties observed
in other sloppy models (specifically manifold boundaries) are also
present in IPs. This opens up the possibility of using novel parameter
reductions techniques, such as the manifold boundary approxima-
tion method (MBAM)40 for IP development. Section II F presents
the models used in this study, i.e., the IPs and quantities of interest.
We present the results for each method in Sec. III. Finally, we discuss
the effects sloppiness has on UQ in Sec. IV and the prospect for accu-
rate, efficient UQ in IPs generally. From this cross-sectional survey,
we make several recommendations that we hope will be beneficial
for both IP developers and practitioners.

II. METHODS
In this section, we introduce the general methods that will be

used later in this paper. We pay particular attention to the math-
ematical assumptions that different methods require and the types
of calculations that they enable. Then, we introduce the IPs and
datasets on which we conduct our study.

A. Defining cost
The minimal elements for parametric UQ are (1) a collection

of data, {ym}M
m=1 (where M is the number of data points), (2) a

parameterized family of models that make predictions { fm(θ)}M
m=1,

and (3) a metric for comparing the model predictions to data, ∥⋅∥.
We assume that the model depends on N parameters θ ∈ D ⊆ RN .
Here, D is the physically allowed domain; for example, it is com-
mon for some parameters to be restricted to positive values. It is
convenient to interpret both the data and model predictions as
vectors in an M-dimensional data space: ym → y ∈ RM , fm(θ)→ f :
D ⊆ RN → RM .

The third requirement, a metric, defines a cost function (also
known as a loss function) that quantifies how well specific parameter
values fit the available data, C(θ) = ∥y − f(θ)∥. The best fit para-
meters, denoted by θ∗, minimize the cost. By far the most common
choice for a metric is (weighted) least squares,

C(θ) = 1
2

M

∑
m=1

rm(θ)2, (1)

where we have introduced the residuals

rm(θ) =
ym − fm(θ)

σm
(2)

that depends on the inverse weights σm that act as error bars for each
data point.

The cost function has a probabilistic interpretation as the
negative log-likelihood,

P(y∣θ) ∼ exp(−C(θ)). (3)

Equation (1) corresponds to the case that residuals are independent
and identically distributed Gaussian random variables: rm ∼ N(0, 1)
or, equivalently, ym ∼ N( fm(θ), σ2

m). Probability acts as a measure
on data space that induces a measure on parameters space that we
use to quantify uncertainty. For stochastic processes, the stochastic
variation in the data is a natural measure, in which case the inverse
weights, σm, are often taken to be the standard errors estimated from
repeated observations. Because they are often associated with exper-
imental error bars, we refer to σm as the “error bars” below, even
though they may not be explicitly related to any experimental error.
When working with DFT data, one does not usually have an error
bar that is exactly analogous to an experimental uncertainty. How-
ever, there is a growing recognition of the need to estimate the errors
in DFT calculations.55,56 If such error estimates are available, they
can be used as weights in the cost function. Because predictions may
be made for quantities that carry different physical units (e.g., ener-
gies vs forces), choosing σm is minimally necessary for Eq. (1) to be
dimensionally consistent. Deliberate selection of σm is an important
part of the UQ problem formulation since any eventual measure of
the uncertainty in the model parameters will be derived from the
choice of measure in data space.

A common choice for σ that we advocate is to choose the
weights to be some fractional value of the data,57 potentially
including an additional cutoff to deal with near-zero data,58

σm =
√

c2
1 + c2

2∥ym∥2, (4)

where c1 is the cutoff or padding term and c2 is a constant that sets
of the scale of the uncertainty from the data. In general, choosing σm
as a fractional tolerance, e.g., 10% of the data, is a reasonable choice
and what we use in this study. This choice corresponds to c1 = 0 and
c2 = 0.1. [The numerical values of our data are large enough that
Eq. (4) is insensitive to the choice of c1, so we use zero.]

For IPs, errors in the data are often not the primary source of
errors in the inferred model. Because IPs are simplified functional
forms that do not capture all of the nuances of quantum mechanics,
there is an additional error due to missing physics. We decompose
the model error into contributions from the bias, b, representing
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missing physics, and errors in the data, ϵ. The data and the model
are then related by

ym = fm(θ) + bm + ϵm. (5)

Conceptually, the bias can be understood as accuracy of the model,
and a fundamental problem is to estimate the bias of an IP for
problem-specific applications.

To estimate model accuracy, Frederiksen et al.4 suggested tem-
pering the cost by an effective temperature, which modifies Eq. (3)
as

P(y∣θ) ∼ exp(−C(θ)/T). (6)

This is to account for the model inadequacy, or bias, as discussed in
Ref. 15. Functionally, the temperature T uniformly scales the weights
in the residuals and can be adjusted as a coarse measure of the overall
accuracy of the model. In fact, the tempering technique is a com-
mon practice to improve UQ performance when the model does not
match the data generating process.59 A natural choice of temperature
motivated by analogy with the equipartition theorem4 is

T0 =
2C0

N
, (7)

where C0 is the minimum cost of the model and N is the degrees
of freedom of the model, which often is set to the number of para-
meters. Since this choice of temperature includes the best fit cost,
it incorporates information about the accuracy of the model with
respect to the training data. Using this natural temperature, we find
that the bias far outweighs the errors in the data and our uncertainty
estimates give a rough indication of the accuracy of an IP.

To illustrate key ideas throughout this section, we use a two-
parameter toy model of the form

f (t; θ) = 1
t2 + θ1t + θ2

. (8)

We make predictions at times t = 1.0, 2.0, 3.0, i.e., fm(θ) = f (tm; θ).
We restrict θi ≥ 0 (a common physical constraint on parameter val-
ues), which suggests working with the log-transformed parameter
values. We use y = [1/3, 1/7, 1/13]T with tolerances σm set to be 30%
of the data y for the purpose of visual clarity. These data, along with
model predictions for several values of the parameters, are shown in
Fig. 2(a).

It is useful to visually consider cost contours for this model,
shown in Fig. 2(b). In general, we are interested in describing the
regions in parameter space with low cost. The model in Eq. (8) is
sloppy, as manifested by its insensitivity to coordinated variations
in some parameter directions. Because of this, the cost contours in
the sloppy directions are elongated and the aspect ratio of the low-
cost canyon around the minimum is very large. Away from the best
fit, many of the cost contours do not close; canyons stretch to the
edges of parameter space and flatten into broad plateaus. Extreme
values of the parameters can have finite, and in many cases, very
small cost. These features are ubiquitous in sloppy models and play
a fundamental role in quantifying the parametric uncertainty.

For models with many parameters, direct visualization of the
cost surface is not possible. However, we have constructed this
toy model to illustrate issues that are typical of high-dimensional
parameter spaces. In Secs. II B–II E, we describe several tools for
analyzing the cost surface of multi-parameter models.

B. Fisher information: Sloppy model analysis
To quantify the local geometry of the cost surface in a

neighborhood of the best fit, we linearize the residuals about θ∗,

rm(θ) ≈ rm(θ∗) +
∂rm

∂θ
(θ − θ∗). (9)

To lowest order, the cost function becomes

C(θ) ≈ C(θ∗) + 1
2
(θ − θ∗)T(JTJ)(θ − θ∗), (10)

FIG. 2. Time series (a) and cost surface (b) for the toy model in Eq. (8). Data are given by the red points in (a), with the error bars set to 30% of the data. Model predictions
for different parameter values and their corresponding points on the cost surface are shown in matching colors. Contours in (b) represent the errors between the model
predictions and data as calculated in Eq. (1).
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FIG. 3. The Fisher information describes the local geometry of the cost surface.
Locally, cost contours are represented by ellipses where the axes are aligned with
the eigenvectors of the FIM. The aspect ratio of the ellipse is given by the square
root of the ratio of the eigenvalues.

where we have used the fact that ∇C = 0 at θ∗ and intro-
duced the Jacobian of the residual function Jmn = ∂rm/∂θn
= −(1/σm)∂f m/∂θn evaluated at θ∗. The squared Jacobian appearing
in Eq. (10) is the Fisher Information Matrix (FIM),

I = JTJ. (11)

The FIM is an important statistical quantity; its inverse is a lower
bound on the covariance of an unbiased estimator of θ, known as
the Cramér–Rao bound.60

The local geometry of the cost surface around the best fit is
described by the FIM, as we illustrate in Fig. 3. Diagonals of the FIM
describe the change in cost to each parameter individually, ignoring
any potential correlations among parameters. Cost contours form
ellipses, aligned with the eigenvectors of the FIM, whose aspect ratio
is given by the square root of the ratio of the eigenvalues. Elongated
directions are parallel to the eigenvectors with small eigenvalues,
indicating that the data carry little information about those para-
meter combinations. These parameter combinations are only weakly
constrained by the data and have large uncertainties in their inferred
values. Projecting these ellipses onto the parameter axes estimates
the uncertainty in each individual parameter, given by the diagonals
of the inverse FIM.

C. Bayesian analysis
The most common UQ methods in molecular modeling use a

Bayesian framework. In Bayesian statistics, the parametric uncer-
tainty is described by a posterior distribution given by Bayes’
theorem,

P(θ∣y)∝ L(θ∣y) × π(θ), (12)

where L(θ∣y) and π(θ) are the likelihood and the prior distribu-
tion of the model’s parameters, respectively.61,62 The likelihood is
functionally the same as the probability distribution of the observed
data conditioned on the different values of the parameters, i.e.,
L(θ∣y) = P(y∣θ). As before, we temper the likelihood with a tunable
“sampling temperature.” In a Bayesian context, this introduction is
motivated by a formal analogy to the Boltzmann distribution.7,63,64

The cost is analogous to the internal energy of a system, so low-
temperature distributions are concentrated near the low-energy
(i.e., low cost) region of parameter space. Formally, the tempera-
ture uniformly scales the tolerances σm in Eq. (2). In our case, the
temperature scales the tolerances to be reflective of the model’s accu-
racy and not just the error in the data itself. Continuing the analogy,
Eq. (12) becomes

P(θ∣y) ∼ exp(−(C(θ) − S(θ)T)/T), (13)

in which the prior is analogous to entropy: S = log π.
We sample from the posterior distribution using an MCMC

algorithm. There are several black-box libraries for MCMC sam-
pling. In this work, we used the ptemcee Python package, which
utilizes an affine invariance property of the sampler.65,66 In addition,
this method generates chains at different temperatures and mixes
them with an appropriate acceptance probability.67 Traditionally,
parallel tempering is utilized as a device to improve convergence
rates by allowing walkers to skip over regions in parameter space
with higher cost values and possibly find different minima (if they
exist).59 Our use of the sampling temperature to estimate the scale
of the model accuracy [see Eq. (5)]. Previous results have shown that
a natural sampling temperature given by T0 = 2C0/N [see Eq. (7)]
gives a good estimate of the systematic errors in the model.4 Thus,
raising the temperature from T = 1 to T = T0 transitions the sam-
pling from the target accuracy to a more realistic estimate of the
actual systematic errors.

For the toy model in Eq. (8) and Fig. 2, data are generated from
the model itself, i.e., there is no bias. In this case, varying the sam-
pling temperature effectively changes the size of the error bars σm in
the model. Of particular interest is how the samplers interact with
the plateaus and canyons of the cost surface as the temperature is
varied.

To assess the convergence, we simulate multiple chains and use
the multivariate potential scale reduction factor (PSRF), denoted by
R̂ p.68–70 The value of R̂ p is related to the ratio of the covariance
between and within the independent chains, given by

R̂ p = n − 1
n
+ m + 1

m
λmax(W−1B/n), (14)

where n and m are the numbers of iterations and chains, respectively,
and λmax(A) denotes the largest eigenvalue of matrix A. B/n and W
are the variance between and within the independent chains, ψj,

B
n
= 1

m − 1

m

∑
j=1
(ψ̄j − ψ̄)(ψ̄ j − ψ̄ )T

W = 1
m(n − 1)

m

∑
j=1

n

∑
t=1
(ψjt − ψ̄j)(ψjt − ψ̄ j)T.

(15)

Note that as n→∞, the value of R̂ p declines to one.68,69 Thus, as
the MCMC samples converge to a stationary distribution, the value
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FIG. 4. MCMC samples of the model
defined by Eq. (8). In the lower left frame,
the samples are plotted on top of the cost
contour. The univariate marginal distri-
butions of the samples are given on
the diagonal. We pick the sampling tem-
perature T = 0.5 to highlight the effect
of sloppiness to the Bayesian sampling,
i.e., parameter evaporation.

of R̂ p approaches one; however, the converse is not necessarily true.
Common thresholds of R̂ p are in the range of 1.1 to 1.05.69 In this
work, we have used the more stringent requirement (R̂ p < 1.05).

To illustrate, we sample the posterior of the model in Eq. (8)
with a uniform prior distribution that is non-zero over (−4, 4).
Figure 4 shows the result of the sampling as an array of plots
that summarize the sample. Along the main diagonal, we plot the
univariate marginal distributions, i.e., projection of the samples’ dis-
tribution onto a parameter axis. In the lower left frame of the array,
we show samples in two-dimensional parameter space. In higher
dimensions, these plots are two-dimensional marginal distributions.
In this example, we have superimposed the samples on top of the
cost contours [compare this to Fig. 2(b)].

In Fig. 4, note that the MCMC samples are located along the
canyon. This is expected as the posterior is large in regions of high
likelihood, i.e., low cost. Thus, the samples accurately conform to
the cost contours and quantify the uncertainty in the parameter esti-
mates. However, by inspecting Fig. 4, we can anticipate a potential
problem when the cost contours have flat, elongated canyons that
extend to extreme parameter values. In this scenario, it will be com-
mon to “evaporate” parameters, i.e., have samples that extend over
the full range of model parameters. Parameter evaporation was first
observed when sampling posterior distributions for sloppy models
in systems biology;50 however, the phenomenon occurs in molecular
models as well, as we document below. The term parameter evapo-
ration continues the analogy to statistical mechanics. In the language
of statistical inference, one would say that the posterior does not
concentrate with respect to the prior and is unidentifiable.

Closely related to the parameter evaporation is the question of
choosing the prior distribution, π(θ), on parameter space. Here, we
have used a uniform prior, a common choice for an uninformative
prior. However, we find the prior can strongly influence the pos-
terior distribution in subtle ways. Even the apparently innocuous
uniform prior can introduce strong biases. Note that in Fig. 4, the
samples stop evaporating due to the boundaries of the prior distri-
bution. Consequently, the marginal distribution of the samples has

a hard cutoff at this boundary. With a broader prior, the posterior
will be even wider, and samples may no longer be concentrated near
the best fit. The long canyons and broad plateaus of the cost sur-
face would dominate the samples. We intuitively explain this effect
in terms of a trade-off between energy and entropy in the sampling
process. While the single most probable parameter value is the best
fit (i.e., ground state), there are many more sub-optimal parameter
values along the canyon. In other words, the broad prior introduces
a large entropy in some regions of the parameter space. For broad
priors, the entropic contribution dominates the sampling.

The effect is clearly demonstrated with a simple example.
Consider a one-dimensional cost function given by

C(θ) =
⎧⎪⎪⎨⎪⎪⎩

C0, θ < l,
C0 + Δ, θ > l,

(16)

where θ is a non-negative parameter and C0, Δ, and l are non-
negative constants. We take a prior π(θ) = U(0, L), i.e., a uniform,
flat prior from zero to a positive value of L. After calculating the
posterior distribution, we find the average cost for this scenario to be

⟨C⟩ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C0, L < l,

C0 + Δ(
L − l

L + l(eΔ/T − 1)
), L > l.

(17)

Note that for very large L (i.e., very broad prior), ⟨C⟩→ C0 + Δ. That
is to say, for a sufficiently broad prior, the posterior distribution is
dominated by bad fits (large cost) because of their large entropic con-
tribution. This result holds for any non-zero sampling temperature
and regardless of how bad the fit is (i.e., the size of Δ).

As we will see in Sec. III, the trade-off between entropy and
energy is even more nuanced for “sloppy” cost landscapes with many
dimensions. Rarely is there an objectively “correct” prior, and any
choice is almost certain to introduce artifacts into the statistics of
the posterior. In these cases, it is unclear to what extent the posterior
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accurately reflects the target uncertainty. One solution is to sample
with multiple priors and temperatures, a computationally expensive
task, and try to assess the effect of prior and sampling temperature
on the results. Because this practice generates multiple posteriors, it
potentially undermines the Bayesian paradigm in which a single pos-
terior summarizes all the information one has about the parameters
of a model. However, we believe that these extra steps are an impor-
tant intermediate analysis in understanding the effect of the prior
on the posterior and necessary for constructing a reliable posterior.
Alternatively, one could use a formalism that does not require an
a priori measure on parameter space. This is the domain of
frequentist statistics, which we discuss next.

D. Frequentist analysis
Although much has been said about the philosophical dif-

ferences between Bayesians and frequentists,71,72 here we use a
functional distinction. The choice of prior in Sec. II C was a cen-
tral question. The prior acts as a measure on parameter space, i.e.,
a weight function whose integral generalizes the concept of lengths
and volumes.73 In the frequentist approach, no such measure exists.
Without a measure on parameter space, we lose the machinery of a
posterior distribution, but we also need fewer mathematical assump-
tions. With no prior, the goal is to describe the set of parameter
values that have small cost (i.e., below some statistically defined
threshold) without attaching any (probabilistic) weight to regions
of parameter space. While there are many frequentist tools avail-
able, we use the profile likelihood.74 To the best of our knowledge,
profile likelihoods have not been previously applied to the study
of interatomic potentials. Importantly, profile likelihoods generate
paths through the parameter space that we will compare with the
geodesic curves generated by the information geometric analysis in
Sec. II E.

The basic idea is to select one parameter, fix it to a constant
value, and globally optimize the likelihood function (i.e., minimize
the cost) over the remaining N − 1 model parameters.74,75 By varying
the value to which the parameter is fixed, we trace out a “profile” of

how the cost depends on this parameter in the context of the rest of
the model. The procedure is best understood through example, as we
now demonstrate on the toy model from Eq. (8) in Fig. 5. As before,
we summarize results with a two-by-two array of figures. Consider
the cost contours in the lower left frame of the plot array. The red
curve is the set of points obtained by fixing θ1 to a constant value and
optimizing the cost over θ2. The optimization searched over vertical
slices of the parameter space for each value of θ1. Similarly, the blue
curve is the set of points found by fixing θ2 and optimizing over hor-
izontal slices, i.e., over θ1. Along the main diagonal, we plot the cost
along each of these profile likelihood paths.

By construction, the profile likelihood paths trace out the
canyon on the cost contour. By comparing the paths and the cost
along the paths, we extract information about how variation of the
parameters affects the variation in the predictions. The paths also
tell us how the parameters correlate with each other. Statistical con-
fidence levels correspond to an allowed error or cost threshold. For a
given confidence level, the uncertainty of an individual parameter is
given by the width of the profile likelihood that has cost values lower
than this cost threshold. This idea is illustrated in Fig. 6 for a simple
Gaussian likelihood function.

To calculate profile likelihoods, we developed a Python pack-
age, profile_likelihood,76 that additionally interfaces with IPs
from the OpenKIM repository at https://openkim.org. We use the
Levenberg–Marquardt algorithm with geodesic acceleration in the
optimization process.77

The profile likelihood analysis method has its own challenges
and limitations. Optimizing multi-dimensional cost functions can
be challenging;8 however, by using the result of the previous opti-
mization as the starting point of each iteration, convergence is
relatively fast and stable. Additionally, the profiling process effec-
tively projects parameter curves onto the parameter axes. As we will
see in Sec. III, if the cost canyon curves or bends over on itself,
it will be missed by the profile likelihood. More broadly, the con-
struction is not invariant to reparameterization. Just as priors may
introduce artifacts in the Bayesian framework, the parameterization
can introduce artifacts into the profile likelihood. To avoid these

FIG. 5. Profile likelihood for the model in
Eq. (8). In the lower left frame, the red
and blue curves show the paths traced
from the profile likelihood computation
for the parameter on the horizontal and
vertical axes, respectively. The cost pro-
files, i.e., the cost along these paths, are
given on the diagonal.
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FIG. 6. Confidence intervals for a Gaus-
sian likelihood at several confidence lev-
els. C1σ and C2σ correspond to the
cost threshold at 68% and 95% con-
fidence levels, respectively. The confi-
dence interval of θ given 68% confidence
level spans from −σ to +σ.

issues, we next use information geometry to study the uncertainty
in a parameterization-independent way.

E. Information geometry
Information geometry is an approach to statistics in which a

multi-parameter model is interpreted as a high-dimensional mani-
fold. We study this manifold using computational differential geom-
etry that allows us to extract the key geometric and topological
features of the model manifold. These features shed light on issues
related to UQ.

As we have seen in Sec. II A, a multi-parameter model makes
a set of predictions for a given evaluation scenario, fm(θ), that we

interpret as a vector in data space. That is to say, the model is a
mapping between parameter space and data space,

f : D ⊆ RN → RM. (18)

Conceptually, the model manifold is constructed by mapping all
possible parameter values to their corresponding predictions in data
space, i.e., the model manifold is the image of parameter space under
the model map, illustrated for the toy model [Eq. (8)] in Fig. 7.

Critically, note that the manifold is bounded by two one-
dimensional segments. We focus on the boundaries of the model
manifold as they are the geometric feature most relevant to para-
meter uncertainty. In parameter space, we have seen that there can

FIG. 7. Model manifold of the toy model in Eq. (8). Each point in parameter space (a) corresponds to a set of predictions in data space (b). The set of all possible predictions
trace out the model manifold. For reference, colored points are the same as those in Fig. 2. The red arrows in parameter space show the eigenvectors of the FIM. Geodesics
(solid and dashed curves) relate manifold structures, such as manifold boundaries, to parameter space.
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be large or infinite uncertainties when cost contours do not close,
i.e., confidence regions extend to the limits of the parameter domain.
Infinite, high-entropy regions of parameter space are mapped to
finite regions near the boundary of the model manifold, and thus,
these contours, i.e., the contours that do not close, are generic when
the model manifold is bounded. Since the cost corresponds to the
distance in data space, the images of cost contours are approxi-
mately concentric circles on the model manifold. Each segment of
the boundary is a manifold of co-dimension one. Associated with
each boundary segment is a parameter or combination of para-
meters that are practically unidentifiable at some level of statistical
confidence.

We use geodesics, i.e., distance minimizing curves, on the
model manifold to find the unidentifiable parameter combination
associated with each boundary segment.40 Geodesics are a natural
extension of the local FIM analysis. As such, the boundaries and
parameter combinations they find identify the global sloppiness of
the model. Geodesics traverse the low cost regions in parameter
space to find unidentifiable parameter combinations—those whose
uncertainty will be large—which can be removed to reduce the
complexity and sloppiness of the model.

We approximate geodesics curves along the model manifold by
numerically solving the geodesic equation,

∂2θi

∂τ2 = −∑
j,k
Γi

jk
∂θj

∂τ
∂θk

∂τ
, (19)

where

Γi
jk =∑

l,m
(I −1)il ∂ym

∂θl
∂2ym

∂θj∂θk (20)

are the so-called Christoffel symbols, I is the FIM, θ are the para-
meters, and τ is the arc length of the geodesic along the model
manifold. We numerically solve for the path of the geodesic by
treating this equation as an initial value problem where the ini-
tial position is given by the nominal parameter values. The initial
direction is given by a few of the sloppiest eigenvectors. We pro-
vide a simple example script for calculating geodesics on GitHub.78

To illustrate this, we again turn to the toy model in Eq. (8). Figure 7
shows two geodesics that pass through the best fit point on the model
manifold, the solid and dashed curves in both parameter space (a)
and on the model manifold (b). Note how the geodesics rotate in
parameter space to naturally follow the cost contours and align with
the unidentifiable parameters. As the geodesic curves approach the
edge of the model manifold, we see that either θ1 → 0 or θ2 → 0.
From the correspondence between the parameter space picture and
the data space picture, we deduce that the upper boundary segment
on the model manifold corresponds to θ1 → 0, while the lower seg-
ment corresponds to θ2 → 0. These limiting values indicate which
combinations of parameters are unidentifiable and have unbounded
uncertainties. We often calculate several geodesics emanating from
the nominal parameter values in several of the sloppiest eigenvectors
of the FIM. These geodesics will help us identify the least identifiable
parameter (combinations) in the model.

In this simple example, the two boundary segments are already
aligned with the parameters of the model. In more realistic models,

boundary segments often correspond to the coordinated combi-
nations of bare parameters. In these cases, we will use geodesics
to identify the correlation and find a more natural, identifiable
reparameterization.

F. Interatomic potentials and tests
In this study, we apply the methods described in Secs. II B–II E

to empirical IPs taken from the OpenKIM repository.12,79 The
OpenKIM framework has a standardized collection of models, data,
and tests for computing materials properties that make the UQ pro-
cess reproducible and transferable. For this study, we chose the
Lennard-Jones (LJ) and Morse potentials parameterized for silicon
and nickel, respectively, to validate methods and demonstrate gen-
eral principles on low-dimensional models.80 We then extend the
investigation to the molybdenum disulfide (MoS2) system using the
more complex Stillinger–Weber (SW) potential.2

These potentials are categorized as cluster potentials. Given a
system with N atoms, the total potential energy, V, is

V =
N

∑
i, j=1

i<j

ϕ2(ri, rj) +
N

∑
i,j, k=1
i<j<k

ϕ3(ri, rj, rk) + ⋅ ⋅ ⋅ , (21)

where ϕn denotes the n-body potential function and ri is the position
of atom i.

The Lennard-Jones (LJ) potential is a pair potential, i.e.,
Eq. (21) only consists of the two-body (pair-wise) interaction term,
and the higher order potential functions are set to zero. The
pair-wise interaction has two parameters, given by

ϕLJ(rij) = 4ϵ
⎛
⎝
( σ

rij
)

12

− ( σ
rij
)

6⎞
⎠
+ Δ,

Δ = −4ϵ(( σ
rcut
)

12
− ( σ

rcut
)

6
),

(22)

where rij = ∥ri − rj∥ is the distance between atoms i and j. The poten-
tial is only non-zero when rij < rcut = 7.911 18 Å. The parameter ϵ is
an energy scaling factor in the potential, while σ is related to the
equilibrium distance of the pair interaction. The shifting factor, Δ, is
chosen so that the potential is continuous at rcut.81–84

The Morse potential is also a pair potential, similar to the LJ
potential. The pair-wise interaction with three parameters is given by

ϕM(rij) = ϵ(−e−2C(rij−r0) + 2e−C(rij−r0)) + Δ,

Δ = −ϵ(−e−2C(rcut−r0) + 2e−C(rcut−r0)),
(23)

where ϵ is an energy scaling factor, r0 is the equilibrium distance,
and C controls the width of the potential well. Again, the potential is
only non-zero when rij < rcut = 9.754 76 Å and Δ is chosen such that
the potential is continuous at rcut.85,86

We use these pair potentials to predict the unrelaxed energy and
forces of silicon (LJ potential) and nickel (Morse potential) atoms in
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an evaluation scenario comprised of a randomly perturbed body-
centered triclinic configuration with periodic boundary conditions.
The lattice parameters are given as follows:87,88

a = 3.128 752 5 Å, α = 87.253 180 549 684 44○,

b = 3.151 46 Å, β = 93.340 747 774 135 02○,

c = 3.131 210 44 Å, γ = 91.231 344 620 111 88○.

We also use a random triclinic configuration with 64 silicon atoms89

with several other cluster potentials in a broader survey of the Fisher
information. We generate artificial data for both of these models
using the default parameter values reported in OpenKIM. We cal-
culate the energy and forces evaluated at the default parameters
and add 10% Gaussian noise (for forces, we use 10% of the mag-
nitude of the force vector). The introduction of the noise in the data
results in new sets of best fit parameters, which for the LJ poten-
tial are ϵ = 3.345 459 22 eV and σ = 1.981 715 08 Å, while for the
Morse potential are ϵ = −0.243 660 83 eV, C = 0.655 085 52 Å−1, and
r0 = 4.487 043 15 Å. Note that the default parameter values were
found by fitting to experimental data.90,91 Because these original
training data were not generated by the model, the parameter val-
ues reflect some model inadequacy. We will later explore how the
parameter uncertainty responds to the scale of model inadequacy by
tempering this likelihood for a range of sampling temperatures.

Note that these structures are not the ground states for silicon
or nickel, but they are tests available in OpenKIM that are conve-
nient for validating methods on low-dimensional models. We will
see that they clearly illustrate the problems that the sloppiness of
the model brings to the standard UQ methods and the phenomena
that we will discuss later are generic, at some confidence level, to any
atomic configuration used.

We extend the analysis to the Stillinger–Weber (SW) potential
for monolayer MoS2,2,92,93 which contains both two-body and three-
body interactions. The two-body interaction takes the form

ϕIJ
2 (rij) =AIJ(BIJ(

σIJ

rij
)

pIJ

− (σIJ

rij
)

qIJ

) exp( σIJ

rij − rcut
IJ
), (24)

where uppercase subscripts denote the types of atoms, e.g., AIJ is the
parameter A corresponding to interaction between atoms of type I
and type J. The three-body term is given by

ϕIJK
3 (rij, rik,βjik) = λJIK(cosβjik − cos β0

JIK)
2

× exp( γIJ

rij − rcut
IJ
+ γIK

rik − rcut
IK
), (25)

with βjik being the angle between the i–j and i–k bonds.
We calibrate this potential to DFT data of the atomic forces in

configurations near the equilibrium state at 750 K, as described in
Ref. 2. Since the data are not generated from the IP, they contain
bias and we will temper the likelihood over a range of temperatures
to account for it. Our formulation follows closely that of the orig-
inal paper (e.g., we set qIJ = 0, fix γ to be the same for all types of
interaction, and use the same training set); however, we make a few

TABLE I. Fitted parameters of the two-body term in the SW potential for MoS2.

Interaction

Parameter Mo–Mo Mo–S S–S

A (eV) 18.431 006 0 8.838 613 05 0.374 633 96
B 0.006 417 86 1.047 936 03 561.429 270
p 4.737 178 13 8.266 217 44 2.661 969 13
σ (Å) 6.169 404 54 1.929 679 91 0.419 048 14

TABLE II. Fitted parameters of the three-body term in the SW potential for MoS2.

Parameter Value

λS–Mo–S (eV) 4.287 840 76
λMo–S–Mo (eV) 14.428 502 6
γ (Å) 1.538 005 00

changes. First, we allow parameters pIJ to take any positive real value
and remove the relation between σIJ and the equilibrium lattice con-
stants of the system. We also do not require dϕ2/dr∣r=d = 0 at the
equilibrium bond length d, which removes the constraint on BIJ . The
remaining free parameters are AIJ , BIJ , pIJ , and σIJ for each type of
pair-wise interaction (Mo–Mo, Mo–S and S–S interactions), λIJK for
S–Mo–S and Mo–S–Mo interactions, and γ.

We again choose error tolerances to be 10% of predicted val-
ues. Note that this leads to non-uniform weighting factors in our
cost function, unlike Ref. 2. Fitting this model leads to a new set of
optimal parameter values listed in Table I for the two-body interac-
tion term and Table II for the three-body interaction term.94 Other
parameters that are not listed in these tables take the same values
as listed in Ref. 2, such as the cutoff radii and the reference bond
angle. The cost at the best fit is 1.390 × 106. Because the fitting data
are forces near equilibrium, the error bars are very small (leading
to a large cost) with larger weight on configurations near equilib-
rium. However, in our Bayesian analysis, we sample the posterior
at many temperatures, effectively scaling these small error bars up
to something more reasonable. The process provides a systematic
study of the role of error bars in quantifying parametric uncertainty
in sloppy, molecular models.

After the calibration process, we propagate the parametric
uncertainty of this potential in a second evaluation scenario to pre-
dict the uncertainty of the change in energy as a response to the
lattice stretching and compression. This calculation is done by cre-
ating MoS2 unit cells with various in-plane lattice constants a and
then relaxing the atoms in the perpendicular, out-of-plane, direc-
tion. We probe the calculation in the range (a − a0) ∈ [−0.5, 0.5] Å,
where a0 is the equilibrium lattice constant. Then, we compare the
uncertainty to the result in Ref. 2 qualitatively.

III. RESULTS
Figure 8 shows the eigenvalues of the FIM for the models in

Sec. II F, evaluated at the nominal values of the parameters. We
use these models to perform energy and forces calculations, as the
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FIG. 8. Eigenvalues of the FIM for various IPs: (a) LJ for Si, (b) Morse for Ni, (c)
SW for MoS2, and (d) Khor–Das Sarma, (e) EDIP, and (f) SW, each for Si. For
each model, the larger (smaller) eigenvalues represent stiff (sloppy) parameter
combinations in the direction of their respective eigenvectors.

FIG. 9. Participation factor of the SW potential for MoS2, calculated as the element-
wise square of the eigenvectors of the FIM. Each column corresponds to an
eigenvector, increasing in stiffness from left to right. The participation factor shows
how much each parameter contributes to each eigenvector. The parameter direc-
tion is given by the logarithm of the labels on the vertical axis. The sloppiest
eigenvector (the left most column) is mostly in the log(BS–S) direction.

first evaluation scenario, as explained in Sec. II F. Note that they
are sloppy; the eigenvalues cover many orders of magnitude, indi-
cating that many parameters are unidentifiable from the data. To
illustrate that sloppiness is a general property of IPs, we also include
the eigenvalues of the FIM, evaluated at the fitted parameters, for the
Khor–Das Sarma potential95,96 (three-body potential), Environment
Dependent Interatomic Potential (EDIP)97–99 (bond-order poten-
tial), and the original SW potential for silicon100–103 in predicting
the energy and forces of the atoms in a random triclinic silicon

FIG. 10. MCMC samples for the LJ potential, sampled in (a) linear and (b) log parameter scales, at sampling temperature T = 21.5. The original parameterization of the
potential is given by the red dot. The samples are plotted against the cost contour on the lower left frame on each figure, with samples condensed around the low cost
canyon. The marginal distributions are shown on the diagonal for each figure.
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FIG. 11. Comparison of the marginal distributions for the MCMC simulations sampled in linear (blue) and log (orange) parameter scales. A uniform prior was used in both
cases. Differences in the posterior distributions reflect the role of parameter scaling and choice of prior.

configuration88,89 (the original parameters for these potentials can
be found in OpenKIM104–106). Figure 9 shows the participation
factor107,108 for the SW MoS2 model, i.e., how much each parameter
contributes to each eigenvector. Participation factors are calculated
as the element-wise square of the eigenvectors of the FIM. We con-
clude that the sloppiest direction, indicated by the eigenvector with
the smallest eigenvalue, is dominated by the parameter BS–S. Simi-
larly, we can read off the participation factors of each parameter in
the other eigendirections.

The FIM is a local calculation and computationally inexpensive
compared to other methods discussed here. As a result, we recom-
mend using the FIM as an initial step to UQ. We will revisit the

results from the FIM when we extend the analysis and compare the
results to more global methods.

We now consider the results of the Bayesian analysis for the LJ
potential. Bayesian analysis requires a prior and a common choice
by molecular modelers is the uniform prior. Figure 10 shows these
results sampled for uniform on both the linear [Fig. 10(a)] and
log scales [Fig. 10(b)]. In both cases, we use a uniform prior in
their respective parameter space, bounded by a rectangular region
defined by 0 < ϵ < 30 and 0 < σ < 2−1/6rcut in linear parameter space
and ∣log(ϵ)∣ < log(30) and ∣log(σ)∣ < log(2−1/6rcut) in log parameter
space. The upper bound of σ is chosen so that the pair-wise equilib-
rium length is less than the cutoff distance. Although both priors

FIG. 12. MCMC samples and profile likelihood for the (a) LJ and (b) Morse potentials at sampling temperatures T = 21.5 and T = 10.0, respectively. We plot the cost surface
for LJ because it only contains two parameters; in general, it is not possible to plot the cost surface, e.g., for Morse. On the lower triangle frames, the MCMC samples
are plotted as the black points, while the red and blue curves show the profile likelihood paths for the parameters on the horizontal and vertical axes, respectively. On the
diagonal, we superimpose the cost profiles (red curves) on top of the marginal distribution of the MCMC samples. These plots show qualitative agreement between the two
methods for low-dimensional models. MCMC samples are concentrated around the profile likelihood paths, indicating that the sampling is energy-dominated, and there are
no significant artifacts from the choice of prior. However, there are signs of large entropy regions that could dominate the sampling at higher temperatures, e.g., evaporation
at large negative values of log(r0).
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are uniform and correspond to approximately the same range, they
distribute prior probability weight differently and lead to different
posterior distributions. At first glance, the sampling is in good agree-
ment with what is expected from the cost surface. Samples dominate
the regions of low cost and give a visual validation that the sam-
ples are converged. Figure 11 compares the marginal distributions
for each parameter on both linear and log scales. Note how the
parameter scaling and, by extension, the choice of prior can have
a strong impact on the posterior distribution. On a log scale, there is
a broad, flat plateau for large, negative values of log(σ) and log(ϵ).
These choices affect how the uncertainties are interpreted and even-
tually propagated to new predictions. This example illustrates the
nuanced relationship between parameterization and prior selection.
These effects can be much more severe and harder to tease out in
high-dimensional parameter spaces.

In more general terms, recall that the prior defines how one
measures volume in parameter space. Regions of the parameter
space with large volume may dominate samples, in analogy to statis-
tical mechanics in which high-entropy configurations can dominate
an ensemble. It is also related to (though not exactly the same as)
the phenomenon known as Lindley’s paradox in which Bayesian
and frequentist approaches can give different results in a hypothesis
test when a broad prior is used.109 This issue can become espe-
cially subtle for sloppy models in high dimensions. These models are

insensitive to coordinated changes in many parameters, indicating
that there are large regions of parameter space with nearly identi-
cal fits, i.e., fits with high-entropy contributions to the posterior. In
these cases, large entropic contributions may dominate their relative
frequency in the posterior. The high dimensionality makes it diffi-
cult to quantify the role of the energy vs entropy in the final sample
and, by extension, justify the choice of prior.

For high-dimensional sloppy models, it is instructive to com-
pare the results of the Bayesian and frequentist techniques, as done
in Fig. 12 for the LJ and Morse potentials. For the Morse poten-
tial, we also use a uniform prior, bounded by ∣log(r0)∣ < log(rcut),
∣log(C)∣ < log(30), and ∣log(−ϵ)∣ < log(30). These cases illustrate
how the two methods agree in low-dimensional examples that are
well-understood. Note that the samples are very dense in regions
around the paths of the profile likelihood, indicating that the poste-
rior is energy-dominated and that there are not significant artifacts
from the prior. Furthermore, the marginal distributions of each
parameter are congruous with the profile likelihoods (main diago-
nal). However, there are hints of large-entropy regions that could
become significant at higher sampling temperatures, for example,
samples evaporating on the sub-optimal region at large negative
values of log(r0).

We now turn to the SW model in Fig. 13. We set the prior
distribution to be uniform in a rectangular region, defined by

FIG. 13. MCMC samples and profile like-
lihood for parameters A and B of the S–S
interaction in the SW MoS2 potential with
a uniform prior in log parameter space
at sampling temperatures: (a) T = 5.40
× 10−3T0, (b) T = 5.40 × 10−2T0, (c)
T = 5.40 × 10−1T0, and (d) T = 5.40T0,
where T0 is a natural temperature. Note
that different parameter combinations
evaporate at different temperatures, e.g.,
AS–S and BS–S evaporate at lower tem-
perature in a coordinated way (b), while
they evaporate in all directions at higher
temperature (c) and (d).
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∣log(θi)∣ < 24, where θi are the parameters in this potential.
Figure 13 summarizes a Bayesian sampling at four temperatures
for parameters AS–S and BS–S (T = 5.40 × 10−3T0, 5.40 × 10−2 T0,
5.40 × 10−1T0, 5.40T0, where T0 ≈ 1.85 × 105 is the natural temper-
ature). The sampling results at other sampling temperatures for the
other parameters can be found in the supplementary material.

At low temperatures, the profile likelihoods again agree with
the Bayesian sampling. Next, we increase the sampling tempera-
ture. Recall that the temperature uniformly scales the error bars
in Eq. (2). As the temperature rises, the uncertainty estimates in
the parameters also increase; however, it does not increase uni-
formly in each of the parameters. At some critical temperatures,
the uncertainty in a particular parameter abruptly transitions to
infinity. For example, note that, from the spread of the sam-
ples, the uncertainties in the parameters AS–S and BS–S are rela-
tively small at T = 5.40 × 10−3T0 but become effectively infinite at
T = 5.40 × 10−1T0. The posterior has transitioned from a distri-
bution of low-temperature, energy-dominated samples to high-
temperature, entropy-dominated samples. The higher sampling
temperature has “evaporated” the parameter. We discuss this further
in Sec. IV.

For the next step of UQ for this model, we propagate the
parametric uncertainty and calculate the uncertainty of the change
in energy as a response to lattice stretching and compression.110

Figure 14 shows the uncertainty of this quantity of interest, calcu-
lated at several different sampling temperatures using the ensembles
in Fig. 13. Note that at lower sampling temperatures, such as at
T = 5.40 × 10−3T0 (blue), the uncertainties of the predicted quan-
tities are finite. Moreover, the uncertainty in the tension domain
(a > a0) matches the distribution of predicted quantities from
various models in Ref. 2. However, at higher temperatures, the
uncertainties diverge as the MoS2 sheet is compressed.

FIG. 14. Propagated uncertainty of changes in energy as a function of lattice
stretching and compression. The parameters a0 and Ec are the equilibrium lat-
tice constant and cohesive energy, respectively. The uncertainty of this quantity is
calculated at several different temperatures from the ensembles in Fig. 13. Note
that the uncertainty of the energy at higher temperature diverges to infinity. This
is a result of parameter evaporation, where the evaporated parameters predict
infinite energy.

At higher temperatures, some of the MCMC walkers sample
regions with extreme values of parameters, near the edge of the sup-
port of the prior. These evaporated samples represent interactions
with a very strong repulsive force in the compression domain. The
magnitude of the energy grows very fast as the lattice is compressed.
Consequently, the uncertainty of the energy in this domain diverges.
Furthermore, we are unable to propagate the uncertainty from the
T = 5.40T0 samples. The ensemble at this temperature contains
many samples representing extreme potentials, e.g., a semi-infinite
square-well potential.

The phenomenon of parameter evaporation illustrated in
Fig. 13 has been observed previously.50 When a parameter evapo-
rates, its marginal posterior distribution approaches its prior. Evap-
orated parameters do not participate in the statistics of the model;
they do not encode any information in the data and do not constrain
future predictions. In other words, the effective dimensionality of
the model is reduced by the number of evaporated parameters.
However, evaporated parameters affect statistical methods, slowing
down convergence in both MCMC sampling and profile likelihood
optimization. They also obscure interpretation since the evapo-
rated parameters are often combinations of the bare parameters.
Performing UQ with these “nuisance” parameters is challenging.

Parameter evaporation is a global manifestation of the
“sloppiness” phenomenon. Sloppiness was first recognized as the
exponential distribution of FIM eigenvalues, as in Fig. 8, as a local
property. However, it was later shown using information geome-
try that sloppiness is a global property of the model and evaluation
scenario. For sloppy models, the entire model manifold is systemat-
ically compressed into an object of low effective dimensionality, and
in many practical cases, the eigenvalues of the FIM (local property)
are a good estimate for the widths of the model manifold (global
property).8,41–44 We check this correspondence for the case of the
SW IP by comparing the eigenvalues in Fig. 8 with the number of
effective (non-evaporated) parameters in the model at each sampling
temperature. We consider a parameter “evaporated” if the samples
approach a boundary of the prior corresponding to this parameter.

FIG. 15. Relation between sampling temperature and the effective dimensionality,
obtained from the local (FIM) and global (MCMC) estimates. The effective dimen-
sionality from the MCMC samples is the number of non-evaporated parameters at
a given temperature. The local estimate is the number of eigenvalues of the Fisher
information larger than a given temperature.
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Although, in general, there is a subtle difference between the evap-
orated and the non-evaporated parameters, the temperature ladder
we use is sparse enough that there is a clear distinction between the
two. We show the comparison between the local estimate and the
result deduced from MCMC in Fig. 15, and we find good agreement.

Sloppiness in high dimensions leads to cost contours that do
not close and complicates the question of prior selection and the role
of parameter-space entropy in the Bayesian posteriors. We now use
information geometry to better understand this phenomenon, first
using the LJ model as a motivating example.

Figure 16 shows four geodesics paths in parameter space radi-
ating from the best fit. Although difficult to discern from this figure,
the geodesics that found boundaries took the same asymptotic form:
log(ϵ)→∞, log(σ)→ −∞, with log(ϵ) diverging six times faster
than log(σ). The significance of this result is more apparent when
expressed in the so-called AB form with A = 4ϵσ12 and B = 4ϵσ6. As
the original parameters, ϵ and σ, approach the boundary, they are
correlated such that A→ 0 while B remains finite. This suggests that
the AB parameterization is a more natural parameterization, which
from Eq. (22) gives

ϕLJ(rij) = 4ϵ
⎛
⎝
σ12⎛
⎝

1
r12

ij
− 1

r12
cut

⎞
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− 1
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For this fitting problem, B is the identifiable parameter com-
bination. There is a natural limit that removes the unidentifiable
parameter, A→ 0, that leads to a physically interpretable reduced
model, i.e., a purely attractive potential. Although this reduced
model loses the physics of the repulsive part of the potential, the
data to which the model was fit included atomic configurations

FIG. 16. Geodesics for the LJ potential in the sloppy and stiff directions. Each
geodesic starts at the best fit parameters and moves in the forward and backward
directions of the sloppy and stiff eigenvectors of the FIM, shown by the correspond-
ing arrows. By considering the difference in the scaling of the parameter axes, the
eigenvectors are orthogonal to each other.

that only probed the attractive regime. In the case when the data
only probe the repulsive regime, A becomes the identifiable para-
meter, and removing the unidentifiable parameter (B→ 0) will lead
to a purely repulsive potential, instead. This behavior is illustrated
in Fig. 17. Thus, the geometry (1) reflects the information content
of the data, (2) explains the correlations among the inferred para-
meters, (3) isolates unidentifiable combinations of parameters, and
(4) suggests reduced models for simplifying the statistics.

An analogous calculation on the Morse potential reveals many
of the same themes. We find the geodesic initially aligned with the
sloppiest eigenvector of the FIM eventually approaches a bound-
ary in which C → 0 and ϵ→ −∞, as seen in Fig. 18. Note that this
geodesic aligns with the MCMC results, i.e., the low-cost canyon. As

FIG. 17. Cost surface of the LJ potentials with data that probe the (a) attractive, (b) repulsive, and (c) both regimes. When only the data in the attractive (repulsive) regime
are used, parameter A (B), which corresponds to repulsive (attractive) interaction in the LJ potential, is unidentifiable. This is shown by the direction of the low cost canyon
in (a) and (b). When the data probe both regimes, these canyons are raised and parameters A and B become more identifiable. However, note that the plateau extending
to {ϵ, σ}→ 0 direction exists in all cases, which shows that there is a fundamental limitation in the LJ potential in predicting energy and forces.
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FIG. 18. Geodesic in the sloppiest direc-
tion for the Morse potential. Geodesics
(blue curves) are shown with the MCMC
samples (black points) to illustrate that
the geodesics follow the same low cost
canyons as MCMC. These geodesics
reveal specific parameter limits leading
to boundaries of the model manifold,
e.g., C → 0 as ϵ→ −∞.

FIG. 19. Geodesics in the sloppiest
direction for the SW model. Geodesics
(blue curves) are plotted with MCMC
results at sampling temperatures of
5.40 × 10−3 T0 (orange points) and
5.40 × 10−2 T0 (black points). Axis
scaling is set to show detail, not to reflect
the boundaries of the uniform prior. The
geodesic started in the local sloppy
direction defined by the FIM, B→ 0 as
σS–S →∞. Eventually, the geodesic
turned to find the boundary given by the
limit AS–S → 0 as BS–S →∞.
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with LJ, this geodesic suggests a natural reparameterization of the
model,

k = −2ϵC2. (27)

As ϵ and C approach extreme values, the specific combination k
remains finite. In this parameterization, k and r0 are the identifiable
parameter combinations, while C is unidentifiable since the geodesic
approaches the boundary given by C → 0. Evaluating the limit C → 0
at constant k and r0 leads to the simplified model,

ϕ̃M(rij) =
1
2

k(rij − r0)2 − 1
2

k(rcut − r0)2. (28)

In this limit, the model is a simple harmonic potential parameterized
by an equilibrium position, r0, and a stiffness, k. This indicates that
the configurations do not carry enough information about the IP’s
anharmonicity to constrain those parameter combinations. Once
again, the geometry reflects the information content of the data,
explains observed correlations, isolates the unidentifiable combi-
nations, and suggests alternative parameterizations and simplified
models.

We now consider the SW potential. As before, we calculate a
geodesic in the sloppiest direction and find that it encounters the
boundary AS–S → 0 and BS–S →∞, as shown in Fig. 19. Again, we
reparameterize the model,

θ = AS–SBS–S. (29)

Both AS–S and BS–S are unidentifiable parameters, but there is
an identifiable combination given by θ = AS–SBS–S. Note that as
AS–S → 0 at constant θ, BS–S →∞, consistent with the evaporation
in Fig. 19. Furthermore, considering AS–S, 1/BS–S → 0 at constant θ
leads to the reduced form

ϕ̃S–S
2 (rij) = θ(

σ
rij
)

p

exp( σ
rij − rcut ). (30)

Figure 20 shows the plots of the two-body S–S interaction term
for both the original and reduced models. In addition to having
fewer identifiable parameters, reduced models include the physics
that is informed by the data. In this case, details about the repulsive
core were removed at the boundary, resulting in a stronger repul-
sion at short distances that were not constrained by the fit. This
example illustrates that reduced order models change the nature
of the physics that is encoded in the potential. While the simple
model may be just as accurate as the original model on the training
data, it may be less accurate for downstream applications. Additional
work is needed to develop these information geometric insights into
concrete tools for selecting and developing interatomic potentials
for target applications. Alternatively, by identifying the short-range
interactions as the missing information in the training set, informa-
tion geometry can potentially guide the extension of training data to
constrain relevant parameter combinations.

It is interesting to compare the geodesic to the purely local anal-
ysis of the Fisher information. The initial direction of the geodesic
is given by the sloppiest eigendirection of the Fisher information.
That eigendirection, as can be seen in Fig. 9, is dominated by the
parameters BS–S and σS–S. Initially, the geodesic decreases BS–S and
increases σS–S; however, as σS–S increases, it plays a more important

FIG. 20. Reduced models on the boundaries have fewer identifiable parameters
and abstract away irrelevant aspects of the physics. Geodesics identified the
boundary defined by the coordinated limit AS–S → 0, BS–S →∞. This figure com-
pares the forms of the original and reduced two-body SW potentials for the S–S
interaction. This reduction abstracts away details about the repulsive core of the
potential.

role in the model. It is no longer part of the sloppy combination,
so the geodesic rotates to align with AS–S and BS–S, the parameters
that eventually participate in the boundary (see Fig. 19). This simple
comparison illustrates how the geodesic naturally extends the local
analysis.

IV. DISCUSSION
Sloppy models are often identified by their characteristic FIM

spectra with eigenvalues spanning many orders of magnitude.8,9,38,39

Previous work has noted sloppiness in many contexts,9,37,42,45–48

including IPs,3,4,51 and our results corroborate this conclusion (see
Fig. 8). Subsequent work using information geometry showed slop-
piness to be a consequence of global properties of the model,
specifically that the model manifold is bounded with a hierarchy of
widths.8 In this work, we have extended the local sloppy model anal-
ysis using (Bayesian) MCMC and (frequentist) profile likelihoods.
Each of these methods gives a unique perspective on the “global
sloppiness” of the model. For example, MCMC samples evaporate
sloppy parameters, and cost profiles have flat plateaus resulting in
diverging uncertainties. We connect these traditional statistical tools
to sloppy model analysis using information geometry and geodesics.
We show that the problems associated with both of these methods
are features of the same underlying phenomena, sloppiness in the
form of bounded model manifolds. We now discuss each of these
observations in more detail.

Figure 10 illustrates that cost contours of sloppy models have
broad plateaus in parameter space. These regions can be thought of
as high-entropy states, i.e., large volumes of parameter space with
approximately equal cost. Although these regions may have sub-
optimal cost, they can dominate the Bayesian posterior because of
their high entropy. Previous work in sloppy models has noted this
“parameter evaporation” phenomenon when the posterior becomes
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dominated by sub-optimal, high-entropy samples.50 Geometrically,
the model maps these high-entropy regions to compressed areas
near the boundaries of the model manifold. Parameter evaporation
is thus the Bayesian manifestation of sloppiness that is a conse-
quence of model boundaries. As such, it is a nonlinear effect and
distinct from other well-documented statistical phenomena related
to high dimension.

Model boundaries have different distances from the data. This
implies that the height of the cost plateau varies in each parameter
direction. Consequently, specific parameters evaporate at different
sampling temperatures. This is analogous to particles in a classi-
cal finite potential well; only those particles (MCMC walkers) with
high enough energy can escape the well (cost surface). Figure 13
shows that different parameter combinations evaporate at differ-
ent temperatures. Indeed, previous studies in IPs have lowered the
sampling temperature specifically to avoid parameter evaporation.3,4

However, for a sufficiently broad prior, parameters evaporate at
any non-zero temperature, although the evaporation time may
be very long for large cost barriers, making it difficult to assess
convergence.

Figure 15 reports the number of evaporated parameters for
different sampling temperatures for our SW potential. Note that
the number of identifiable parameter combinations, i.e., non-
evaporated at a given temperature, correlates with the number of
eigenvalues above that temperature. Elsewhere, it has been shown
that the eigenvalues of the FIM are a good approximation for the
widths of the model manifold.8,41 Since the sampling temperature
corresponds to a distance in data space, Fig. 15 confirms that the
eigenvalues are a reasonable (local) approximation for the widths of
the model manifold of IPs.

Most of the challenges associated with formulating and per-
forming a Bayesian analysis of a sloppy IP result from the interplay
of entropy and energy in the posterior. Recall that the Bayesian prior
acts as a measure on the parameter space (see Sec. II D), i.e., it quan-
tifies the entropy associated with volumes of parameter space. The
ambiguity in the choice of prior leads to the issues we report here.
We advocate comparing MCMC with a frequentist method to assess
the effect the prior has on the posterior, as we have done using profile
likelihoods.

The profile likelihood analysis, being a frequentist method,
does not use a prior. As such, global sloppiness manifests itself differ-
ently. The cost profiles exhibit plateaus that asymptotically approach
constant values, as seen in Figs. 12 and 13. Uncertainty in a para-
meter is set by selecting a level of statistical significance, e.g., 95%
confidence interval, and identifying those parameter values with cost
less than the corresponding cost threshold. As the cost threshold
approaches that of the plateau, the uncertainty diverges. This leads
to uncertainty metrics that are very sensitive to the level of statisti-
cal significance, making it difficult to draw conclusions from the UQ
analysis.

Another complication due to sloppiness is related to parameter
correlations. Sloppy canyons and plateaus do not naturally align
with the parameter axes due to correlations in the parameters. These
correlations can bend sloppy canyons, as seen in Fig. 12(a) for LJ. As
the profile likelihood projects bending canyons onto parameter axes,
correlation is lost and the results are misleading. Using a more natu-
ral parameterization, motivated by information geometry, weakens

parameter correlations and unwinds the canyons asymptotically
aligning them with the parameter axes.

Geodesics extend the local FIM analysis to a global regime. For
example, consider Fig. 19. The geodesic initially pointed in the slop-
piest direction, as indicated by the FIM, but changed directions to
follow the global sloppiness as it approached the manifold bound-
ary. This behavior is due to non-linearity in the model and is known
as parameter-effects curvature.111

The global nature of geodesics is used to find boundaries of the
model manifold, revealing the cost plateaus and suggesting natu-
ral parameterizations of the model. Again, consider Fig. 19 where
the geodesics found the manifold boundary represented by the
parameter limits AS–S → 0 and BS–S →∞. This limit demonstrates
a more natural parameterization of the model with parameters
ϵ = 1/BS–S and θ = AS–SBS–S, where ϵ is strictly non-negative. In this
parameterization, only one parameter participates in the boundary,
i.e., ϵ→ 0 while θ ∼ O(1). The sloppy direction aligns with a sin-
gle parameter ϵ that is (mostly) uncorrelated from θ. Furthermore,
rather than a diverging confidence interval for BS–S, the confidence
intervals for ϵ and θ remain finite.

This new parameterization suggests a simplified model in
which ϵ has been removed. The Manifold Boundary Approximation
Method (MBAM) is a tool that utilizes information geometry to find
these boundary limits and construct reduced models. In this spe-
cific example, the reduced model would correspond to ϵ→ 0 while
holding θ ∼ O(1). This limit removes the sloppy parameter from
the model, leaving the identifiable combination, θ = AS–SBS–S. Per-
forming MBAM before UQ, i.e., finding less-sloppy models, would
remove the challenges we have discussed. In this paper, we have per-
formed the first step of MBAM by using geodesics to find manifold
boundaries.

Reduced models often do not transfer well to new predictive
regimes. However, they make new predictions with higher levels of
certainty. When the large parametric uncertainties of sloppy models
are propagated to new predictions, the resulting uncertainties can
be large or infinite. Reducing the sloppiness of models decreases
parametric uncertainty as well as the propagated uncertainty in
new predictive regimes. Future work will continue this process and
perform UQ on reduced models.

We have shown that sloppy models lead to ill-posed UQ prob-
lems. For Bayesians, the challenge is how to unambiguously select
a prior that does not lead to large-entropy contributions in the
posterior. For frequentists, the challenge is sensitivity to the confi-
dence level and plateaus that do not naturally align with the bare
parameters (i.e., occur due to correlations among parameters). By
identifying the root cause of these problems, we hope this work will
lead to more transparency in the future UQ studies for IPs. In par-
ticular, information geometry suggests solutions to these issues by
identifying natural parameterizations near boundaries that provide
simplified, less-sloppy models.

In conclusion, we provide suggestions both for model develop-
ers and UQ practitioners alike. For developers of empirical poten-
tials, we recommend using the FIM to assess how parameters locally
affect calculated quantities. To extend this analysis to a global
regime, we recommend using geodesics to identify more natural
parameterizations as well as additional training data that are needed
to identify model parameters. For example, geodesic calculations for
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the LJ potential above identified that the training data only con-
tained information about the attractive part of the potential. To
fully identify the LJ parameters, additional data that probe the repul-
sive regime are needed. Alternatively, unidentifiable parameters may
be removed. Using these geodesics to reduce the model with an
MBAM step will decrease model sloppiness and improve future UQ.
This process can then be iterated starting from the reduced model
until a simple, yet accurate model is attained. However, caution
must be used as these parameters may be relevant for downstream
applications. Future work may focus on how to selectively remove
parameters for target applications.

For performing UQ of IPs, we recommend starting with the
FIM analysis to assess the sloppiness of the model. This analysis
also provides a local estimate of which parameters evaporate at a
given sampling temperature. If performing UQ with MCMC, we rec-
ommend using several different sampling temperatures, including
the natural temperature,7 and some alternative priors. For exam-
ple, we have sampled the SW at multiple temperatures (see Fig. 13)
and for different priors (see the supplementary material). Then, we
advocate comparing the sampling results to geodesics, a frequen-
tist method, to assess the effect of the Bayesian prior on parameter
uncertainty. Additionally, researchers can perform other frequen-
tist analysis, e.g., profile likelihood. Finally, for an extended UQ
analysis, researchers can apply MBAM to perform model reduction
and/or collect additional training data, in which case we recom-
mend iterating the steps in the previous paragraph. We are work-
ing on implementing these analysis tools within the KIM-based
Learning-Integrated Fitting Framework (KLIFF) Python package.112

SUPPLEMENTARY MATERIAL

In the supplementary material, we first show plots of the profile
likelihood and the MCMC samples at several sampling temper-
atures for all parameters of the SW potential for MoS2 system.
The sampling temperatures are given with respect to the natural
temperature T0 ≈ 1.85 × 105. We then present the MCMC sam-
ples for SW potential, where the sampling is done using linear
parameterization with a corresponding uniform prior in parameter
space.
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