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Exploding gas-filled balloons are common chemistry demonstrations. They also provide an

entertaining and educational means to experimentally verify nonlinear acoustical theory as

described by the Earnshaw solution to the lossless Burgers equation and weak-shock theory. This

article describes the theory, the demonstration, and the results of a propagation experiment carried

out to provide typical results. Data analysis shows that an acetylene–oxygen balloon produces an

acoustic shock whose evolution agrees well with weak-shock theory. On the other hand, the

pressure wave generated by a hydrogen–oxygen balloon also propagates nonlinearly, but does

not approach N-wave-like, weak-shock formation over the propagation distance. Overall, the

experiment shows that popular demonstrations of chemical reactions can be extended from

chemistry classrooms to a pedagogical tool for the student of advanced physical acoustics. VC 2012
Acoustical Society of America. [DOI: 10.1121/1.3676730]

PACS number(s): 43.25.Cb, 43.28.Mw, 43.25.Vt [VWS] Pages: 2422–2430

I. INTRODUCTION

When used appropriately, physical demonstrations of

complex phenomena can inspire active learning in the

classroom and provide insight into the applications of

advanced mathematics.1,2 Examples of such demonstrations

in acoustics include using a basketball to study spherical

cavity resonances,3 standing waves in a Rubens flame

tube,4 a hydrodynamic analog of the cochlea,5 examination

of thermoacoustic principles via a Rijke tube,6 a gas-filled

balloon lens,7 and acoustic levitation.8 This article presents

a demonstration of an exploding balloon, which can be

used in the explanation of phenomena important to non-

linear acoustic propagation. To increase the pedagogical

utility of the demonstration, and to show how this could

possibly be developed as a laboratory exercise, the theory

of weak-shock propagation is reviewed and compared to

experimental data.

The principal demonstration consists of a balloon filled

with a stoichiometric mixture of gaseous acetylene and oxy-

gen, which when ignited creates an acoustic shock that prop-

agates nonlinearly. Waveforms recorded with microphones

placed at various distances can be analyzed and compared

with theory. Further, the acetylene–oxygen balloon results

can be compared with those from a hydrogen–oxygen bal-

loon explosion, which exhibits different nonlinear behavior.

An exploding balloon demonstration is particularly useful in

that it helps explain principles in a more advanced field

of physics for which classroom demonstrations are not as

abundant. In addition to giving insight, the inherently enter-

taining nature of the demonstration can also provide motiva-

tion for introductory students to pursue more advanced

studies. The demonstration can be presented along with real-

world applications of acoustic shocks, including sonic

booms,9 military jet aircraft noise,10 explosions,11 Gatling

guns,12 and lithotripsy.13,14

This article first presents a theoretical analysis of the

propagating sound, including a discussion of the Earnshaw

solution to the lossless Burgers equation and weak-shock

theory.15 The development of the theoretical model is fol-

lowed by a detailed description of the demonstration. Propa-

gation data obtained for both the acetylene–oxygen and

hydrogen–oxygen balloons are then analyzed and compared.

II. NONLINEAR THEORY

Theory is a wonderful source of homework exercises

and a motivation for laboratory work. Throughout this sec-

tion, fundamental principles of physical acoustics as they

relate to the balloon demonstration are reviewed. Elements

of the theoretical development could be given to an

advanced acoustics class as a homework problem.

In order to model the propagation of the transient

acoustic pulse generated by a compact explosive source, two

models are necessary: A set of equations that appropriately

describes the evolution of the pressure waves and a model

for the source waveform. The use of the source waveform

in the propagation model, which relies on the Earnshaw

solution to the lossless Burgers equation and weak-shock

theory, results in theoretical expressions that can be used to

compare with experimental data obtained from the physical

demonstration.
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A. Propagation model

1. The Earnshaw solution to the Burgers equation

This section describes the theory15,16 that is used to

model the continuous portion of the propagating transient.

As this theory is not new and our development is similar

to that of Blackstock et al.,16 it is largely included for com-

pleteness in this education-oriented article. In addition,

although our demonstration involves the propagation of

finite-amplitude spherical waves, it is easier to develop the

plane-wave solution and then convert it into spherical co-

ordinates afterward, as done by Blackstock.17

The model equation used to describe the nonlinear

evolution of the acoustic pressure p (hereafter just called the

pressure) is the lossless, planar Burgers equation,

@p

@x
¼ b

q0c3
0

p
@p

@s
; (1)

where x is the distance from the source, b is the parameter of

nonlinearity (1.201 for air), q0 is the ambient air density, c0

is the small-signal sound speed, and s is the retarded time,

t� x/c0. This equation is valid for continuous waveforms,

which means that once shocks form, it no longer describes

propagation of the entire wave.

An often used solution to the lossless Burgers equation

is the Earnshaw solution,16 which may be written as

p ¼ f ð/Þ; (2)

/ ¼ sþ bxp

q0c3
0

¼ sþ bx

q0c3
0

f ð/Þ: (3)

The variable / is the nonlinearly distorted time scale and is

called the Earnshaw phase variable by Blackstock et al.16 In

addition to facilitating analytical solutions, / is convenient

for numerical solutions of the Burgers equation,10,18,19 as the

initial waveform values do not change, only the time at

which they occur. Physically, the pressure-dependent distor-

tion of the Earnshaw solution in Eq. (3) describes how the

compressions travel faster than rarefactions in the waveform

steepening process prior to shock formation.

The Earnshaw solution can be used as a pedagogical

tool or as part of a homework exercise where students can

use the solution to distort a discretely sampled waveform.

For example, the Earnshaw solution can be compared with

the Fubini series solution20 for a monofrequency source

described by f(/)¼ p0 sin(xs) at x¼ 0, where x is the angu-

lar frequency. By Eq. (3), / ¼ xsþ bp0xx sin /ð Þ=q0c3
0.

Plotting the solution to the pressure as a function of the

nondimensional distance, r ¼ bp0xx=q0c3
0, is instructive.

Normalized pressure waveforms for six values of r are dis-

played in Fig. 1.

Notice in Fig. 1 that a portion of the waveform slope

first becomes perfectly vertical at r¼ 1, causing r¼ 1 to be

referred to as the shock formation distance and r as the

distance relative to the shock formation distance. Having

students plot the solution for r> 1 can be used to motivate a

discussion of weak-shock theory16 and the equal-area rule,

described in further detail in the following. Figure 1 shows

the shock propagation relative to the Earnshaw solution for

three values of r> 1.

2. Weak-shock theory

For r >1, the continuous Earnshaw solution cannot be

used in the multivalued regions. Weak-shock theory is

instead required. Weak-shock theory is based on three

assumptions. First, shocks are “weak,” which is described

further in the following. Second, losses are only considered

at the shocks (i.e., the propagation of the continuous portion

of the waveform may be considered lossless). Third, shocks

are ideal discontinuities. Using these assumptions with the

Rankine-Hugoniot shock relations,21 one finds that shocks

propagate at a velocity of

vsh ¼
b

q0c0

ðp1 þ p2Þ
2

; (4)

where vsh is the velocity of the shock, and p1 and p2 are the

pressure ahead of the shock and behind the shock, respec-

tively. Note that this means that shocks propagate at speeds

different from the continuous portions of the waveform sur-

rounding the shock. In order to find the location of a shock,

the relation for the retarded “slowness” of the shock [see Eq.

(163) in Ref. 16],

dssh

dx
¼ � b

q0c3
0

ðp1 þ p2Þ
2

; (5)

FIG. 1. (Color online) Nonlinear propagation of an initially sinusoidal wave

of frequency x according to the Earnshaw solution to the planar, lossless

Burgers equation. The variable r is a dimensionless distance where r< 1

represents the preshock region. The multivaluedness of the Earnshaw-

derived pressure for r> 1 can be used to motivate a discussion of weak-

shock theory. The amplitude has been normalized (p/p0).
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where ssh is the retarded time of arrival of the shock, is a

more useful form of Eq. (4). To use Eq. (5), p1 and p2 are

found from Eqs. (2) and (3) to be

p1 ¼ f ð/1Þ; /1 ¼ sþ bxp1

q0c3
0

; (6)

p2 ¼ f ð/2Þ; /2 ¼ sþ bxp2

q0c3
0

: (7)

Equations (2), (3), and (5)–(7) are an adequate set of equa-

tions to model the finite-amplitude pressure wave propaga-

tion. Note that implicit in the use of Eqs. (6) and (7) is the

equal area rule, which states that the shock separates equal

areas as defined by the Earnshaw solution. (A demonstration

of the equal area rule can be seen in Fig. 1.)

As with any model, it is important to understand the lim-

itations of weak-shock theory. One of the three assumptions

discussed previously is that shocks are “weak.” Temkin22

studied errors associated with the weak-shock approximation

in the expression for the entropy change across shocks in

planar sawtooth waves at sea level. Used as the figure of

merit was the shock strength, defined as

d ¼ p2 � p1

p1 þ pamb

; (8)

where pamb is the ambient pressure. The upper bound of

acceptable errors was found to be d¼ 0.1, which corresponds to

a root mean square sound pressure level of 165 dB re 20lPa.

Note that Blackstock23 used a different criterion in his examina-

tion of weak-shock theory limits. He employed the peak acoustic

Mach number, Ma¼ u0/c0, where u0 is the peak particle veloc-

ity, with weak being defined as Ma< 0.1. This yields an

upper bound for planar sawtooth waves of 174 dB re 20lPa

(d¼ 0.329).24

Regardless of the criterion used to obtain the weak-shock

theory upper bound, neither result applies strictly to the wave-

form of an exploding gas-filled balloon. One cause is geomet-

ric spreading, which serves to rapidly reduce the peak pressure

for the same propagation range. This would effectively

increase the upper bound of weak-shock theory. Another cause

is the nature of the waveform itself, which is an asymmetric

transient rather than a symmetric, stationary signal. To the

authors’ knowledge, the theoretical upper limits of weak-

shock theory for a spherically propagating transient impulse

have not been determined as has been done for the planar saw-

tooth wave. Therefore, the appropriateness of the weak-shock

theory model for this case is established empirically by the

level of agreement between predictions and experiment.

B. Explosion model

A commonly used model for an acoustic impulse created by

an explosion is the modified Friedlander equation,11 written as

pðtÞ ¼ p0ð1� t=TþÞe�bt=Tþ ; (9)

where p0 is the peak shock pressure value, Tþ is duration

for which the pressure value is positive, and b is a fitting

parameter. However, this equation is not as well suited for

analytical analysis as a shock followed by an exponentially

decaying tail, which is sufficient to illustrate features of

interest. Thus, the source model employed in this study is

f ðtÞ ¼ p0e�t=t0 ; t > 0

0; t < 0

�
; (10)

where t0 is the initial e�1 decay time of the tail.

The solution of Eqs. (2), (3), and (5)–(7) with Eq. (10)

as the source was first found with a finite-difference formula-

tion by Rogers.25 Blackstock26 approached the problem with

an analytical formulation and found expressions for many

key elements, although he did not provide a solution for the

entire pressure waveform. The present formulation is

included for educational value, as it solves for the full wave-

form using both the Earnshaw solution and weak-shock

theory.

There are two semi-infinite portions of the wave that are

continuous: Before the shock and after the shock. Because

p¼ 0 before the shock, the Earnshaw phase variable is sim-

ply /¼ s. For the portion behind the shock, the Earnshaw

solution yields

p ¼ p0e�ðsþCxpÞ=t0 ; (11)

where the substitution of C ¼ b=q0c3
0 is made. Equation (11)

can be rewritten as

zez ¼ p0

t0
Cxe�s=t0 ; (12)

where z¼Cxp/t0. The solution to Eq. (12) is

z ¼ W
p0

t0

Cxe�s=t0

� �
; (13)

where W is the Lambert W function.27 Thus, the waveform

after and before the shock may be written as

pðx; sÞ ¼ t0W
p0

t0
Cxe�s=t0

� ��
Cx; s > ssh

0; s < ssh

8<
: : (14)

As mentioned earlier, Eq. (14), which is derived from the

Earnshaw solution, is only valid for continuous portions of

the waveform, and weak-shock theory is necessary to find

ssh in terms of x. This requires that Eqs. (5)–(7) be solved.

The source waveform in Eq. (10) allows one to immediately

see that the pressure ahead of the shock is p1¼ 0. This means

that the peak pressure of the shock, which we call psh, is

identical to p2. Solving for psh in a functional form is more

difficult (and is likely worthy of a graduate-level homework

exercise28) but Blackstock26 found it to be

psh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p0Cx=t0

p
� 1

Cx=t0

: (15)

With a solution for psh, Eqs. (2) and (3) can be evaluated at

/sh to find ssh as
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ssh ¼ t0 � t0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p0Cx=t0

p
� t0 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p0Cx=t0

p
� 1

p0Cx=t0

 !
: (16)

Figure 2 illustrates how the waveform decays and spreads as

it propagates according to Eqs. (14) and (16). Because the

Lambert W function in Eq. (14) cannot be written directly in

terms of elementary functions, an approximation is necessary.

Rogers25 used Newton’s method to find an approximation for

the pressure wave in terms of elementary functions. To gener-

ate the results in Fig. 2, the MATLAB
VR

lambertw.m29 function

was used. The 1–4 m propagation range was selected in order

to be the same as the spherical case shown subsequently.

Equations (14) and (16) describe the evolution of the

source waveform in Eq. (10) for planar propagation. To con-

vert this result into spherical coordinates, Eq. (14) is multi-

plied by r0/r and in Eqs. (14) and (16) the variable x is

replaced with r0ln(r/r0). In this replacement, r0 is the refer-

ence radius at which p0 and t0 are known and r is the dis-

tance from the source origin.24 In spherical coordinates, the

expressions for p(x, s) and ssh become

pðr; sÞ ¼
r0p0

r

t0W g ln r=r0ð Þe�s=t0
� �

g ln r=r0ð Þ ; s > ssh

0; s < ssh

8><
>: ;

(17)

ssh ¼ t0 � t0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g ln r=r0ð Þ

p
� t0 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g ln r=r0ð Þ

p
� 1

g ln r=r0ð Þ

 !
; (18)

g ¼ p0

t0

br0

q0c3
0

; (19)

where s is now defined as t� (r� r0)/c0.

Also of interest is the peak pressure value in spherical

coordinates, obtained by transforming Eq. (15) as described

previously. The peak pressure, psh, is given by

psh ¼
r0p0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g lnðr=r0Þ

p
� 1

g lnðr=r0Þ
: (20)

Figure 3 illustrates how the waveform spreads as it propa-

gates according to Eqs. (17)–(20). Note that the attenuation

of the shocks in the spherical case is much greater than in

the planar case (Fig. 2) and, consequently, the temporal elon-

gation of the waveform is less.

It is important to remember that Eqs. (17)–(20) only

describe the evolution of the shock with decaying exponen-

tial tail under conditions that satisfy weak-shock theory. In

addition to the weak requirement described earlier, there are

various other factors that can lead to discrepancy between

experiment and theory for a real fluid. Molecular relaxation

and thermoviscous absorption will cause the shock rise time

to be finite.30 Further, as distance increases, the absorptive

processes will result in ordinary losses affecting the entire

waveform.31 Finally, dispersion would also be an important

consideration over large distances.32

III. DEMONSTRATION AND EXPERIMENT

This section discusses the basic chemistry associated

with the exploding balloon demonstration and describes how

the demonstration is carried out. Discussed also is an experi-

ment that was performed as a comparison with the theory

described in Sec. II.

A. Chemistry overview

Nonlinearly propagating pressure waves can be gener-

ated by chemical reactions in the combustion of two easily

obtainable fuels: Hydrogen (H2) or acetylene (C2H2). In any

chemical reaction, reactant species experience a rearrange-

ment of atoms or ions to create new product species, as

bonds are broken and new ones are formed. The total energy

change for the reaction is the difference between the energy

required to break bonds and the amount of energy released

in the formation of new bonds. In the case of the combustion

reactions used here, there is a net release of energy; more

energy is released in the forming of new, more stable bonds

FIG. 2. (Color online) Theoretical evolution of a propagating planar shock

with exponential tail. In this case, t0� 0.2 ms and p0¼ 30 kPa. The choice of

p0 is derived from the acetylene–oxygen balloon experiment.

FIG. 3. (Color online) Theoretical evolution of a spherically propagating

shock with exponential tail. In this case, t0� 0.2 ms, p0¼ 30 kPa, and

r0¼ 1 m.
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than was required to initially break the bonds between reac-

tant species.

One measure of the amount of energy released in a reac-

tion is enthalpy change (DH�); enthalpy is a measure of the

heat energy in a reaction. The heat energy released in a reac-

tion heats the reaction gases, which increases the velocity of

the gas molecules and generates a pressure wave at the site

of the explosion. The following reactions outline the com-

bustion reactions for the fuels used:

2 H2 gð Þ þ O2 gð Þ ! 2 H2O lð Þ;
DH� ¼�285:8 kJ mol�1; (21)

2 C2H2 gð Þ þ 5 O2 gð Þ ! 4 CO2 gð Þ þ 2 H2O lð Þ;
DH� ¼�1301:1 kJ mol�1: (22)

The enthalpy values are negative to indicate that heat energy

is released from the reaction.

Note that even though the same numbers of fuel moles

are used in reactions (21) and (22), there is a significant dif-

ference in the enthalpy change in these two reactions. The

reason for this is not that more bonds are formed than are

broken. In fact, the same numbers of bonds are broken as are

formed for both reactions. The disparity in energy between

the two above-mentioned reactions arises from differences

in the types of bonds that are formed. For example, approxi-

mately twice as much energy is released in the formation of

a carbon–oxygen bond as that of a hydrogen–oxygen bond.

The acoustical analysis below shows that acetylene-oxygen

explosions have significantly larger pressure waves. This is

due to the enthalpy considerations mentioned above and also

because this large amount of heat energy is released on a

faster time scale than in the hydrogen-oxygen case. A more

complete discussion of the reaction kinetics of these two

reactions is beyond the scope of this article.

B. Demonstration description

To prepare the balloons, reactions (21) and (22) were

used to determine the appropriate amount of oxygen (O2) for

a complete burn of the fuel. For combusting hydrogen (H2),

0.370 mol of hydrogen with 0.185 mol of oxygen was used

(total balloon diameter of 31.1 cm). For acetylene combus-

tion, 0.057 mol of acetylene with 0.143 mol of oxygen was

used (total balloon diameter of 22.1 cm). The amount of fuel

used in these experiments was a matter of convenience.

A predictable demonstration relies both on the proper

amount of fuel and ratio of fuel to oxygen. Because accurate

delivery of gases is difficult, the volume of gas required was

converted to the diameter of a sphere. Plastic tubing was

then shaped to form a ring of the appropriate diameter

required for a certain volume as calculated by the ideal gas

law. Latex balloons, manufactured to be more spherical than

typical tear-drop-shaped party balloons, are then filled

directly from compressed gas cylinders until the balloon

walls just touch the inside diameter of the plastic ring. Two

plastic tubing rings were prepared for each type of balloon; a

smaller ring to ensure the proper amount of fuel and a sec-

ond, larger ring to indicate the amount of oxygen to be added

to the initial amount of fuel to create the appropriate mixture.

Once the gaseous mixture is prepared, precautions should be

observed. These include wearing ear and eye protection and

keeping the balloons well away from heat sources.

The balloons are ignited by using a wand consisting of

surgical tubing attached to a 1 m hollow stainless steel rod.

The surgical tubing is then connected to a natural gas supply

and the wand lit in order to ignite the balloon. Whatever

mechanism is used to anchor the balloon should be secured

so that it will not become a projectile. When initiating the

reaction, presenters should hold the flame wand with an out-

stretched arm to maintain a 2 m distance from the explosion.

This is both to reduce the peak acoustic levels to which the

presenter is exposed and to remain well outside the explo-

sion. The maximum acetylene–oxygen fireball diameter is

approximately 80 cm in diameter (see Fig. 4) and the

hydrogen–oxygen fireball diameter is �1 m. Due to the ex-

plosive nature of the demonstration and the potential for bal-

loon piece projectiles, a lab coat and eye protection should

be worn by the presenter.

Because there is the potential for significant auditory

hazard, some additional comments regarding hearing protec-

tion are merited. Recent experiments on the levels generated

by hydrogen–oxygen balloons have been discussed by Gee

FIG. 4. (Color online) Before (a) and during (b) pictures of an acetylene–-

oxygen balloon explosion in a classroom. Ruler in (a) is present for scale.

The maximum explosion radius is �79 cm.

2426 J. Acoust. Soc. Am., Vol. 131, No. 3, Pt. 2, March 2012 Muhlestein et al.: Educational acoustic shock demonstration

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.187.97.22 On: Thu, 13 Mar 2014 20:56:27



et al.33 Properly worn double hearing protection (meaning

earplugs and muffs) can provide �50 dB attenuation for

impulse noise34 and reduce peak levels to below the critical

threshold of 140 dB re 20 lPa for the demonstrator and view-

ers. Note that this demonstration can also serve as an oppor-

tunity to teach students about the importance and proper

wearing of hearing protection.

If this demonstration is to be carried out in a classroom

environment, thought should be given to the impact of room

reflections. In order to prevent the initial acoustic impulse and

reflections from overlapping in time, the distance from the

explosion to any hard surfaces should be greater than �30 cm.

This distance is calculated from the duration of the positive

pressure impulse of the explosions at the 3.46 m microphone.

This will allow for clear analysis of an experiment conducted

in a regular classroom (not just in an anechoic chamber, as

used in the propagation experiment presented here). As a final

practical note, the acetylene–oxygen balloons should be used

within �20 min after preparation as the acetylene diffuses

through the latex balloon wall at a sufficiently fast rate that

reproducibility and balloon volume are reduced.

C. Experiment setup

This section describes the acetylene–oxygen and

hydrogen–oxygen balloon experiment carried out to examine

their nonlinear propagation characteristics. In order to focus

on spherical spreading and minimize other effects due to

reflections, the experiment was conducted in the large fully

anechoic chamber at Brigham Young University with work-

ing dimensions of 8.71� 5.66� 5.74 m. It should be noted

that the chamber has an upper frequency limit (�20 kHz) for

which it is anechoic. This means that some reflections from

the room at the very high frequencies associated with shocks

are unavoidable, but these reflections do not impact the

waveform propagation characteristics of primary importance

to this article.

As shown in Fig. 5, microphones were placed at 1.02,

1.17, 1.32, 1.63, 1.93, 2.85, and 3.46 m from the center of the

balloon for the acetylene and oxygen balloon test. The loca-

tion of the closest microphone was chosen to avoid clipping

of the data. The remaining microphones’ locations were

weighted toward closer to the balloon, but were somewhat

arbitrarily chosen. For the hydrogen–oxygen balloon test, the

balloon was 0.305 m (1.00 ft) farther from all of the micro-

phones. Because the hydrogen–oxygen balloon was not quite

so loud the greater distance allowed for the nonlinear effects

to become more apparent. As the center of the balloon is not

necessarily the exact source location, the value of r0 is a

source of potential error in comparing the model and experi-

ment. The microphones were suspended from a network of

cotton twine strung between two stands in order to minimize

the number of possible scattering sources. The microphones

used were 3.18 mm (1/8 in.) G.R.A.S. 40DD microphones

(G.R.A.S. Sound and Vibration, Holte, Denmark), except for

the most distant microphone, which was a 6.35 mm (1/4 in.)

G.R.A.S. 40BD microphone. The grid caps of the micro-

phones were removed in order to remove any shock-induced

high-frequency resonances of the cavity between the grid cap

and the microphone diaphragm.35 Because diffraction due to

microphone orientation has a significant effect on the meas-

urements of shock amplitude,35,36 the microphones were

placed as near as possible to grazing incidence. Uncertainty

in the orientation and any shadowing and scattering from

upstream microphones are possible sources of error in the

measurement of the shock amplitude.

During the experiments, time waveform data were

acquired with a National Instruments (Austin, TX) PXI-

based system using 24-bit PXI-4462 cards controlled by

LABVIEW-based (National Instruments, Austin, TX) software.

The data were acquired at a rate of 204 800 samples/s

(4.9 ls/sample). Post-processing of the data was performed

using MATLAB
VR

.

IV. RESULTS

Shown in this section are time waveform measurements

for both the acetylene–oxygen and hydrogen–oxygen bal-

loons. Presented in Fig. 6 are the measured acetylene–oxygen

balloon waveforms aligned at the zero crossing, which propa-

gates at the ambient speed of sound and thus does not change

relative to the retarded time. The measured peak pressure, ppk,

of the acetylene–oxygen balloon at 1.02 m was 31.03 kPa.

This is equivalent to a peak sound pressure level,36

Lpk¼ 20 log 10(ppk/20 lPa), of 183.8 dB re 20 lPa.

The peak pressure for the hydrogen–oxygen balloon

shown in Figs. 3 and 7. At 1.37 m, 26 kPa (Lpk¼ 164.2 dB re

20 lPa) is substantially less than that of the acetylene–-

oxygen balloon at 1.32 m, 16.0 kPa (Lpk¼ 178.1 dB re

20 lPa), and occurs over a greater time scale. Note that for

this balloon, aligning the initial impulse also aligns the

FIG. 5. (Color online) Schematic showing microphone locations relative to

the acetylene–oxygen (2C2H2:5O2) and hydrogen–oxygen (2H2:O2) bal-

loons for the results described in this article.

FIG. 6. (Color online) Measured time waveforms, aligned at the impulse

zero crossing, for an acetylene–oxygen balloon.
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waveform at the zero crossing, as shown in Fig. 7. Compar-

ing Fig. 7 to Fig. 6 shows that this dual alignment, or lack of

time-scale elongation, is a major difference between the two

explosions, as is the lack of a single, significant shock in

Fig. 7.

V. ANALYSIS AND DISCUSSION

The results of the previous section provide for discus-

sion as to the effects of shocks and nonlinear propagation

appropriate for an advanced acoustics course. First, although

the upper bounds of weak-shock theory for this propagation

scenario are not well established, a calculation of the qualita-

tive “weakness” of the shock for the acetylene–oxygen bal-

loon is worthwhile. Application of Eq. (8) for a peak

pressure of 31.03 kPa and an ambient pressure of 88 kPa in

Provo, UT yields d¼ 0.341. The peak acoustic Mach num-

ber, assuming locally planar behavior, is 0.22. These exceed

the limits for the planar sawtooth wave discussed previously,

but are still small. Further, as is now shown, the weak-shock

model developed in Sec. II is an acceptable pedagogical tool

that can be applied to the exploding acetylene–oxygen bal-

loon demonstration.

The theory of a propagating weak shock with an expo-

nential tail predicts that the peak amplitude, psh, rolls off

according to Eq. (20) and its retarded time of arrival, ssh,

evolves according to Eq. (17). Because the zero crossing

travels at the ambient sound speed and its retarded time does

not change, it is a useful reference point from which to

examine the amplitude decay and waveform time-scale

increase. However, to compare with experiment, Eqs. (18)

and (20) require values for r0, p0, and t0. The value for r0

used is the distance from the source origin, approximated as

the center of the balloon, to the first microphone. The values

of p0 and t0 are taken directly from the measured data. The

peak pressure of the closest microphone is used as p0 and the

time it takes for the pressure to decay to 1/e of the peak

value is used for t0.

In Fig. 8, the peak sound pressure level calculated from

the peak pressures from Fig. 6 are displayed with the theoret-

ical prediction for Lpk decay calculated from Eq. (20).

Ordinary spherical spreading is also included for reference.

Inspection of Fig. 8 shows that the experimental data diverge

quickly and substantially from the linear theory. At 3 m from

the source, the excess attenuation of the peak is greater than

6 dB. This means that in order to get any sort of reasonable

prediction for the peak pressure value as a function of dis-

tance, nonlinear theory must be used. Note further that the

overall agreement between the experimentally measured

pressures and the weak-shock theory prediction suggests that

application of this model is appropriate.

Figure 9 shows the measured time waveforms from

Fig. 6 with respect to retarded time with the zero crossing as

a reference point. Also shown in Fig. 9 is the theoretical psh

versus ssh curve predicted from Eqs. (18) and (20). The

waveform elongation in the propagation data is clearly evi-

dent. The positive impulse duration at 1.02 m is slightly less

than 0.5 ms, but at 3.46 m has increased to �0.8 ms. Further,

a reasonable match between the experiment and the model

prediction is obtained. Some possible causes for the differen-

ces between measurement and theory, particularly related to

the shock measurement, are now discussed.

Although the experimental waveform evolution gener-

ally agrees with psh versus ssh predicted from Eqs. (18) and

(20), there are differences that were fairly consistent for the

several balloon explosions measured. Examination of the

time waveforms and comparison with data shown by Gabri-

elson et al.35 suggests that the inexactness in the peak pres-

sure measurement is primarily due to diffraction caused by

slight pressure microphone orientation errors. Another possi-

ble source of error is the Gibbs-phenomenon artifacts present

in Fig. 9. The pressure oscillations at the base of the shocks

are caused by the brick-wall nature of the oversampling/dec-

imation used in the analog-to-digital converter of the data

acquisition boards. [Note that transient response can be

reduced by using an analog lowpass (e.g., Bessel) filter prior

to digitization, but which necessarily reduces the measure-

ment bandwidth, thereby increasing the rise time of the

shock.] These oscillations may also exist at the top of the

shocks as well, which could cause some overestimation of

the peak pressure values.

The pedagogical nature of Figs. 6 and 8 is enhanced

when compared with results from the hydrogen–oxygen

FIG. 7. (Color online) Measured time waveforms for a hydrogen–oxygen

balloon.

FIG. 8. (Color online) Measured peak sound pressure level (Lpk) from the

acetylene–oxygen balloon as a function of distance with theoretical linear

and nonlinear curves.
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balloon. In contrast to the shock that was formed with the

acetylene–oxygen balloon the hydrogen–oxygen balloon has

a much more gradual transition from ambient pressure to the

waveform peak. It has been already noted in the discussion

of Fig. 7 that the same time-scale elongation observed in

the acetylene–oxygen explosion is not observed in the

hydrogen–oxygen explosion. However, one can still use these

latter results to observe nonlinear behavior and distinguish it

from the weak shock-like behavior of the acetylene–oxygen

balloon.

To more clearly examine the nonlinear evolution of the

time waveform for the hydrogen–oxygen balloon in Fig. 7,

the waveforms of the closest (1.37 m) and farthest (3.81 m)

microphones were multiplied by their respective distances

from the assumed origin, thereby removing spherical spread-

ing. The positive portions of the resultant waveforms are

shown in Fig. 10. Notice the consistency of the location of

the zero crossings before and after the initial compression

wave combined with advancement of the greater amplitude

portions forward in time. This clearly shows nonlinear steep-

ening of the hydrogen–oxygen waveform, but in the preshock

region, which is very different nonlinear behavior than the

acetylene–oxygen balloon exhibits. Note that students could

compare results similar to Fig. 10 with an Earnshaw solution

prediction to examine the dependence of nonlinearity on the

nature of the geometric spreading. In this case, the nonlinear

advancement of the peak pressure that occurs at ��1.0 ms is

approximately half what it would be if the propagation of the

wave were planar rather than spherical.

Another interesting feature in Fig. 10 is that, because of

the nature of the chemical reaction, the waveform shape is

such that multiple shocks form during propagation. It can

also be seen that the distance between these shocks is

decreasing as the wave propagates. Although it would

require measurements at greater distances, it is probable that

some of these shocks will eventually merge. Consequently,

this demonstration could be used to motivate a class discus-

sion of shock coalescence, which occurs in, e.g., sonic boom

and nonlinear broadband noise propagation.37

An additional observation can be made about the form

of the nonlinear propagation shown in Fig. 10. The fact that

removing spherical spreading effectively normalizes the

waveforms is also evidence that the peak pressure decay is

not nonlinear in the preshock region, which is predicted by

the Earnshaw solution. This is further confirmed in Fig. 11,

where the measured peak pressure closely aligns with linear,

spherical geometric spreading theory based on the measured

peak pressure at the closest microphone and an assumed

source location at the center of the balloon.

VI. CONCLUSION

This article has shown that the explosion from a balloon

filled with acetylene and oxygen produces a clear demonstra-

tion of important nonlinear phenomena, such as attenuation

at shocks and waveform lengthening. Use of the Earnshaw

solution to the lossless Burgers equation and weak-shock

theory allows for a reasonable quantitative prediction of the

evolution of waveform characteristics. It has also been

shown for comparison that the explosion from a balloon

filled with hydrogen and oxygen is another example where

nonlinear theory is needed to explain the waveform steepen-

ing that occurs during wave propagation. Appropriate use of

this demonstration should allow the advanced student in

FIG. 9. (Color online) Measured waveforms of the acetylene–oxygen balloon

compared with the theoretical evolution of the shock amplitude and time.

FIG. 10. (Color online) Measured waveform of a hydrogen-oxygen balloon

from Fig. 7 at the closest and farthest microphones with spherical spreading

removed.

FIG. 11. (Color online) Measured peak sound pressure level (Lpk) of the

hydrogen–oxygen balloon with linear theory, confirming data were taken in

the preshock region.
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physical acoustics to engage in the active learning of the

mathematics of nonlinear phenomena.
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