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In ocean acoustics, finding acoustic signals within long recordings is usually time consuming. In order to 
optimize this process, this paper explores signal classification using two deep learning models. These 
models are designed to classify various sources from single-sensor, 60 second time-averaged spectral 
density levels. The training and testing datasets were taken from 32 channels (on two VLAs) during the 
Seabed Characterization Experiment 2017 in the New England Mud Patch. A balanced dataset consisted of 
randomly selected data samples for each of the three classes: ‘Tonals’, ‘Chirps’,and ‘Other’. A two-layer 
linear model and a four-layer one-dimensional convolutional neural network (CNN) were trained and then 
tested on data samples from different times. While the linear model achieved above 90% accuracy on the 
testing samples, the CNN had higher than 98% accuracy.  This work shows the potential for deep machine 
learning algorithms to help identify underwater sound sources, when different signals are present in long 
audio files. The results of these tests imply that time averaging spectrograms have potential to improve 
signal classification. 
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1. INTRODUCTION

For decades, advanced signal processing techniques have been used for signal classification.
More recently, machine and deep learning models have been applied to underwater sound signals to
make use of  their pattern recognition in order to identify the sound signal sources. Machine learning
is a type of  artificial intelligence which includes systems that can learn from data, identify patterns,
and make decisions with minimal human interference. Deep learning is a subset of  machine learning
which uses neural networks with more than two layers.

The application of  deep learning in Underwater signal classification is complicated by the
effects of  temperature, pressure, and salinity on the speed and refraction of  sound in the water, as
well as the distortive effects of  sediment all of  which make up the environment. As a result, noises
can sound different in different environments at different times and different depths. In addition,
good, sufficiently labeled data can be difficult to acquire, and machine models can require expert
calibration to recognize signal sources that are more distant or changeable in time.

The work discussed in this paper applies deep learning algorithms to underwater signals in
an attempt to find the optimal conditions under which to classify the signals. The data used were
collected during the Seabed Characterization Experiment (SBCEX) 2017 on two vertical line arrays
with 16 hydrophones each (Wilson, 2017). During this experiment different kinds of  signals were
transmitted and the work discussed in this paper uses a CNN to classify the signals from the 32
receivers individually over a several day period in the New England Mud Patch.

2. BACKGROUND
Krizhevsky et al. (2017) marked a turning point in using machine learning models to identify

large scale visual inputs in an attempt to counteract the issue of  lack of  labeled data. Interest has also
expanded to machine learning being applicable to identify auditory inputs. Many techniques learned
from image classification have been applied to audio classification using spectrograms and
mel-spectrogram images. Piczak (2015) was able to show that CNNs could be used to identify audio
clips translated into low level representation (spectrograms). Salamon and Bello (2017) also applied
deep learning to the issue of  identifying environmental noise while attempting to mitigate the issue
of  lack of  labeled data by augmenting the audio signals. However, one issue remains in attempting to
analyze spectrograms in methods similar to images since spectrograms do not maintain the same
translation invariance as images and different frequency bands can belong to different classes (Wyse,
2017). One method of  overcoming this difficulty is to present a CNN with heterogeneous pooling.
Previous works have used methods such as second-order pooling to keep the higher-level features of
the data in the network and constant-Q transforms, which might provide better resolution, rather
than Short Term Fourier Transforms to analyze the data (Cal, 2019).

As the success of  these experiments shows, interests now turn towards identification of
underwater sound signal source classification. Underwater environments especially can be difficult to
classify using automated processes due to differing signal-to-noise ratio, the large effect seabed and
water characteristics can have, as well as the often non-stationary and impulsive tendencies of
naturally present underwater acoustical signals. One option according to Kamal et al. (2013) is to use
unsupervised CNN models in order to allow the model to be less rigid and adapt to the indistinct
and variant features of  the underwater environment without needing expert calibration. This
unsupervised learning method has been used with success by Ozanich (2021); they were able to
identify whale and fish noises from a loud coral reef. This work uses supervised machine learning
models to classify man-made sounds.
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3. EXPERIMENTAL SETUP
The data used were collected, with a sampling frequency of  25000 Hz, during Seabed

Characterization Experiment 2017 (Wilson, 2017) from two vertical line arrays of  16 hydrophones
each set in the ocean in the New England mud patch by Dr. William S. Hodgkiss and his crew from
Marine Physical Laboratories at the Scripps Institute of  Oceanography. Around this area, multiple
tracks were assigned over which a boat traveled with a submerged loudspeaker which would play
either chirps or tonal noises with a 50% duty cycle at intervals of  ten seconds.  The 'Chirps' played
through an octave of  frequencies in a second, repeating ten times, before pausing for ten seconds
and repeating. 'Tonals' played five constant frequencies, 1.5, 2, 2.5, 3, 3.5, and 4 kHz continuously
for ten seconds before pausing ten seconds and repeating. This controlled experiment allowed for
more control over the types of  sound signals the network classified, reducing the effect of  clutter
and the effects of  the seabed.

The hydrophone recordings of  this signal were split into 60 second segments, and those
segments were converted to NumPy files. The background noise of  these recordings was not
removed, in part because the ultimate goal is to apply this model directly to spectrogram data and
receive an output of  time stamps when signals occur, but also because the goal is to eventually build
a model that will also recognize more transient underwater signals such as ships, whales, and SUS
charges in the known environment.

These NumPy files were then loaded, and spectrograms were computed with a sample block
size of  2^13. The spectrograms were labeled based upon the time during which they occurred by
referencing a data log, written during the data collection, of  when various signals were being played.
The three labels used were ‘Other’, ‘Tonals’ and ‘Chirps’; an example of  each is shown in Figure 1.
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The 60 second spectrograms were then concatenated into longer spectrograms based on the
desired time intervals for the training and testing data, shown in Table 3 in the Appendix. These
longer spectrograms were saved as HDF5 files along with the time and frequency arrays and the date
of  the start of  the spectrogram time range. This data format allowed greater control over the length
of  the spectrograms used for training and testing the neural network without increasing the amount
of  memory or time needed and also reduced the amount of  edge effects which might alter the data.
Another benefit of  the HDF5 format is that each channel can be loaded individually.

The data used to train the network using the HDF5 file format was carefully chosen so that
each label, ‘Chirps’, ‘Tonals’, and ‘Other’, had 270 minutes of  spectrogram data collected from
different times and days, shown in Table 3 in the Appendix. The data were then sliced to produce 60
second spectrograms, with each channel starting at a random time. Each channel was sampled
independently, resulting in 32 individual samples for any given time Using spectrogram segments
taken from a longer spectrogram allowed for overlap between the data samples, but the random start
times also meant there was no control over how evenly the selected times were spread over the total
time interval. The time stamp of  each data sample was recorded so that the correct label could be
identified.

In order to ensure that the proper number of  data samples were loaded from each file during
training and testing, a dictionary was created that linked the different HDF5 files to the overall time
included in them and thus the number of  data samples that should be extracted. While this did not
guarantee that the entirety of  the spectrogram would be covered evenly, it made sure that each
spectrogram would be sampled an appropriate number of  times given its length.

For the machine learning models discussed in this paper, the author chose to time average
the spectrogram inputs for the model. The time-averaging eliminates any issues which might have
been posed by the 50% duty cycle when combined with the random start times. Examples of
time-averaged spectrograms can be seen in Figure 2, each at the same time as the spectrogram
examples in Figure 1. The time-average samples contain distinctive spectral features corresponding
to the ‘Tonals’, ‘Chirps’, and ‘Other’ categories.

4. NEURAL NETWORKS
This work used two separate machine learning models in this work in the PyTorch

framework. The first machine learning model (illustrated on the left in Figure 3) was a fully
connected linear model with two linear layers of  1024 nodes and an output to the same three classes.
This second model was built to see how simple a model could successfully categorize the different
signals. The second was a four-layer one-dimensional convolutional neural network (illustrated on
the right in Figure 3) with a kernel size of  3, padding and stride of  1, an input feature of  1024 and a
channel size which changed from 1 to 16 to 32 to 64 to 128. Then two linear layers with 1024 nodes
each followed by the output into three different classes, ‘Chirps’, ‘Tonals’, and ‘Other’.

The networks were trained on the data samples from the times listed in Table 3 in the
Appendix and then tested on data from times listed in Table 4. Each data sample was scaled by its
individual mean (in Pascals) before being used in the neural network. The training dataset was
equally balanced with 270 samples of  each type of  data for 810 samples per channel, resulting in
25,920 total training samples.
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Figure 3: Diagram of  the two neural networks used to classify the sound signal sources: (left) a linear
model and (right) a four-layer convolutional neural network.
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5. RESULTS
The training and testing results for those two machine learning models can be seen in Tables

1 and 2. They were trained, saved, and then applied to the separate testing dataset. The upper part of
each table contains the resulting testing and training accuracy for each class, the false positive, the
count for how many samples were incorrectly attributed to each class; the false negatives, the
number of  samples of  each class incorrectly labeled as a different class; and the F1 score, which is
the harmonic mean of  the precision and the recall, intended to give a measure of  the incorrectly
classified cases.

On the lower portion of  each table, the overall accuracy of  both the four-layer
one-dimensional CNN and the linear model is displayed. The total accuracy is the accuracy for all of
the samples as a whole. Because a different number of  testing samples was used for each label, there
is a second calculated weighted accuracy which calculates the final accuracy by averaging the testing
accuracy of  each class. As shown by these overall accuracies, both models achieved an accuracy of
above 90%, though the four-layer CNN achieved a higher accuracy of  approximately 99%.

Table 1: Training and testing results for the time-averaged input linear model.

Average Linear Layers
Training Accuracy
(%)

Testing Accuracy
(%)

False Positive
Count

False
Negative
Count F1 Score

Tonals 61 (N=8639) 79 (N=7205) 35 1529 0.880574

Chirps 96 (N= 8641) 99 (N=10513) 78 25 0.995144

Other 99 (N=8640) 98 (N=4768) 1503 63 0.857247

Total Accuracy
Weighted
Accuracy

93% 92.49%

Table 2: Training and testing results for the time-averaged input four-layer one-dimensional CNN model.

Average CNN
Training Accuracy
(%)

Testing Accuracy
(%)

False Positive
Count

False
Negative
Count F1 Score

Tonals 99 (N=8639) 99 (N=7205) 51 12 0.995693

Chirps 99 (N= 8641) 99 (N=10513) 15 66 0.996138

Other 98 (N=8640) 98 (N=4768) 62 50 0.98827

Total Accuracy
Weighted
Accuracy

99% 99.39%

Another method of  evaluating the accuracy is by showing the classification from each model
for each channel in time to show consistency over the channels which were at different depths. To
illustrate consistency over channels, this work chose a two-hour time block that included all three
classes. Figure 4 displays the ideal channel prediction with the channels (on VLA1) in the vertical
axis and the time, in this case 120 minutes, as the horizontal axis; the time interval is listed in the
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figure title in (year-day-hour-minute-second) format. The grey represents times corresponding to the
label ‘Chirps’, the orange for ‘Other’, and the pink for ‘Tonals’, while the background was set to
green to account for any skipped time (i.e., time not included in the random sampling described in
Section 3, which is different for each set of  predictions). Figure 5 shows the predictions for the
linear model. For the first 30 minutes of  the time shown, the predictions for all of  the channels agree
and are correct; However, starting around minute thirty, some of  the channels begin to be confused
and classified as ‘Other’, while missing the real block of  others before the 60 minute mark. This
confusion continues into the ‘Tonals’, although many of  the channels classify ‘Tonals’ correctly for
much of  the time. In Figure 6, the predictions for each channel in time are shown for the four-layer
one-dimensional convolutional neural network. Accuracy is greater and agreement between the
channels is more consistent for this model. Only a few of  the ‘Chirps’ are predicted to be ‘Other’,
and the section of  ‘Other’ signals before the 60 minute mark were incorrectly labeled as ‘Tonals’.
Overall, though some channels sometimes incorrectly predicted ‘Other’ and missed the real ‘Other’
labels, Figures 5 and 6 show that the independent predictions for each channel tended to choose the
correct class.

Figure 4: Ideal channel output based upon true classification at each time. Plot of  all 16 channel predictions
in time, orange ‘Other’, grey is ‘Chirps’, and pink is ‘Tonals’, background set to green to account for gaps in

time intervals viewed.

Figure 5: Channel output from linear model in time. Similar to Figure 4.

Figure 6: Channel output from four-layer one-dimensional CNN in time. Similar to Figure 4.
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6. CONCLUSIONS
One question regarding the application of  machine learning techniques to ocean acoustics is

the best way to classify signals. The work discussed in this paper used the time average of  60 second
spectrograms as the input. These input samples come from the 32 channels on the two VLAs
deployed by Marine Physical Laboratories during the Seabed Characterization Experiment 2017.
Samples were labeled according to the recording times based on whether or not controlled sources
were deployed. The resulting labels were ‘Tonals’, ‘Chirps’, and ‘Other’. A balanced training dataset
was used to train a linear model and a convolutional neural network, which was then tested on
samples from times not used during training.

The four-layer one-dimensional convolutional neural network performed better with a signal
classification accuracy of  greater than 98%. This accuracy is notable in several ways. First, the
training and testing data come from different days and when the source was in different locations
around the New England Mud Patch, where different thicknesses of  mud are present, and each
individual channel produced similar classifications (Wilson, 2020). Second, the training and testing
data from individual sensors were located at different depths in the water. The success in using 32
individual channels has not been shown previously.

The ideal setting of  this study provides insights into areas that require future work. First, the
success in using 32 channels individually in training and testing may be tied to the fairly static, almost
isovelocity sound speed profile during the time of  this experiment (Wilson, 2017). Using individual
receivers at multiple depths may not be effective when the sound speed profile varies significantly
with depth. In such cases, using data from all channels on the VLA as a single input sample will
likely be more effective. Studies should then be done to see if  the resulting data (number of  channels
by number of  frequencies) should be input to a one-dimensional or two-dimensional CNN or if  a
different type of  network is better suited to handle the variation in depth. Second, the ‘Tonals’ and
‘Chirps’ classes used in this work had distinctive spectral features that were well above the
background noise level. Questions remain as to if  this time-averaging could work for quieter sources
or time-varying sources. Overall, this paper finds great potential in using machine and deep learning
for signal classification provided the training data contain the needed variability to represent the
dynamic ocean environment.
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APPENDIX A

Table 3: Testing dataset
Start Time

(yydddhhmmss)
End Time Label Total Time

(min)

17086120200 17086142000 Tonals 138

17085180000 17085193000 Tonals 90

17088170500 17088213400 Chirps 269

17089204000 170892014000 Chirps 60

17084013000 17084033000 Other 120

17085220400 17085223300 Other 29

Table 4: Training Dataset
Start Time

(yydddhhmmss)
End Time Label Total Time (min)

17085150000 17085174400 Tonals 164

17084121600 17084140200 Tonals 106

17084140900 17084163500 Chirps 146

17084163500 17084172400 Chirps 49

17084172400 17084182300 Chirps 59

17088143000 17088144600 Chirps 16

17082200000 17082220000 Other 120

17083230000 17084013000 Other 150
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