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Free energies of dissipative media are reviewed. Then we use free-energy-optimal excitation and de-
excitation fields to generate a dielectric’s time-reversal spectrum, with several properties: a� The spectrum
generalizes the time-reversal parity from “even” and “odd” of conservative systems to an interval �−1,+1� of
“time-reversal eigenvalues” � in dissipative media. b� It yields eigenmodes that are complete: any state of the
medium is optimally excitable or de-excitable by them. c� These excitations are orthogonal with respect to the
work function of the medium and, so, d� characterize field excitations for the given medium that, when
superimposed, only do work on the medium, not on each other via the medium-field interaction mechanism.
Notions of en masse potential and kinetic energy in the dissipative medium arise through even ��=+1� and odd
��=−1� parity, but also other energy notions via alternative parity �����1� under time reversal.
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I. INTRODUCTION

It has been known for some time that traditional real-time
notions of energy in passive dielectrics are ambiguous �1–3�.
Ambiguity arises when “energy” depends on details of mi-
croscopic models, rather than on properties defining dielec-
trics via macroscopic Maxwell equations �4�. Further, Lan-
dau and Lifshitz claimed “…in the general case of arbitrary
dispersion, the electromagnetic energy cannot be rationally
defined as a thermodynamic quantity. This is because the
presence of dispersion in general signifies a dissipation in
energy….” �5�. Lacking thermodynamic interpretations gen-
erally, they offered Brillouin’s �6� narrow bandwidth, cycle-
averaged notion for “dispersive but lossless” �7� dielectrics
�5,8,9�. Despite claims, we give macroscopic real-time diag-
nostics in arbitrarily dissipative dielectrics interpretable as
thermodynamic free energies �10�. Dissipation’s main
effect—multiple free energies—stems from a medium’s
time-reversal spectrum, as also “irreversible energies” gener-
alizing kinetic and potential energies to irreversible
dynamics.

Recently, we introduced an instantaneous generalization
of Brillouin’s energy, valid for arbitrary dissipative dielec-
trics: at each moment of a passive dielectric’s excitation by a
pulse, an unambiguous maximum energy is subsequently re-
coverable from the medium �11�. This recoverable energy is
extracted by an optimal “future” electromagnetic field start-
ing from the moment considered. This instantaneous notion
of electromagnetic energy depends only on the current dy-
namic macroscopic state of the dissipative medium. We also
showed any given state of a linear, passive dielectric is cre-
ated in a unique, energetically minimal manner �12�. Both
real time, macroscopic notions of energy—the maximum en-
ergy extractable from a dispersive dielectric in a given state,

and the minimal creation energy that could be imbued in it to
produce its current state—are independent of microscopic
model. Recoverable and creation energies, U+ and U−, were
recently used to describe energetic features of “slow” and
“fast” light, and of optical regimes such as electromagneti-
cally induced transparency �EIT� where traditional notions
fail to have physical interpretation �13�. �See �14–20� for
classical and new ideas about slow and fast light.�

Importantly the goals here are alternate to the work of
�21�. There the unique and time-conserved energy con-
structed is the total work �density� performed by the field on
itself and the medium, and nontrivial representation of the
conservation law via a one-parameter bath of individually
reversible auxiliary fields leads to a Lagrangian formulation
of the dissipative dynamics. In turn this allows for quantiza-
tion of these dynamics. In contrast here we separate the con-
served total energy into “reactive” and “dissipated” compo-
nents. Then we separate reactive energy into components
with novel but definite parity under time reversal. Generali-
zations of kinetic and potential energy arise by embracing
macroscopic phenomenology’s irreversibility in this specific
way.

We review ideas of dynamical free energy provided by the
viscoelasticity community showing U− and U+ are the maxi-
mal and minimal free energies of a dielectric. �Subscripts +
and − refer to future and past.� We then present the following
results regarding irreversibility in macroscopic media.

For linear media, there is a class of “past” electromagnetic
excitation fields E−��� �vanishing after time t=0� distin-
guished by the following property: when the medium is ex-
cited up until t=0 by past field E−��� in this class, the me-
dium is subsequently de-excited optimally–with maximal
energy recovered from the dielectric–by a special “future”
field E+��� �vanishing before t=0� that is simply a time-
reversed, dilated version of the original past field, i.e.,*glasgow@math.byu.edu
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E+��� = �E−�− �� . �1�

Such past-future field pairs (E−��� ,E+���) expose various in-
stantaneous energetics of linear dielectrics:

�1� Only certain values of the dilation � arise, character-
izing a given medium. Passivity dictates these time-reversal
eigenvalues lie in the interval �−1,1�.

�2� The eigenspaces of field excitations E−��� are orthogo-
nal with respect to the medium’s work function: the work
W�E−� performed on the dielectric by superposition E−
=c1E−�1

+c2E−�2
of energetically optimal past fields E−�1

and
E−�2

with time-reversal eigenvalues �1��2 is the sum of the
work performed in the dielectric by each separately, no
constructive/destructive interference arising. That is,

W�c1E−�1
+ c2E−�2

� = c1
2W�E−�1

� + c2
2W�E−�2

� . �2�

�3� The class of fields E−��� are complete: Any medium state
is reachable by linear superposition in the class, the class
forming then a state-space basis.

�4� This basis is preferred: By design, E+��� is optimal at
extracting energy from the dielectric in the state produced by
E−���. But, fact, E−��� is itself optimal at infusing energy into
the dielectric, the same true of superpositions of past fields
satisfying Eq. �1� with various �’s.

�5� Due to Eq. �2�, the maximal and minimal free energies
U− and U+ are diagonal quadratic forms in the preferred
basis.

�6� Two terms in the forms for U+ and U− always arise,
corresponding to time-reversal eigenvalues �=−1 and
�=+1. These are labeled en-masse kinetic and potential en-
ergy, since they are forms in excitations that are momentum,
respectively, positionlike—i.e., odd and even—under time-
reversal.

�7� The quadratic forms of U− and U+ are identical except
for time-reversal eigenvalues with ����1. The associated
����1-energies allowing U− and U+ to be distinct give rise
to “irreversible energies” and to a class of objects �optimal
field excitations� sporting time-reversal parities other than
sign change �22�.

This paper is organized as follows. Section IIgives results
about extremal free energies for a broad class of dielectrics.
Section III specifies a subclass of linear, time-translationally
invariant dielectrics generalizing salient properties of Lor-
entz media. Two Riemann-Hilbert problems allow for a rep-
resentation of a single Lorentz medium’s unique �free� en-
ergy that generalizes straightforwardly to media sporting
multiple free energies. Section IV introduces the time-
reversal spectrum and the notion of state in dielectrics. Sec-
tion V computes the time-reversal spectrum of an example
dielectric, using it to introduce the general relationship be-
tween the spectrum and the extremal free energies. Finally
we present central results on time-reversal parities giving rise
to the idea of kinetic and potential energy as well as gener-
alizations arising from the absence of time-reversal
invariance.

II. WORK IN A DIELECTRIC

In Secs. II A and II B, we develop defining properties of a
dielectric, linear or not. Theorems �with proofs in appendi-

ces� describe maximum and minimum free energies and their
dissipation rates. �A review of the relation between work and
free energy is given in Appendix A. It summarizes well-
known information in the viscoelasticity community relevant
to general dissipative media.� In subsequent sections time-
reversal properties characterize in a novel way the extremal
free energies of linear dielectrics.

A. Work and causality

For isotropic media, the work W�E��t� performed �at a
specified point� by an electric field time series E��� on a
dielectric with polarization time series P��� during period
�−� , t� is �23�

W�E��t� = �
−�

t

E���Ṗ�E����d� . �3�

Importantly the functional E� P�E� is causal: presently �24�,
E� P�E� is causal if and only if P�E��t� depends entirely on
the history �and not future� of E�t�. Note that causality of the
polarization functional E� P�E� ensures the work functional
E�W�E� �3� is also causal. Also Eq. �3� dictates the work
functional W�E� ceases to evolve after field E vanishes.

In order to invoke causality, we define truncated versions
of time series: let “t-past field” E−

t ��� and “t-future field”
E+

t ��� be related to E��� through

E−
t ��� ª E����−

t ��� = E����1 if � � t ,

0 if � � t .
� �4�

and

E+
t ��� ª E����+

t ��� = E����0 if � � t ,

1 if � � t .
� �5�

The value that E−/+
t ��� takes at time �= t missing in Eqs. �4�

and �5� will often not matter since the media cannot respond
instantly to physical fields. But to develop maximal and
minimal free energies of linear dielectrics, idealizations like
the Dirac delta time series E���	���� are considered. The

polarization current functional E� Ṗ�E� instantly responds
to this idealization, which allows the work functional
E�W�E� to respond instantly too. We will not use the no-
tation of Eq. �4� for these idealizations.

With the notation of Eqs. �4� and �5�, causality can be
expressed

P�E−
t + G+

t ���� = P�E−
t + F+

t ����, � 	 t , �6�

with F and G arbitrary physical fields. In particular

P�E���� = P�E−
t ����, � 	 t . �7�

With P replaced by any causal functional of E��� �such as
W=W�E��, Eq. �7� is the main fact used in calculations in-
volving causality. Statements such as Eq. �7� may not make
sense for field idealizations needed for the extremization
problems to come, but then modifications should be clear.
Equation �7� will hold for the physical class E0 of real, con-
tinuous, absolutely integrable field time series E���. �E will
denote E0 less continuity.�
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B. Passivity, state, and the fundamental free energies

Like electrical networks, a dielectric with work functional
Eq. �3� is passive if and only if for every admissible field
E��� and every time t� �−� ,+��

W�E��t�
 0 �8�

�3,25–28�. This is a specific instance of Eq. �A5�. The func-
tional of Eq. �3� allows equality in Eq. �8� for at least the
zero field E���
0. Causality Eq. �6�, passivity Eq. �8� and
restriction to admissible fields allows the following ideas to
make sense.

Definition 1 (Irrecoverable Energy�. The irrecoverable en-
ergy �density� functional Q+�E� of a dielectric with causal
and passive work functional W�E� is

Q+�E��t� = inf
F

W�E−
t + F+

t ��+ �� . �9�

As suggested above, in Eq. �9�, we restrict the variable future
field F+

t ���=F����+
t ��� to membership in an admissible class,

such as E0.
Definition 2 (Recoverable Energy). The recoverable en-

ergy �density� functional U+�E� of a dielectric with causal
and passive work functional W�E� is

U+�E��t� = W�E��t� − Q+�E��t� . �10�

With Definition 2 we have

W�E��t� = U+�E��t� + Q+�E��t� . �11�

Equation �11� and Definition 1 indicate we are separating
into two parts the work W�E��t� done on a dielectric by a
field E up to and including a specific time �= t. These parts
are: a� the fraction of energy Q+�E��t� that cannot be returned
from the medium to the field under any circumstances via the
performance of work, and b� the remaining fraction of en-
ergy U+�E��t� that can be delivered to the field by the me-
dium via the performance of work, in the limit of optimal
future steering of the medium-field excitation by a future
field time series F+

t ��� �as in Eq. �9��. If we think of U+�E��t�
as “energy,” and −Q+�E��t�, which is never positive, as
“heat” added to the medium, in �10� we have something like
a thermodynamic first law; irrecoverable energy Q+�E��t�

0 is heat lost from the system to an environment. This
dynamical connection with the usual first law is now only
formal since we do not address what temperature means in a
medium model admitting only polarization as a relevant
measurable. But for such a medium model, state must argu-
ably be defined as follows �29,30�:

Definition 3 (Dielectric State). The state of a dielectric
E� P�E� at time t is the equivalence class ��E−

t � of all ad-
missible t-past fields E−

t that give the same future polariza-
tion map

E+
t � �+

t P�E−
t + E+

t � . �12�

Here, we introduce the notation ��E−
t � to emphasize the re-

lation between a state and the fraction E−
t of any �admissible�

field time series E causally producing it by time t.
According to Definition 3 fields E and F produce the

same state in dielectric P�E� at time �= t if and only if for
every such E+

t ,

P�E−
t + E+

t ���� = P�F−
t + E+

t ����, � 
 t . �13�

For a linear dielectric Eq. �13� simplifies to

P�E−
t ���� = P�F−

t ����, � 
 t , �14�

which says two admissible fields E and F produce the same
state in dielectric P�E� at a time t if and only if the dielectric
rings the same after the preparations E−

t or F−
t . �See �29� for

the importance of the notion of preparation to that of state in
thermodynamics.�

Two more dynamic energy accounting ideas arise:
Definition 4 (Creation Energy). The creation energy �den-

sity� functional U−�E� of a dielectric with causal and passive
work functional W�E� is

U−�E��t� = inf
F���E−

t �
W�F��t� . �15�

Here, ��E−
t � restricts the steering fields F to those yielding in

dielectric P�E� the same state by time t as the original field E
�or t-past field E−

t �. So creation energy U−�E��t� is the least
work a field must perform on a dielectric by time t to pro-
duce in it the same state that original field E �or E−

t � did by
that time. U− is patently a state function, and its definition
makes it a case of �M�� in Eq. �A4�. Appendix B �as well as
references �10,31,32�� proves that U+ is also a state function.
Combining Definition 1 and Definition 2 indicates that U+ is
a case of �m�� in Eq. �A4�.

Definition 5 (Waste Energy). The waste energy �density�
functional Q−�E� of a dielectric with causal and passive work
functional W�E� is

Q−�E��t� = W�E��t� − U−�E��t� . �16�

From Eqs. �16� and �15� we see Q−�E��t� measures excess
energy used to create a given state ��E−

t � by a given field
time series E over the amount minimally required to do so.

III. SIMPLE DIELECTRICS AND THE FUNDAMENTAL
RIEMANN-HILBERT PROBLEMS

A. Simple dielectrics

We now specialize to simple dielectrics. In addition to
isotropy �Eq. �3� and discussion�, causality �Eqs. �6� and �7��
and passivity Eq. �8�, a simple dielectric is linear, stationary,
inertial, bound and viscous: A dielectric P�E� is linear if for
all admissible fields E1 and E2

P�c1E1 + c2E2���� = c1P�E1���� + c2P�E2���� �17�

for all �temporal� constants c1 and c2. A dielectric P�E� is
stationary �time translationally invariant� if for all s

P�E�����t − s� = P�E�� − s���t� �18�

for all t and all admissible fields E. Here, we abuse notation
by denoting a time series argument E to a functional P with
its own arguments �� or �−s�, but the idea of P commuting
time translation should be clear. Linearity and stationarity
give the usual form
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P�E���� = �
−�

+�

dsG�s�E�� − s� , �19�

where G is the impulse response of the medium: G
 P��0�,
with �0 as the Dirac delta distribution supported at �=0. By
causality, G is not supported for ��0.

It is well known �33� that linear, stationary constitutive
relation Eq. �19� gives theorem

W�E��t� = �
−�

t

E���Ṗ�E����d� = �
−�

�

� Im�������E−
t̂ ����2d� ,

�20�

where the susceptibility

���� = �2�Ĝ��� , �21�

and where hats indicate Fourier transformation: for F�E0,

define the Fourier transform F̂ of F via

F̂��� =
1

�2�
�

−�

+�

F���ei��d� . �22�

In Eq. �20� we used

E−
t̂ �− �� = E−

t̂ ����, �� R , �23�

which follows from definition Eq. �22� and time series E−
t

real. Since polarization impulse response G is real, this real
symmetry also holds then for ����:

��− �� = �����, �� R . �24�

In Eq. �20�, the Fourier transform E−
t̂ of the t-past field E−

t

stems from E�EṖ�E� �the rate of work development as per
Eq. �3�� being a causal functional of its time series argument
�34�. Noting E−

t =E for t=+� and admissible E, we see Theo-
rem Eq. �20� generalizes the long-known fact �35� that

W�E��+ �� = �
−�

�

� Im�������Ê����2d� . �25�

Equation �25� is the total work dissipated in a passive dielec-
tric arising from �energetically admissible� excitation E.

Real symmetry Eq. �23� forces the integrand in Eq. �20� to
be of the same sign as the oscillator density ���� defined by

���� ª � Im������ ª �
���� − ��− ��

2i
. �26�

So passivity Eq. �8� in linear, stationary media is �36�

����
 0, �� R , �27�

�pointwise �37��. ���� is clearly even and real-symmetric.
Assumptions allowing Theorem Eq. �20� include the fol-

lowing physical ones: restrict to a space E of field time series

E with bounded Fourier transform Ê���, and to dielectrics

P�E� for which the transform Ĝ of the polarization impulse
response G= P��0� is order �−2 as � tends to infinity. A
sufficient condition for the latter is that the time derivatives
G�j��t� be absolutely integrable over t�0 for j=0,1 ,2, and

G�0�=0. Similarly, the transform Ê��� will be bounded,
which includes that it will be order �0 as � tends to infinity,
if E�j��t� is absolutely integrable for j=0, i.e., provided E�t�
is absolutely integrable.

A linear dielectric with susceptibility ����=�2�Ĝ��� or-
der �−2 for large � is inertial: it corresponds to G�0+�
= P��0��0+�=0; that is, inertia prevents the polarization from
changing discontinuously even in the limit that a finite im-
pulse �0 of momentum is instantly imparted to it.

A dielectric with ��0� finite is bound. An instructive ex-
ample is the Lorentz oscillator:

���� =
�p

2

�− i��2 + ��− i�� + �0
2 . �28�

In such a model

��0� =
�p

2

�0
2 , �29�

which, with inertia, is only finite �and positive� when

k ª �0
2/�p

2� 0, �30�

the mechanical interpretation of k being a spring constant;
the dielectric is bound when “its restoring spring does not
vanish.” When the spring vanishes in this model we have a
�Drude� conductor, rather than a dielectric. For the coming
time-reversal spectrum, the distinction between dielectric
and conductor is pivotal.

For a linear, stationary, inertial, bound and passive dielec-
tric, the asymptotics of the real-symmetric susceptibility

����=�2�Ĝ��� near �=0,� must be �38�

���� 	
�→�

− �1 − i
��
�

+ . . .�p
2

�2 ,

���� 	
�→0�1 + i

�0

�0
2� + . . .�p

2

�0
2 , �31�

where passivity Eq. �27� dictates the high- and low-frequency
dissipation rates �� and �0 must be nonnegative. The dielec-
tric is viscous if they are both positive. If so, then

����
��

	
�→�� �

�p
−2

,
����
�0

	
�→0��p�

�0
2 +2

. �32�

So our generic dielectric has density � with exactly second-
order zeroes at �=0,�. It is strictly passive if they are �’s
only real zeroes �Eq. �27� holding with equality�. A dielectric
with all the above properties is simple.

B. Two Riemann-Hilbert problems for simple dielectrics

With G as described above,

��z� ª �
0

+�

G���eiz�d� �33�

defines a function analytic in an open set containing the
closed upper-half z plane �z�C : Im�z�
0� �said “analytic in
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a closed upper-half plane”�, with all the asymptotics there
already described for real z=�. By Cauchy’s integral for-
mula and the various relevant symmetries we have �38� that

��z� = lim
�→0+

2

�
�

0

+� ���0�
�− iz�2 + ��− iz� + �0

2d�0 �34�

holds there, representing the susceptibility as a continuum of
Lorentz oscillators with varying resonance frequencies �0
and vanishingly small �high and low� dissipation rates �.
Representation Eq. �34� suggests �’s name: 2���0� /� is the
density of oscillators with resonance frequency �0 contribut-
ing to �. Noting �
0, this also shows ��z� has no zeroes in
a closed upper-half plane �38�. So both ��z� and 1 /��z� are
analytic in the �open� upper-half plane, although the latter
grows like z2 near infinity since the former decays such as
z−2.

The time-reversal spectrum of a simple dielectric will be
finite dimensional and without other complications if we re-
strict to susceptibilities ���� that are rational, with only
simple poles and zeroes off the imaginary axis. Such rational
dielectrics have susceptibilities of the form

����
− �p

2 =

�
j=1

N

�� − Zj���� + Zj�
��

�
j=1

N+1

�� − zj��� + zj
��

, �35�

with N=0,1 ,2. . .. We take the obvious convention that no
zero is located at a supposed pole; no “residue” is zero.

It should be noted that ���� has other zeroes beyond its
real �second order� ones �=0,�. By definition Eq. �26�, and
given Eq. �35�,

����
���p

2�2 =

�
j=1

N

�� − Zj��� + Zj
��

�
j=1

N+1

�� − zj��� + zj
��

�
j=1

N

�� + Zj��� − Zj
��

�
j=1

N+1

�� + zj��� − zj
��

¬ f���f�− ��

= f���f���
 0. �36�

The last representation and inequality hold for real �. When
the zj’s and Zj�’s lie in the open lower-half plane, ��z� and
1 /��z� are analytic in a closed upper-half plane, and Eqs.
�35� and �36� sport all properties of a simple dielectric. We
may choose the Zj’s of �36� to be there also, since when Zj is
a zero of ����, so is −Zj �parity�, −Zj

� �real-symmetry�, and
+Zj

� �parity and real symmetry�.
With Eqs. �35� and �36� we may write

���� = ����

�p
2 i��v�− ���−���

�p
2 i��v���

= �+�− ���+���

= �−����+��� , �37�

where

�v���
− �p

2 =

�
j=1

N

�� − Zj��� + Zj
��

�
j=1

N+1

�� − zj��� + zj
��

, �38�

i.e., �v��� is susceptibility ���� but with the zeroes of the
latter replaced by the causal zeroes of ����, i.e., those in the
lower-half plane. From Eq. �34� and Cauchy’s theorem one
finds ���� has each of the poles ���� does. So no zero in
�36� is located where a pole is. Thus �v��� has the same
singularities as ����. Finding factors �+��� and �−��� in Eq.
�37� which, along with their reciprocals, are analytic and
with prescribed asymptotics in the upper and lower-half
planes constitutes a homogeneous Riemann-Hilbert �RH�
problem �39�. �Eq. �37� is readily solved numerically �11�.�
Factorization Eq. �37� gives

W�E��t� = �
−�

�

�����E−
t̂ ����2d�

=
�

�p
2�

−�

�

�− i��v���E−
t̂ ����2d�

=
�

�p
2�

−�

�

�Ṗv�E−
t �����2d�

=
�

�p
2�

−�

t

�Ṗv�E−
t �����2d� +

�

�p
2�

t

�

�Ṗv�E−
t �����2d� .

�39�

Pv here is the virtual polarization. In �11� we showed
Theorem 1 (Recoverable and Irrecoverable Energy). For a

simple dielectric P�E�, the irrecoverable energy Q+�E��t� is
given by

Q+�E��t� =
�

�p
2�

−�

t

�Ṗv�E−
t �����2d� =

�

�p
2�

−�

t

�Ṗv�E�����2d� ,

�40�

the recoverable energy U+�E��t� by

U+�E��t� =
�

�p
2�

t

�

�Ṗv�E−
t �����2d� . �41�

In the last formula in Eq. �40� we took advantage of the
causality of the new polarizationlike functional Pv, which is
a consequence of the causal factorization of RH problem
�37�, i.e., �v���’s analyticity, which is the same as ����’s.
That 1 /�v��� is also analytic in the upper-half plane is cen-
tral to why Eqs. �40� and �41� represent the irrecoverable and
recoverable energies, rather than representing waste and cre-
ation energies, which require opposite analyticity properties
for the relevant reciprocal virtual susceptibility
�11,12,33,40�.

The monotonicity of the irrecoverable energy is clear in
representation Eq. �40�. In fact a necessary �and nearly suf-
ficient� condition for the field E to be engaged in optimal
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energy recovery over a period is that the irrecoverable energy
not increase, i.e., remain constant: A consequence of the no-
tion of irrecoverable energy is that

Q+�E��t2� = Q+�E��t1�, t2
 t1, �42�

if and only if, for all relevant �, E���=E−
t1���+E+

t1���, with
E+

t1��� being the optimal continuation of E−
t1��� after time �

= t1 �but see Appendix C�. From Eq. �40�, we note Eq. �42�
holds for all t2� t1 if and only if for all such t2

�
t1

t2

Ṗv
2�E−

t1 + E+
t1����d� = 0, �43�

or then

Ṗv�E−
t1 + E+

t1���� = 0, � 
 t1, �44�

which is to be solved for E+
t1 =E+

t1�E−
t1� given E−

t1. In the fre-
quency domain Eq. �44� is

− i��v����Ê−
t1��� + Ê+

t1���� = Ẑ−��� , �45�

where Ê−
t1, Ê+

t1 and Ẑ− denote the transforms of E−, E+, and

Ṗv�E�. Given the space E of admissible fields E �adjoined
with Dirac delta distributions�, and the properties of polar-
ization impulse response G, analyses like that of Eq. �33�
show Ê−

t1 is analytic and bounded in a lower-half plane, Ê+
t1 is

analytic in an upper-half plane and bounded there away from

�=0, where it may have a simple pole, and that Ẑ− is ana-
lytic in a closed lower-half � plane, but restricted to be order
�−1 there as � tends to infinity. �See Appendix C� Eq. �45� is
a second, inhomogeneous RH problem related to optimal en-

ergy recovery. Given Ê−
t1, it can be solved uniquely for Ê+

t1

and Ẑ− by standard techniques �41�. For rational −i��v���,
these reduce to partial fractions.

Before considering time reversal, we note a theorem that
suggests its consideration.

Theorem 2 (Work and Recoverable Energy). For a simple
dielectric P�E�,

Ṗv�E+
t ���� = − �+

t ���Ṗv�E−
t ���� , �46�

where E+
t is the optimal t-future recovery field for t-past field

E−
t . Thus, the recoverable energy satisfies

U+�E��t� = U+�E−
t ��t� = W�E+

t ��+ �� . �47�

Equation �46� follows from Eq. �44� via causality and linear-
ity of Pv. It says the entire effective polarization Pv excita-
tion of an optimal t-future field E+

t in isolation, i.e., without
past field E−

t prepended to it, is precisely the opposite of the
ringing of the original t-past field E−

t . The first result in Eq.
�47� is just causality �see Eq. �41��, the second more notable,
indicating the maximum recoverable work of a t-past field is
exactly the total work an associated optimal recovery t-future
field would perform on the medium in isolation. It follows
from Eqs. �46�, �41�, and �39�, along with E+

t = �E+
t �−

+�. We
now only consider distinguished time t=0, which is repre-
sentative for a stationary dielectric.

IV. TIME-REVERSAL SPECTRUM OF A SIMPLE
DIELECTRIC

A. State in rational dielectrics

In Eq. �14�, two field time series E��� and F��� produce
the same state in dielectric P�E� by time t=0 if and only if
P������=0 for �
0, where � denotes the difference of the
two past fields E−��� and F−��� �not supported for ��0�.
From Eq. �35� and Cauchy’s theorem, for �
0

0 = P������

=
1

�2�
�

−�

+�

�����̂���e−i��d�

= − �2�i�
j=1

N+1

�aj�̂�zj�e−izj� + aj
��̂�− zj

��eizj
��� . �48�

The aj’s and aj
�’s are residues of ���� at its poles, which are

nonzero by convention. With frequencies zj and −zj
� in Eq.

�35� distinct, the e−izj� and eizj
�
� time series are independent,

and Eq. �48� requires each of the �̂’s vanish, i.e.,

Ê−�zj� = F̂−�zj�, Ê−�− zj
�� = F̂−�− zj

�� �49�

for j=1, . . . ,N+1. So at t=0 the state of rational dielectric
Eq. �35� excited by field E��� is the truncated field transform

Ê− at ����’s singularities; ��E−� of Definition 4 is the real-
symmetric C2�N+1�-vector in Eq. �49�. Since effective suscep-
tibility �v��� given by Eq. �38� has the same singularities as
susceptibility ���� Eq. �35�,

0 = Pv������

=
1

�2�
�

−�

+�

�v����̂���e−i��d�

= − �2�i�
j=1

N+1

�ãj�̂�zj�e−izj� + ãj
��̂�− zj

��eizj
��� �50�

for �
0 if and only if Eq. �48�. The ãj’s and ãj
�’s are the

residues of �v��� at its poles, which are nonzero by the dis-
cussion of Eq. �38�. Equations �48� and �50� show that two
fields E��� and F��� produce the same state in the linear
dielectric P�E� by time �=0 if and only if

Pv�E−���� = Pv�F−����, � 
 0. �51�

So effective polarization Pv is equivalent to polarization P in
detecting state. Further, letting X denote either P or Pv, either
Eq. �48� or Eq. �50� gives

Ẋ�E−���� = 0, � 
 0 �52�

implying that, for j=1, . . . ,N+1,

Ê−�zj� = 0, Ê−�− zj
�� = 0 �53�

since none of the zj’s or −zj
�’s is zero, which then implies

X�E−���� = 0, � 
 0. �54�

So Eqs. �52�–�54� are equivalent and describe the zero state.
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Later we find the zero state arising from other than the zero
field E−
0.

B. An Inner product for simple dielectrics

For simple dielectric P�E�, ���� is such that the form

�Ê,F̂� ª
�p

2

��
�

−�

+�

����Ê���F̂���d�

¬ �
−�

+�

���− ��Ê�− ��������F̂����d� �55�

is a real inner product on at least the transformed space Ê of
E �see discussion of Eq. �27��. On that space

�Ê,F̂� = �F̂,Ê� � R, �Ê�2
ª �Ê,Ê�
 0, �56�

the last equality only when Ê
0. In Eq. �55�, we define

���� ª − i��v��� �57�

as the solution factor of homogeneous RH problem Eq. �37�:
���� is analytic in a closed upper-half plane, its only zeroes
there simple ones at �=0,� Eq. �38�.

Via inner-product Eq. �55� and its norm, Eq. �39� states

W�E��0� =
��

�p
2 �Ê−,Ê−� =

��

�p
2 �Ê−�2
 0, �58�

and Eq. �47� �with Eq. �25�� states

U+�E��0� = U+�E−��0�

= W�E+��+ ��

=
��

�p
2 �Ê+,Ê+�

=
��

�p
2 �Ê+�2
 0. �59�

For E=E−+E+ we have

�Ê+ + Ê−,Ê+� = �Ê,Ê+�

= �
−�

+�

���− ��Ê�− ��������Ê+����d�

= �
−�

+�

Ẑ−�− �������Ê+����d�

= 0, �60�

the last by Cauchy’s theorem since Ẑ−�−�� and ����Ê+���
are analytic and order �−1 at infinity in a closed upper-half �
plane. It follows that RH problem Eq. �45� gives

U+�E��0� = −
��

�p
2 �Ê−,Ê+� . �61�

This shows we can express the fundamental free energies as
inner products in state space.

C. Optimal fields under time reversal

Let a past field E−��� be special in that its optimal future
recovery field E+��� is a �real� multiple � of the time-reversal
E−�−�� of E−���; suppose

E+��� = �E−�− �� ¬ �TE−��� , �62�

where T evokes time reversal. Denote transforms of special
past and optimal future fields satisfying Eq. �62� as f� and f�

†:
in the frequency domain write Eq. �62� as

f�
†��� = �f��− �� = �Tf���� . �63�

�T acts the same in time and frequency domains with Eq.
�22��. Such special past excitations satisfy Eq. �45�:

�����f���� + �f��− ��� = Z���� . �64�

Equation �64� is homogeneous: except for eigenvalue �, a
solution is any multiple of a pair (f���� ,Z����). From Eq.
�45� Z���� is analytic and order �−1 at infinity in a closed
lower-half plane, while the analytic spectrum f���� is ana-
lytic and bounded away from �=0 in the lower-half plane.
Equation �64� with these boundary conditions is a RH eigen-
value problem. By Eq. �44�, Eq. �64� is also the eigenvalue
problem

Ṗv�E− + �TE−���� = 0, � 
 0. �65�

For now, any excitation E−=E−
���� satisfying Eq. �65� or Eq.

�64� is an eigenmode of the relevant dielectric, � an eigen-
value �under time-reversal� of the dielectric. Eigen-modes
E−
���� are special:

Theorem 3 (Orthogonal Excitations). In dielectric Eq.
�35�, excitations E−

� and E−
� for eigenvalues ��� are or-

thogonal with inner product Eq. �55�, their work adding:

W�E−
� + E−

�� = W�E−
�� + W�E−

�� . �66�

W�E−
�� denotes W�E−

���t�=W�E−
���+��, t�0. �Use Eq. �3�

with E−
���� not supported on ��0.�

Orthogonality is proved as follows: by Eq. �64� f� and f�
satisfy

�����f���� + �f��− ��� = Z���� , �67�

�����f���� + �f��− ��� = Z���� , �68�

and then

��− �������f����f���� + �f��− ��f�����

= ��− ��Z����f���� , �69�

��− �������f����f���� + �f��− ��f�����

= ��− ��Z����f���� , �70�

the integrated difference of which over real � giving

�� − ���f�, f�� = ��f�, f�� − ��f�, f�� = 0. �71�

The right side of Eq. �71� is Cauchy’s theorem with
��−��Z����f���� and ��−��Z����f���� analytic and order
�−2 in a closed lower-half plane. Equation �71� is orthogo-
nality �f� , f��=0 when ���. Equation �66� arises by or-
thogonality via Eq. �58�:
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W�E−
� + E−

�� =
��

�p
2 �f� + f��2 =

��

�p
2 �f��2 +

��

�p
2 �f��2. �72�

To build a basis of excitations able to create a state in
only one way we demand f��0 i.e.,

�f��2 = �f�, f�� � 0 �73�

since � , � is an inner product on Ê. By Eq. �58�, Eq. �73�
precludes eigenmode from doing no work. Also, without re-
striction Eq. �73� any real number � is a time-reversal eigen-
value.

Equation �53� shows the field E−
0 produces the zero
state. Equation �73� disqualifies such trivial fields, but is not
enough to ensure the uniqueness demanded of a basis:
Beyond Eq. �73�, we demand

�f�
†, f�� = ��Tf�, f�� � 0. �74�

With Eqs. �61� and �59�, Eq. �74� demands excitation E−
�

generate positive recoverable energy and that optimal recov-
ery field E+

�=�TE−
� not vanish, which occurs if and only if

eigenvalue � is not zero when Eq. �73� is enforced �since T is
unitary for Eq. �55��. For uniqueness, the zero eigenvalue is
as problematic as the zero field: violate Eq. �74� while re-
taining Eq. �73� by choice �=0: Equations �64� and �65�
become

− i��v���f0��� = ����f0��� = Z0��� ,

Ṗv�E−
0���� = 0, � 
 0. �75�

The equivalence of Eqs. �52�–�54� shows Eq. �75� is

Pv�E−
0���� = P�E−

0���� = 0, � 
 0, �76�

which says E−
0 has prepared the zero state. Thus, allowing

eigenvalue �=0 admits each excitation E−
0 preparing the zero

state Eq. �76�. The space of such fields is infinite dimensional
�42�: For example, in Eq. �28� the susceptibility is

���� = �v��� = −
�p

2

�� − �1��� + �1
��

, �77�

where �1=�0− i�, �0 ,��0. For any integer n
2,

f0��� ª �p
2n−3 �� − �1��� + �1

��
��� + �1��� − �1

���n �78�

is the analytic spectrum of an absolutely integrable and con-
tinuous real past field time series E−

0 “with eigenvalue �=0’’,
for then

Pv�E−
0�̂��� = P�E−

0�̂���

= �v���f0���

= ����f0���

= −
�p

2n−1

��� + �1��� − �1
���n �79�

is real-symmetric, analytic in a closed lower-half plane and
order �−2n near infinity, satisfying the demands of Z0���
made in Eq. �75�. Equation �79� is an infinite list of indepen-

dent admissible spectra, an infinite number of independent
ways to create the zero state �43�. Excluding the zero eigen-
value forbids excitations E−

� repreparing the zero state from
whence it drove the system at �=−�, and it is in equilibrium
by span of eigenmodes uniquely: only by E−
0 with Eqs.
�73� and �74�.

These ideas and Eq. �59� motivate Eq. �74� and also give
Theorem 4 (Zero State Recoverable Energy). Dielectric

Eq. �35�’s recoverable energy U+�E��t� vanishes at time t if
and only if it is in equilibrium then.

To see this, note: From Eqs. �52�–�54�’s equivalence, the
zero state is the second equation in Eq. �75�, which implies
the first there by uniqueness of solutions of the inhomoge-
neous RH problem, i.e., E+
0, giving U+�E��0�=0 by Eq.
�59�. Conversely, if U+�E��0�=0, then �� ,�� being an inner
product and Eq. �59� gives E+
0, which then gives Eq. �75�
describing the zero state by Eq. �76�.

To finish the example, note Eq. �79� and n=2 gives

Pv�E−
0���� = P�E−

0����

= −��

2

�p
3e��

�0
3 ��0� cos �0� − sin �0���−

0���

�80�

which is “smooth” �44�. Equation �80� is a medium in equi-
librium at �=−�, not so at finite times before �=0, and then
back in equilibrium at and after �=0. By Eq. �78� the field E−

0

giving rise to excitation Eq. �80� is

E−
0��� =

�2��pe��

�0
3 �− 2�2�0� cos �0�

+ ��0
2 + 2�2 + 2��0

2��sin �0���−
0��� . �81�

D. Time reversal spectrum’s properties

1. General results

Since Eq. �64� or Eq. �65� is linear, we can satisfy Eq.
�73� via choice

�f�, f�� = �f��2 = 1. �82�

With �=0 disallowed, Eq. �74� is the restriction

�Tf�, f�� � 0. �83�

Then integration of Eq. �69� and Cauchy’s theorem give

�Tf�, f�� + ��f�, f�� = �Tf�, f�� + � = 0 �84�

when �=� there, which with Eq. �83� is

� = − �Tf�, f�� � 0. �85�

Since ��R by Eq. �56� �obviously consistent with Eq. �62��,
Eq. �85� and Cauchy-Schwarz give

0� �2 = �− �Tf�, f���2

	 �Tf�,Tf���f�, f��

= �f�, f���f�, f��

= 1 · 1 = 1. �86�
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Recall T is unitary for Eq. �55�. This produces the bounds in
Theorem 5 (The Time-reversal Spectrum). Dielectric Eq.

�35�’s time-reversal eigenvalues lie in �−1,1�− �0�, �1 al-
ways occurring, and have equal algebraic and geometric
multiplicity. The dimension of the eigenspaces is 2�N+1�,
that of state space Eq. �49�.

We show equality of multiplicities and the dimension of
the eigenspaces by showing they are those of a 2�N+1� real-
symmetric matrix. We start by solving Eq. �64� for f�

†���
=�f��−�� in terms of “data” f����: with ����=−i��v��� of
Eq. �38�, we get the partial fractions expansion

���� = − i��v���

= �p
2i�

�
k=1

N

�� − Zk��� + Zk
��

�
k=1

N+1

�� − zk��� + zk
��

= �
j=1

N+1 � Dj

� − zj
−

Dj
�

� + zj
� , �87�

with Dj =−izjãj and Dj
�=+izj

�ãj
�, the ã’s from Eq. �50�. So RH

problem Eq. �64� �with �f��−��� f�
†���� becomes

����f�
†��� + �

k=1

N+1 � Dj

� − zj
f��zj� −

Dj
�

� + zj
� f��− zj

��
= Z���� − �

k=1

N+1 �Dj
f���� − f��zj�
� − zj

− Dj
� f���� − f��− zj

��
� + zj

�  .

�88�

If Eq. �64� has a solution pair (f�
†��� ,Z����) with the re-

quired properties, the left and right of Eq. �88� are analytic
and order �−1 at infinity in a closed upper, respectively,
lower-half plane. Either side of Eq. �88� is then entire and
vanishes at infinity. So by Liouville’s theorem both sides are
zero. The right being zero prescribes the required properties
of Z����. The left being zero gives

�f��− �� = f�
†���

= −
1

���� �j=1

N+1 � Dj

� − zj
f��zj� −

Dj
�

� + zj
� f��− zj

���

= −

�
k=1

N+1

�� − zk��� + zk
��

�p
2i�� − 0��

k=1

N

�� − Zk��� + Zk
��

� �
j=1

N+1 � Dj

� − zj
f��zj� −

Dj
�

� + zj
� f��− zj

��� , �89�

which one can check prescribes f�
†���=�f��−�� with the re-

quired properties if f���� has them. So with Eq. �89� and the
mentioned formula for Z���� we have the unique solution
pair (f�

†��� ,Z����) of �64� �with �f��−�� replaced by f�
†����.

Equation �89� dictates f�
†��� depends on f���� only via

the real symmetric, C2�N+1� state vector

„f��z1�, . . . , f��zN+1�, f��− z1
��, . . . , f��− zN+1

� �… . �90�

The dependence is fully 2�N+1� dimensional since the coef-
ficient ��−zj�−1’s and ��+zj

��−1’s of the state space coordi-
nates Eq. �90� in Eq. �89� are independent in �.

Note Eq. �89� already allows computation of the time-
reversal spectrum: letting �=−zk and �=+zk

�, k=1, . . . ,N
+1, gives 2�N+1� homogeneous equations

�f��zk� =
1

��− zk�
�
j=1

N+1 � Dj

zj + zk
f��zj� +

Dj
�

zj
� − zk

f��− zj
��� ,

�f��− zk
�� =

1

��zk
�� �j=1

N+1 � Dj

zj − zk
� f��zj� +

Dj
�

zj
� + zk

� f��− zj
��� ,

�91�

which are complex conjugate equations with real symmetry
f��−zk

��= f�
��zk� and ��R. This suggests the eigenvalues �

may be those of a real-symmetric matrix. To show it must be,
we do the following.

Partial fractions expansion of the r.h.s. of Eq. �89� shows
the dependence of f�

†��� on � is via the real span of the
following set of 2�N+1� independent, real-symmetric trans-
forms, which are analytic and bounded away from �=0 in a
closed upper-half plane:

�̂���� = 1

�̂0��� =
1

− i�

�̂k,e��� =
1

− i�� − Zk�
+

1

− i�� + Zk
��

,

�̂k,o��� =
i

− i�� − Zk�
−

i

− i�� + Zk
��

, �92�

Here k=1, . . . ,N. In the original time-reversal eigenvalue
problem Eq. �64�, f����= f�

†�−�� /� is the relevant compo-
nent of the solution. For it the relevant basis is

�̂label�− ��, label = �; 0; k,e; k,o . �93�

All of these but the first two lie in the transformed space Ê
�of E� over which Eq. �55� is surely an inner product. We
soon show these first two are special with regard to the en-
ergetics of simple dielectrics, but note they are not with re-
gard to the inner product: the vanishing of Eq. �55�’s kernel
���� to second order at both �=� ,0 allows, respectively, the
first two elements of Eq. �92� or Eq. �93� also to be in the
inner-product space. So, performing Gram-Schmidt on the
independent set Eq. �93� with real inner product Eq. �55�
gives a real-symmetric orthonormal basis �v j� j=1

2�N+1� for the
solutions f���� of eigenvalue problem Eq. �91� or Eq. �64�:
for any solution f���� of Eq. �64� there are real constants
C= �Cj� j=1

2�N+1� such that
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f���� = �
k=1

2�N+1�

Ckvk��� , �94�

and the eigenvalue problem Eq. �64� is

�
k=1

2�N+1�

�����Ckvk��� + �Ckvk�− ��� = Z���� . �95�

Multiplying both sides of �95� by ��−��vl���, l
=1,2 , . . . ,2�N+1�, and integrating gives

�
k=1

2�N+1�

�Tvl,vk�Ck + �Cl = 0, l = 1, . . . ,2N + 2 �96�

by orthogonality and Cauchy’s theorem, i.e.,

TC = �IC , �97�

where T is a real-symmetric matrix and our result follows:

Tl,k = − �Tvl,vk� = − �vk,Tvl� = − �Tvk,vl� = Tk,l. �98�

T is self-adjoint on inner product Eq. �55�. Except for eigen-
values �1, all claims of Theorem 5 now hold. In proving this
final claim, we show that it carries a special physical signifi-
cance.

2. Kinetic and potential energies

The presence of �̂0���= �−i��−1� Ê in Eq. �92� or Eq.
�93� makes a�

†��� solving Eq. �64� not analytic in a closed
upper-half plane: a�

†��� is not the transform of an absolutely
integrable field E�E. The factor −i� in ����=−i��v���,
i.e., the time derivative in Eq. �44�, causes this complication,
forcing consideration of nonuniform sequences of absolutely
integrable fields. Incompatible requirements force nonunifor-
mity: a� By time �=+� the effective polarization field
Pv�E���� must relax to the zero state from its generally non-
zero value at �=0, but, b� as prescribed by Eq. �43�, do so
without incurring a time derivative. These are compatible in
a limiting sense: The nonuniform sequence

����� = �2�e−���+���→
�↓0

�2��+��� �99�

is in E, but with limit ��+��� not in E, has transforms

�̂���� =
1

− i�� + i��
→
�↓0
�̂0��� �100�

with limit �̂0���� Ê, yet giving a sequence of time deriva-
tives uniformly square integrable; in fact

lim
�↓0
�

0

+�

��̇�����2d� = lim
�↓0
�
�2

�
= 0 �101�

as required by Eq. �43�. Likewise a sequence of field time
series E�E with limit ��E exists, giving limit transform

�̂�����1� Ê, yet giving the required Eq. �43�.
Define the potential and kinetic energy of a dielectric Eq.

�35� as the type of energy recovered by �sequences of� exci-
tations E−

�0 =E−
+1 and E−

��=E−
−1 with �limiting� transforms

f���� multiples of �̂0�−�� and �̂��−��: in view of Eq. �64�
define

Z+1��� ª ������̂0�− �� + �+ 1��̂0����

= �����̂0�− ���1 − �+ 1�1� = 0, �102�

Z−1��� ª ������̂��− �� + �− 1��̂�����

= �����̂��− ���1 + �− 1�1� = 0. �103�

Z����
0 satisfies all demands of Eq. �64� and Theorem 5’s
claim that �1 are always eigenvalues now holds.

Equation �89� yields this same result: Choose f����
= �̂����=1 in Eq. �89� and get

� = −
1

���� �j=1

N+1 � Dj

� − zj
−

Dj
�

� + zj
� = −

1

����
���� = − 1,

�104�

using Eq. �87�, or choose f����= �̂0���= �−i��−1 to get

�
1

i�
= −

1

���� �j=1

N+1 � Dj

� − zj

1

− izj
−

Dj
�

� + zj
�

1

izj
�

= −
1

����
����
− i�

=
1

i�
, �105�

i.e., �=+1. We get Eq. �105� by noting that Eq. �87� gives
partial fraction

����
− i�

=
��0�
− i�

+ �
j=1

N+1 � Dj

� − zj

1

− izj
−

Dj
�

� + zj
�

1

izj
� �106�

where ��0�=0.

V. TIME REVERSAL AND THE EXTREMAL FREE
ENERGIES

After noting best computation, examples give relations
between time-reversal spectra and extreme free energies.

A. Computing the spectrum

For any �̂k’s listing the real-symmetric, nonorthogonal
basis Eq. �93�, the equation

�
k=1

2�N+1�

�����Ck�̂k��� + �Ck�̂k�− ��� = Z���� �107�

arises in eigenvalue problem Eq. �64� by writing

f���� = �
k=1

2�N+1�

Ck�̂k��� . �108�

Multiplying by ��−���̂l���, l=1,2 , . . . ,2�N+1�, gives
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�
k=1

2�N+1�

�T�̂l,�̂k�Ck + � �
k=1

2�N+1�

��̂l,�̂k�Ck = 0 �109�

by integration and analyticity, i.e., eigenvalue problem

TC = �IC �110�

where T=−B−1A and �45�

Alj = �T�̂l,�̂ j� = �T�̂ j,�̂l� = Ajl, �111�

Bjk = ��̂ j,�̂k� = ��̂k,�̂ j� = Bkj . �112�

Symmetric A and B generally do not commute and
T=−B−1A is not symmetric then: Eqs. �110�–�112� do not
show the time-reversal eigenspaces is 2�N+1�-dimensional,
but give efficient computations.

B. Time-reversal representations of the extremal free energies:
an example

Suppose the density � of a dielectric satisfies

�p
2����
��

=
�p

4�2��2 + �2�
��2 + �2����2 − �1

2 + �1
2�2 + 4�1

2�1
2�

= ��− ������

= �p
2�
���� − ��− ��

2i
. �113�

The medium is passive Eq. �27� with Lorentz resonance at
�=��1− i�1 and Drude-like resonance at �=−i� for posi-
tive parameters: the medium is dielectric, not conductive.
Equation �113� falls slightly outside model Eq. �36� where no
poles or zeroes of ���� /�2 lie on the imaginary axis, but
reduces to Lorentz oscillator Eq. �28� for rª� /�=1 and
sports all other dielectric constraints. It is the simplest me-
dium with energies other than kinetic and potential. Real
symmetry, analyticity and asymptotics make RH problems
Eq. �113� have unique solutions given by

����
s

= �v��� =
�s + ���p

2

�s + ����s + �1�2 + �1
2�

=
s + �

s + ��
���� ,

�114�

where s=−i� �is the Laplace frequency�, and

��

�
=
� + 2�1 − ��

�
=
��� + 2�1� + r��1

2 + �1
2�

��� + 2r�1� + ��1
2 + �1

2�
	

r→1

1.

�115�

��−��’s zeroes dictate RH problem Eq. �64� has solutions
f���� in the real span of real-symmetric

�̂1��� = 1, �̂2��� =
1

i�
, �̂3��� =

1

i� + �
. �116�

The matrices of inner products Eqs. �111� and �112� are

A = ��
��� 0 �

0 − � − 1

� − 1
� + 1

��/�
+
� − 1

�
− �� , �117�

B = ����� 0 �

0 � 1

� 1 1
� , �118�

where ��0 does not enter T=−B−1A and

��� = �2 + �1
2 + 2��1 + �1

2, � =
�2�� + 2�1�
���1

2 + �1
2�

+ 1,

� =
�� − ����� − �1�2 + �1

2�
�� + ����� + �1�2 + �1

2�
. �119�

Consequently

T = − B−1A =�− 1 0 −
1 + �

��

0 1
1 − �

�

0 0 �
� , �120�

and �� �−1,1� is the only non-trivial time-reversal eigen-
value. Bases for the three eigenspaces of T are the columns
of

�1 0 −
1

��

0 1 −
1

�

0 0 1
� , �121�

so the associated eigenspectra are

f−1��� � 1�̂1��� + 0�̂2��� + 0�̂3��� = 1, �122�

f+1��� � 0�̂1��� + 1�̂2��� + 0�̂3��� =
1

i�
, �123�

f���� � −
1

��
�̂1��� −

1

�
�̂2��� + 1�̂3���

= −
�

�2 + �1
2 + 2��1 + �1

2 − ��2�� + 2�1�
���1

2 + �1
2�

+ 1�−1

�
1

i�
+

1

i� + �
. �124�

We show the first of these is momentumlike, the second co-
ordinatelike, motivating their connection to odd ��=−1� and
even ��=+1� parity under time reversal. f���� is not associ-
ated with simple sign change under time reversal, but also
with dilation by �� �−1,1�. Non-trivial parity stems from
macroscopic phenomenology.

According to Eqs. �58� and �66�, superpositions
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Ê− = C−1f−1 + C+1f+1 + C�f�, �125�

give the following work done on the medium:

�p
2W�E−�
��

= C−1
2 + C+1

2 + C�
2

= �f−1,Ê−�2 + �f+1,Ê−�2 + �f�,Ê−�2. �126�

Equation �126� comes from Eq. �125� by projection onto
orthonormal basis �f−1 , f+1 , f��. Inner-product Eq. �55� and
normalized f−1��� independent of � give

��

�p
2 �f−1,Ê−�2 =

��
−�

+�

����f−1�− ��Ê−���d��2

��

�p
2 · 1

=

��
−�

+�

����f−1�− ��Ê−���d��2

�
−�

+�

����f−1�− ��f−1���d�

=

��
−�

+�

����Ê−���d��2

�
−�

+�

����d�
. �127�

Similarly, Eq. �55� and normalized f+1����1 / i� give

��

�p
2 �f+1,Ê−�2 =

��
−�

+� ����
− i�

Ê−���d��2

�
−�

+� ����
�2 d�

. �128�

�38� gives certain sum rules and representations valid for all
simple dielectrics. Using these in Eqs. �127� and �128�, and
inserting the results into Eq. �126�, the work performed by
field E− with spectrum Eq. �125� on a dielectric with oscil-
lator density Eq. �113� reduces to

W�E−��0+� =
�Ṗ�E−��0+��2

2�p
2 +

1

2
k�P�E−��0��2 +

��

�p
2 �f�,Ê−�2,

�129�

k=�0
2 /�p

2 =1 /��0� the dielectric’s “spring constant” Eq. �30�.
In Eq. �129�, the first two terms are: a� the kinetic energy of

a mass �p
2 with momentum Ṗ�E−��0+�, and b� the potential

energy of a mass on a Hooke’s law spring �of spring constant
k� with displacement P�E−��0�= P�E−��0+� from equilibrium:
the odd and even parities of momentum and coordinate under
time-reversal are consistent with the time-reversal eigenval-
ues of kinetic and potential energy being �=−1 and �=+1.
The interpretation of the third term in Eq. �129� for eigen-
value �� �−1,+1� Eq. �119� is more complex:

Theorem 6 (Mode Susceptibilities). If f���� satisfies RH
problem Eq. �64�, then it also solves RH problems

2�� �p

���
����f��− �� =

1

�
����� − ���− �� , �130�

and

2�� �p

���
�����f���� + �f��− ��� = � 1

�
− ����− �� ,

�131�

where the �-susceptibility �����, like ����, is real symmet-
ric and analytic in a closed upper-half plane and at least
order �−1 near infinity. Consequently,

��

�p
2 �f�,Ê−�2 =

1

2�2 �P��E−��0+��2 �132�

with �real� �-polarization

P��E−��t� =
1

�2�
�

−�

+�

�����Ê−���e−i�td� . �133�

Equation �131� shows the residual Z���� of RH problem Eq.
�64� is

Z���� =
�p

2������− ��
� 1

�
− ����− �� , �134�

which vanishes if and only if �2=1. We get Eq. �134� by
comparing Eq. �131� with Eq. �64�, and using
����−������=�p

2����. Equation �131� follows from Eq.
�130� since

1

�
���− �� − ����� + �� 1

�
����� − ���− ���

= � 1

�
− ����− �� . �135�

To get Eq. �130�, note solving the standard RH problem

�+��� +�−��� = ����f��− �� �136�

with O���−1� �46� boundary conditions for unique real sym-
metric (�+��� ,�−���) �analyticity noted by subscripts�
given “data” ����a��−�� lets �64� be written

�−�− �� + ��+��� = Z���� − ��+�− �� + ��−���� .

�137�

Each side of Eq. �137� is analytic in one or the other and then
both closed half planes, vanishes at infinity, and, so, is zero.
The left of Eq. �137� then allows finding �− in terms of �+.
Inserting this into Eq. �136� gives Eq. �130� after �real� res-
caling and relabeling. ����+ is then real symmetric and
order �−1.

Finally, Eqs. �132� and �133� arise from Eq. �130� and
���� and f��−��’s asymptotics �and inner product Eq. �55��:
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�2�

�
P��E−��0+� =

1

�
lim
t↓0
�

−�

+�

�����Ê−���e−i�td� + 0

= lim
t↓0
�

−�

+� � 1

�
����� − ���− ���

�Ê−���e−i�td�

= lim
t↓0
�

−�

+�

2
���p

���
����f��− ��Ê−���e−i�td�

= 2
���p

���
�

−�

+�

����f��− ��Ê−���d�

= 2��
���
�p

�f�,Ê−� . �138�

The second equality holds by Cauchy’s theorem since the
integrands on either side of it are integrable for t�0 even
when �for the left side� the order is only �−1 near �=��,
and since the integrand injected in passing to the right is
analytic and vanishing exponentially rapidly in a closed
lower-half plane for t�0. When the first integrand in Eq.
�138� is order �−2 near �=��, no limit is needed and
P��E−��0+�= P��E−��0−�= P��E−��0�.

The first two terms in Eq. �129� always arise, always giv-
ing

�+1��� =
�0

�p
����, �−1��� = −

1

�p
�− i������ . �139�

They are order O���−2� and O���−1�. For the running ex-
ample there is only one more result: Equation �129� is

W�E−��0+� =
�Ṗ�E−��0+��2

2�p
2 +

1

2
k�P�E−��0��2 +

1

2�2 �P��E−�

��0��2, �140�

where

P��E−��0+� = P��E−��0−�

= P��E−��0�

= aP�E−��0� − bPv�E−��0� ,

a =
��0

���
�p

����1
2 + �1

2�
, b =

������1
2 + �1

2�
�0�p

. �141�

Note � and �v are given in Eq. �114�. Continuity holds since
Eq. �130� gives �� order �−2 near infinity. Specifically �47�,
for s=−i�

����� =
��

3/2�r−1 − 1�

2����1
2 + �1

2�

�� − �1�2 + �1
2

�� + �1�2 + �1
2

�
�0�ps

�s + ����s + �1�2 + �1
2�

= a���� − b�v��� . �142�

C. Fundamental time-reversal theorem

The example of section VB heralds this new result:
Theorem 7 (Free Energy Diagonalization). The minimal

U+�E��0� and maximal U−�E��0� free energies of dielectric
Eq. �35� or Eq. �36� are diagonalized by the �-polarizations
�P�j

�E��0�� j=1
2�N+1� Eqs. �133�, �130�, and �82�:

U−�E��0+� = �
j=1

2�N+1�
��

�p
2 �f�j

,Ê−�2

=
Ṗ2�E−��0+�

2�p
2 +

�0
2P2�E−��0�

2�p
2 + �

j=3

2�N+1� P�j

2 �E−��0+�

2� j
2 ,

�143�

U+�E��0+� = �
j=1

2�N+1�
��

�p
2� j

2�f�j
,Ê−�2

=
Ṗ2�E−��0+�

2�p
2 +

�0
2P2�E−��0�

2�p
2 + �

j=3

2�N+1� P�j

2 �E−��0+�

2
,

�144�

where limits from above � +� are not needed when E0�E is
the space of admissible fields, or if any ��j

��� is O���−2�.
The 2N+2 eigenvalues of dielectric Eq. �35� are enumer-

ated here as �� j� j=1
2�N+1�, with convention �1=−1, �2=+1. To

show Theorem 7 first note that sequences of fields in E are
subsumed in Eqs. �143� and �144�’s frequency-space inner
products: one might naively project field transforms onto
state-space basis �f�j

���� j=1
2�N+1�, ignoring that there is no

E����E whose transform is 1 / i�, and, surely, no E����E0

whose transform is 1. Forming admissible fields with spectra
arbitrarily close to the spectra just described, distance mea-
sured by the norm arising from inner product Eq. �55�, re-
moves the naivete. Below we assume t=0 as justified above.

A past-field E− yields a �real symmetric� state vector

��E−� = „Ê−�z1�, . . . ,Ê−�zN+1�, Ê−�− z1
��, . . . ,Ê−�− zN+1

� �… .

�145�

The basis �f�j
���� j=1

2�N+1� is orthogonal with respect to Eq.
�55�, hence linearly independent over Eq. �55�’s domain of
integration, and then, by their analyticity, over the adjacent

lower-half plane C−. So with real symmetry and Ê−��� ana-
lytic in C−, there are unique, real �Ck�k=1

2�N+1� giving

Ê−�pj� = �
k=1

2�N+1�

Ckf�k
�pj�, j = 1, . . . ,2N + 2, �146�

the pj’s �C− listing ����’s poles as in Eq. �145�. For all �
�C−, define then the past field E−’s orthogonal projection
and orthogonal complement projection via

Ê−���� = �
j=1

2�N+1�

Cjf�j
��� , �147�
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Ê−���� = Ê−��� − Ê−���� . �148�

So for j=1, . . . ,2�N+1�,

�f�j
,Ê−� = �f�j

,Ê−�� . �149�

This follows from the fact that: a� Eqs. �147� and �146� give

Ê−�pj� = Ê−��pj� , �150�

for all j, i.e., Ê−��� and Ê−���� give the same medium state,

and b� for admissible F̂−

�f�,F̂−� � �
−�

+�

����f��− �����− ��F̂−����d�

=
2�i

�
�
j=1

N+1

�Djf��zj���− zj�F̂−�zj�

− Dj
�f��− zj

����zj
��F̂−�− zj

���d� , �151�

which is a state function. Here, we used representation Eq.
�89� of the solution �f��−�� to RH problem Eq. �64�.

Equations �149�, �148�, and �147� give the orthogonality

�Ê−�,Ê−�� = �
j=1

2�N+1�

Cj�f�j
,Ê−�� = 0, �152�

and then estimate

�Ê−�2 = �Ê−,Ê−�

= �Ê−� + Ê−�,Ê−� + Ê−��

= �Ê−��2 + �Ê−��2
 �Ê−��2. �153�

Considerations leading to Eq. �151� show Eq. �153� holds

with past field Ê− replaced by any F̂−���E−� �yielding the

same state�. By Definition 4 and the fact that Ê−� ���E−�,

U−�E��0+� = min
F̂−���E−�

��

�p
2 �F̂−�2	

��

�p
2 �Ê−��2, �154�

but now get

U−�E��0+� = min
F̂−���E−�

��

�p
2 �F̂−�2
 min

F̂−���E−�

��

�p
2 �Ê−��2 =

��

�p
2 �Ê−��2

�155�

using Eqs. �150� and �153� �with Ê−� F̂−�. We get Eq. �143�
proper by using Eq. �147� and basis �f�j

���� j=1
2�N+1�’s orthonor-

mality, giving

�Ê−��2 = �
j=1

2�N+1�

Cj
2 = �

j=1

2�N+1�

�f�j
,Ê−��2, �156�

and then using Eq. �149�, which gives

�Ê−��2 = �
j=1

2�N+1�

�f�j
,Ê−�2. �157�

The other representations in and claims about Eq. �143� fol-
low from Eq. �132� and the considerations for Eq. �138�.

For claims about U+ Eq. �144�, recall Eq. �59�,

U+�E��0+� =
��

�p
2 �Ê+�2, �158�

where Ê+ is the future optimal recovery field for Ê−, i.e., the

first component of solution �Ê+ , Ẑ−� of RH problem Eq. �45�.
From Eq. �89� and its discussion, we see it is a state function,

and, so, as per Eq. �150�, we can replace the data Ê− in Eq.

�45� by Ê−� without changing Ê+ or U+�E��0�:

U+�E��0+� = U+�Ê−���0+� =
��

�p
2 �Ê+�Ê−���2, �159�

emphasizing Ê+’s linear dependence on Ê−�: By Eq. �147�

Ê+�Ê−�� = Ê+� �
j=1

2�N+1�

Cjf�j�
= �

j=1

2�N+1�

CjÊ+�f�j
�

= �
j=1

2�N+1�

Cj� jTf�j
= �

j=1

2�N+1�

Cjf�j

† , �160�

since � jTf�j
= f�j

† is the component Ê+�f�j
� of the solution to

Eq. �64� for data f�j
. So by orthonormality,

U+�E��0+� =
��

�p
2� �

j=1

2�N+1�

Cj� jTf�j�2

= �
j=1

2�N+1�
��

�p
2� j

2Cj
2

= �
j=1

2�N+1�
��

�p
2� j

2�f�j
,Ê−�2. �161�

Here we used the unitarity of T with respect to Eq. �55�.
Equation �161� is Eq. �144�, other claims there following as
for U−�E��0� via Eqs. �132� and �138� of Sec. V B.

The diagonalization in Theorem 7 indicates �in agreement
with Theorem 5� that kinetic and potential energies are al-
ways present in the class of rational dielectrics. The other
terms in the diagonalization, corresponding to eigenvalues
�� �−1,1�, stem from the irreversibility of dissipation and
mark the existence of novel notions of energy dissipative
media.

VI. SUMMARY

General results on free energy in dielectrics have been
presented. We represented the maximal and minimal free en-
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ergies of linear, time-translationally invariant dielectrics by
means of medium eigenexcitation and de-excitation fields.
These eigenmodes completely span the state space of the
dielectric, and they transform in a generalized way under
time reversal, i.e., by signed dilation. The dilating factor �
� �−1,+1� is a time-reversal eigenvalue, and is uniquely
connected with the dissipativity of the medium and the mul-
tiplicity of free energies describing it. Usual notions of time-
reversal parity suggest �=−1 labels the medium’s electro-
magnetic en-masse kinetic energy and �=+1 its
electromagnetic en-masse potential energy. Novel parities as-
sociated with time-reversal values of ����1 arise from mac-
roscopic, irreversible phenomenology, but are otherwise on
an equal footing with those of kinetic and potential energies.
These results give precision to the concerns originally raised
by Landau, Lifshitz, and others �8,35� regarding the thermo-
dynamic admissibility of medium-field energy in dissipative
media.
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APPENDIX A: FREE ENERGY

Dynamical free energies of materials with fading memory
have been studied for some time �13,48–51�. As in ordinary
�near-� equilibrium thermodynamics, a dynamical free en-
ergy is any state function �=��� giving bounds on the
amount of work realizable from transitions between states of
the system �52�: for any path  2←1

= 21
between initial

and final states 1 and 2 of the system,

��2� − ��1�	W� 21
� . �A1�

The right side of Eq. �A1� is the work done on the dielectric
�by a field� via a path between states. If initial and final states
1 and 2 give ��1����2�, rewriting Eq. �A1� as

0� ��1� − ��2�
 − W� 21
� �A2�

shows the difference in the free energies is a positive upper
bound on the amount of work −W� 21

� performable by the
system in making the transition 1→2.

Eq. �A1� is the main ingredient making a free energy a
Lyapunov function for a non-equilibrium system �53,54�: for
example, after an electric field time series E=E�t� ceases to
subsidize the free energy of a dielectric by doing work on it,
Eq. �A1� indicates the state =�t� evolves in time so that
the free energy decreases if evolving at all, i.e.,

���t2�� − ���t1��	 0 �A3�

for all t2� t1 �with inequality in Eq. �A3� usually holding�.
Finally, as in equilibrium thermodynamics a non-negative
dynamical free energy can often be adjusted to vanish on,
and only on, the system’s equilibrium state, so that it mea-
sures deviations of the system from equilibrium. For passive
dielectrics, we will see property Eq. �A3� holds with strict
inequality when �t1� is not equilibrium, indicating a steady

trend to equilibrium when external fields vanish.
A free energy usually gives equality in Eq. �A1� for some

processes, at least between some pairs of states. This gener-
alizes the idea of reversible process from equilibrium ther-
modynamics to systems with memory: they are “as revers-
ible as possible.” Reversible processes missing between
some states forces the existence of multiple free energies
satisfying Eq. �A1� �33,55,56�. We connect this phenomenon
with novel notions of parity under time reversal. This also
gives rise to notions of energy distinct from potential and
kinetic, but having other important properties in common
with those ideas.

Usually there are two extremal free energies Eq. �A1�:

�M�� = min
 

W� 0� = W� 0
min� ,

�m�� = max
 

− W� 0� = − min
 

W� 0� = − W� 0
min� ,

�A4�

are the maximum �M� and minimum �m� free energies for
typical dissipative systems. They are the minimum work re-
quired to create a state  from equilibrium 0 and, respec-
tively, the maximum work extractable from the state  “by
transition to equilibrium.” Equilibrium 0 is often distin-
guished by requiring

W� 0�
 0 �A5�

for any final state  and path  , equality possible for some
path if and only if =0. It can be shown that �M�� and
�m�� both satisfy Eq. �A1�.

Of free energies Eq. �A1� with ��0�=0, �M and �m of Eq.
�A4� are upper and lower bounds, respectively: Eq. �A1�
states

0 − ��1� = ��0� − ��1�	W� 01
� . �A6�

Choice  01
= 01

min, rearrangement and Eq. �A4� then give

��1�
 − W� 01

min� = �m�1� . �A7�

Likewise, Eq. �A1� states

��2� − 0 = ��2� − ��0�	W� 20� . �A8�

Choice  20= 20
min, rearrangement and Eq. �A4� then give

��2�	W� 20
min� = �M�2� . �A9�

Thus, all free energies for the dielectric are bounded above
by �M�� and below by �m��

APPENDIX B: RECOVERABLE ENERGY, A STATE
FUNCTION

The work done by E��� during period �� �t1 , t2� is

�t1

t2W�E� = �
t1

t2

E���Ṗ�E����d� . �B1�

Given �3�, it is also
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�t1

t2W�E� = W�E��t2� − W�E��t1� . �B2�

So note

U+�E��t� = W�E��t� − Q+�E��t�

= W�E−
t + G+

t ��t� − inf
F

W�E−
t + F+

t ��+ ��

= sup
F

− �W�E−
t + F+

t ��+ �� − W�E−
t + G+

t ��t��

= sup
F

− �W�E−
t + F+

t ��+ �� − W�E−
t + F+

t ��t��

= sup
F

− �t
�W�E−

t + F+
t �

= − inf
F
�t
�W�E−

t + F+
t � . �B3�

Beyond Eq. �B2� we used W�E��t�=W�E−
t +G+

t ��t� for any
admissible t-future field G+

t , which is causality Eq. �6�. Equa-
tions �B3� and �B1� give

U+�E��t� = − inf
F
�t
�W�E−

t + F+
t �

= − inf
F
�

t

�

�E−
t + F+

t ����Ṗ�E−
t + F+

t ����d�

= − inf
F
�

t

�

F���Ṗ�E−
t + F+

t ����d� . �B4�

Here we used E−
t +F+

t =F over the integration. So then

U+�E��t� = − inf
F
�

t

�

F���Ṗ�E−
t + F+

t ����d�

= − inf
F
�

t

�

F���Ṗ��E��−
t + F+

t ����d�

= U+�E���t� �B5�

provided, for �
 t,

Ṗ��E��−
t + F+

t ���� = Ṗ�E−
t + F+

t ���� . �B6�

By definition Eq. �13�, Eq. �B6� holds if E−
t and �E��−

t have
produced the same state in the dielectric P�E� at time t. By
Eqs. �B5� and �B6�, the recoverable energy U+�E� is a state
function. Lorentz oscillator examples show that the irrecov-
erable energy Q+�E� and the work W+�E� are not always state
functions.

APPENDIX C: SEQUENCES

In the main text we often pretend the infimum of the
recoverable energy is a minimum, but actually we implicitly
consider sequences. The need to consider sequences when
restricting to the space E of absolutely integrable fields arises
since RH problem Eq. �37� gives factors −i��v��� and
i��v�−�� with simple zeroes at �=0, their reciprocals hav-
ing simple poles at �=0: optimal energy recovery fields have
transforms with singularity structure given by this reciprocal,
yet no field in E has a transform with pole at �=0. Similarly,
factors −i��v��� and i��v�−�� having simple zeroes at �
=� dictates that generic optimal energy recovery fields have
transforms that do not vanish near infinity, yet no field in E
has this property �by the Riemann-Lebesgue lemma �37��.
Consideration of sequences in general is unavoidable �when
these factors have real zeroes� because use of the space E is
nearly unavoidable.

The location of real zeroes of factors solving Eq. �37�
indicate “where” in frequency space sequences must be con-
sidered. These zeroes arise from the real zeroes of density
����, which, for a simple dielectric, are only at 0 and �. If
the density has other real zeroes, sequences of fields in E
with spectrum peaked at these zeroes, but whose limiting
field is not itself in E, must also be considered.

APPENDIX D: UNIQUENESS

Two solutions �Ê+ , Ẑ−� and �Ê+� , Ẑ−�� of Eq. �45� satisfy

− i��v����Ê+ − Ê+�� = Ẑ− − Ẑ−� . �D1�

The left side is analytic and tending to zero in a closed
upper-half plane and the right has that property in a closed
lower-half plane. So both sides are entire and vanishing at
infinity, and, so, are zero by Liouville’s theorem.

�1� V. L. Ginzburg, The Propagation of Electromagnetic Waves in
Plasmas �Pergamon Press, New York, 1964�.

�2� R. Loudon, J. Phys. A 3, 233 �1970�.
�3� Y. Barash and V. Ginzburg, Sov. Phys. Usp. 19, 263 �1976�.
�4� In this paper, a “dielectric” is perfectly describable by macro-

scopic Maxwell equations.
�5� L. D. Landau, E. M. Lifshitz, and L. Pitaevskii, Electrodynam-

ics of Continuous Media, 2nd ed. �Pergemon, New York,
1984�.

�6� L. Brillouin, Wave Propagation and Group Velocity �Academic
Press, New York, 1960�.

�7� As established by the classic Kramers-Kronig result, there is

no such causal media, but there can be frequency windows in
which such an approximation is justified.

�8� J. Jackson, Classical Electrodynamics, 3rd ed. �Wiley, New
York, 1999�.

�9� K. E. Oughstun, Electromagnetic and Optical Pulse Propaga-
tion 1, Springer Series in Optical Sciences Vol. 125 �Springer,
New York, 2006�.

�10� M. Fabrizio and J. Golden, Q. Appl. Math. 60, 341 �2002�.
�11� S. Glasgow, M. Meilstrup, J. Peatross, and M. Ware, Phys.

Rev. E 75, 016616 �2007�.
�12� S. Glasgow and M. Ware, Integrated Photonics and Nanopho-

tonics Research and Applications/Nonlinear Optics/Slow and
Fast Light on CD-ROM �The Optical Society, Washington,

GLASGOW, CORSON, AND VERHAAREN PHYSICAL REVIEW E 82, 011115 �2010�

011115-16

http://dx.doi.org/10.1088/0305-4470/3/3/008
http://dx.doi.org/10.1070/PU1976v019n03ABEH005142
http://dx.doi.org/10.1103/PhysRevE.75.016616
http://dx.doi.org/10.1103/PhysRevE.75.016616


DC, 2009�.
�13� S. Glasgow and M. Ware, Phys. Rev. A 80, 043817 �2009�.
�14� C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305

�1970�.
�15� S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 �1982�.
�16� A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 2071

�1994�.
�17� Z. D. L. V. Hau, S. E. Harris, and C. H. Behroozi, Nature

�London� 397, 594 �1999�.
�18� R. Boyd and D. Gauthier, Progress in Optics �Elsevier, New

York, 2002�, Vol. 43, pp. 497–530.
�19� P. Milonni, Fast Light, Slow Light and Left-Handed Light �In-

stitute of Physics, Bristol, Philadelphia, 2005�.
�20� D. Gauthier and R. W. Boyd, Photonics Spectra 2007, 82.
�21� A. Tip, Phys. Rev. A 57, 4818 �1998�.
�22� The properties of a quantity under time-reversal being other

than of even or odd parity is a generalization made possible by
the absence of macroscopic time-reversal invariance. For the
time-reversal properties of microscopic quantities of electro-
magnetism see �38�’s chapter 6.

�23� P��� and E��� denote magnitudes of parallel/antiparallel vector
fields P��� and E��� in isotropic media.

�24� Notions of causality more flexible than those given include
using the idea of a metric space, which addresses the fact that
arbitrary temporal resolution of fields cannot be performed in
practice, and that measurement always involves a metric such
as the one arising from Eq. �55�.

�25� F. Kuo, Network Analysis and Synthesis �Wiley, New York,
1966�.

�26� V. Belevitch, Classical Network Theory �Holden-Day, Amster-
dam, 1968�.

�27� N. Balabanian and T. Bickart, Electrical Network Theory
�Wiley, New York, 1969�.

�28� B. Anderson and S. Vongpanitlerd, Network Analysis and Syn-
thesis �Prentice-Hall, New Jersey, 1973�.

�29� R. Giles, Mathematical Foundations of Thermodynamics �Per-
gamon, Oxford, 1964�.

�30� W. Noll, Arch. Ration. Mech. Anal. 48, 1 �1972�.
�31� B. Coleman and D. Owen, Arch. Ration. Mech. Anal. 54, 1

�1974�.
�32� B. Coleman and D. Owen, Arch. Ration. Mech. Anal. 59, 25

�1975�.
�33� J. Golden, Q. Appl. Math. 58, 127 �2000�.
�34� S. Glasgow, M. Ware, and J. Peatross, Phys. Rev. E 64,

046610 �2001�.

�35� L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-
ous Media �Pergemon, New York, 1960�.

�36� G. Gentili, Continuum Mech. Thermodyn. 8, 201 �1996�.
�37� W. Rudin, Real and Complex Analysis �McGraw-Hill, New

York, 1974�.
�38� J. Jackson, Classical Electrodynamics �Wiley, New York,

1975�.
�39� P. Deift, Orthogonal Polynomials and Random Matrices: A

Riemann-Hilbert Approach �AMS, New York, 1998�.
�40� L. Deseri, M. Fabrizio, and M. Golden, Arch. Ration. Mech.

Anal. 181, 43 �2006�.
�41� J. Plemelj, Monatsh. Math. 19, 205 �1908�.
�42� This infinite dimensional space is exclusively responsible for

generating nonzero waste energy Q−�E��0�.
�43� This does not contradict uniqueness of solutions �Ê+ , Ẑ−� of
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