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ABSTRACT 
Recent developments in the active control of cooling fan noise have used error sensors to drive 
the pressure at locations in the near field to zero1.  Theoretical mapping of near-field pressure 
during minimization of sound power reveals the location of pressure nulls that can be used to 
optimize the location of the error sensors. To this point, the locations of error sensors have been 
determined by modeling both the fan and the control loudspeakers as point monopoles.  
However, noise from an axial fan has multipole as well as monopole characteristics.  The 
multipole characteristics of the fan can be obtained using a procedure based on the work of 
Martin and Roure2.  Pressure values are obtained over a hemisphere in the far field of a primary 
source and the contributions from multipoles up to the second order, centered at the primary 
source, may be calculated using multipole expansions.  The source characterization is then used 
in the aforementioned theoretical near-field calculation of pressure. 
 

1. INTRODUCTION 
The electrical components used in common appliances around the contemporary home and 
workplace generate heat and, therefore, require the use of a cooling system  Fan noise 
characterization is a widely studied field of acoustics due to its applications in the cancellation of 
unwanted noise.  Experts in fan noise have utilized various methods to characterize fan noise 
such as acoustical measurement3–7, mathematical derivation8–12, and numerical analysis13–16 The 
central motivation for many of the referenced studies is to more effectively cancel the unwanted 
noise from cooling fans.  Although passive techniques may be used to cancel some of the 
unwanted noise produced by cooling fans, the focus of this paper is optimization of the active 
cancellation of noise from an axial cooling fan. The fan used in this study is a 60 mm axial 
cooling fan. 
 Active cancellation of noise from any primary sound source requires the use of error 
sensors whose placement has an effect on the amount of global attenuation achievable by the 
active control system1,17–21.  The central role of the active control system is to drive the pressure 
at the error sensor to zero22.  As the acoustic pressure at the error sensor approaches zero, the 
radiated sound field from the actively controlled system is globally minimized.  Gee and 
Sommerfeldt showed that the locations of the error sensors in the near-field of the primary 
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source may be determined from a theoretical calculation of the near-field pressure that occurs as 
a result of the minimized sound power between the primary source and control actuators1.  In this 
experiment, the theoretical near-field pressure null that results from the aforementioned sound 
power minimization is calculated assuming that the primary source radiates as a point monopole 
acoustic source.  This model has limited accuracy if the primary sound source does not have 
point monopole characteristics.           
 The radiation of sound from axial cooling fans can be characterized as monopole, dipole, 
and quadrupole type noise11.  The spectral content of the monopole noise is discrete in nature, 
correlating with the blade passage frequency of the fan as well as its harmonics, and is caused by 
volume displacements in the flow of the fan.  The dipole noise from a fan is caused by both the 
steady and unsteady rotating forces and is the source of discrete and broadband noise in the fan 
spectrum.  The quadrupole noise is broadband in nature and is caused by turbulent flow from the 
fan.  Because fans have multipole characteristics, it is necessary to explore the contribution from 
each multipole (i.e. monopole, dipole, quadrupole) that may be used to characterize the sound 
radiation from any individual cooling fan.  A more accurate model of the sound radiation from a 
cooling fan can then be used to possibly improve the prediction of error sensor placement in 
active noise control and increase global sound power reductions. 
 

2. MULTIPOLE EXPANSION 
 

A. Spherical Harmonic Coefficients 
 A multipole expansion may be used in characterizing the acoustic radiation from any 
arbitrary noise source.  Because a spherical harmonic expansion is similar in both derivation and 
usage to a multipole expansion, it is necessary to discuss the differences between them23.  The 
spherical harmonic expansion for a sound source is used to determine the spherical harmonic 
coefficients and is calculated from the complex pressure field measured on a sphere surrounding 
the noise source2,24–25.  In the multipole expansion, the previously determined spherical harmonic 
coefficients are used to derive the complex source strength of individual multipoles that 
correspond to specific spherical harmonics (i.e. monopole, dipole, quadrupole).  These 
multipoles are point sources whose phase and amplitude are determined from the spherical 
harmonic coefficients.  For the dipoles and quadrupoles the point sources are separated by a 
distance, d.  The maximum value of this distance is the radius of the smallest sphere containing 
the source of interest25.  
 The spherical harmonic coefficients may be obtained by the Helmholtz equation for an 
acoustic pressure.  The following equation is a representation of the Helmholtz equation in 
spherical coordinates, 
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where r is the distance from the source to the edge of the measurement sphere, p̂  is the complex 
acoustic pressure, θ is the zenith angle, and!  is the azimuth angle.  The time-harmonic solution 
to this equation can be expressed as a summation in the following manner, 
 

 ( ) ( ) ( ) ( )!!!!
====

+=
n

m

m

nnm

N

n

n

n

m

m

nnm

N

n

n mPBkrhmPAkrhrp
11

)1(

00

)1( sincosˆˆcoscosˆˆ),,(ˆ "#"#"#         (2) 



 
where ( )krh

n

)1(ˆ  is the spherical Hankel function for outgoing spherical waves, ( )!cos
m

n
P  is the 

associated Legendre polynomial, and Anm and Bnm are the complex spherical harmonic 
coefficients up to a specified order, N.  In matrix form the solution becomes, 
 
 ATP =                                                                                                                                 (3) 
 
where P  is a vector of complex pressure values, T is a matrix of spherical harmonics and 
Hankel functions, and A  is a vector of spherical harmonic coefficients. If the complex pressure 
is measured over a hemisphere surrounding the primary sound source the spherical harmonic 
coefficients may be calculated using a least squares approximation2,26 of the inverse of the T 
matrix 
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where H

T  is the Hermitian transpose of the T matrix.  The values calculated for the spherical 
harmonic coefficients indicate the relative contribution of each individual multipole.  An 
example of the typical values calculated for spherical harmonic coefficients is given in Table 2.  
The multipoles calculated for a second order (N = 2) approximation is found in Table 1. 
 

Coefficient Multipole 
A00 Monopole 
A01 Dipole (centered on the z-axis) 
A11 Dipole (centered on the x-axis) 
B11 Dipole (centered on the y-axis) 
A02 Pseudo-longitudinal Quadrupole (z-axis) 
A12 Lateral Quadrupole (xz plane) 
B12 Lateral Quadrupole (yz plane) 
A22 Axial Lateral Quadrupole (xy axis) 
B22 Lateral Quadrupole (xy plane) 

Table 1:  The specific type of multipole corresponding to each spherical harmonic coefficient up to 
the second order (N=2). 
 
B. Calculation of Multipole Source Strengths  
 The source strength of each contributing multipole in the expansion is derived from the 
analytical expression for that specific multipole27–28.  As an example, the analytical expression 
for the z-axis dipole can be expressed in two ways, 
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where k is the acoustic wave number, c is the speed of sound, 

0
! is the ambient density of the 

medium, d is the separation distance of the point sources, and dzq̂  is the source strength of the 



two point sources.  The two equivalent expressions are solved for the source strength of the 
dipole sources to yield 
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 The source strengths of all the other multipoles in the expansion are derived in a similar 
manner.  The pressure field anywhere outside the minimum sphere containing the sound source 
may be reconstructed as a superposition of multipole pressures.  A map of the near-field pressure 
may be obtained using the source strengths and point source configurations of each individual 
multipole.   

 
3. MEASUREMENT AND DATA PROCESSING 

 The complex pressure is obtained over a hemisphere surrounding the cooling fan using an 
angular microphone array with a radius of approximately 1.5 meters and spanning 180° in θ (90° 
in each direction from the zenith).  The array consists of thirteen ½" ICP microphones and is 
rotated in ten degree!  (azimuth) increments for a total of 234 measurements on the hemisphere 
surrounding the fan.  In each measurement the complex pressure is calculated as shown, 
 
 ( )!jHxy xyref=ˆ                                                                                                                (8) 

 
where the expression in x is the square root of the power spectrum for the central and stationary 
microphone on the angular array and the expression in H is the transfer function between the 
central microphone and another individual microphone on the array. 
 The measured complex pressure is imported into MATLAB and the spherical harmonic 
coefficients are calculated using the least squares approximation (4).  The source strength of each 
individual point source is calculated following the procedure in (5)–(7).  These source strengths 
are then used to reconstruct the pressure field at the same 234 positions originally used in the 
measurement.  The reconstructed pressure field is compared to the original measurement by 
calculating the mean error at each point on the hemisphere.  A benchmark case was measured 
and processed using two loudspeakers 4¼" apart and wired 180° out of phase.  The center of 
 

4. EXPERIMENTAL RESULTS 
 A benchmark case was measured and processed using two 1" loudspeakers 4¼" apart and 
wired 180° out of phase.  The center of the dipole loudspeaker arrangement was placed in the 
geographic center of the measurement hemisphere. The multipole reconstruction was accurate 
within a mean value of 0.5 dB.  The results are shown in Fig. 1.  
 

 



 
 A 60 mm cooling fan, installed in a rectangular box, was placed at the geographical center 
of the hemispherical measurement array.  The complex pressure was measured and processed as 
discussed in Sec. 3 with a mean error of 0.6 dB.  The spherical harmonic coefficients calculated 
indicate that the fan in the box may be characterized by a monopole and a z-axis dipole (Table 
2).  The monopole and z-axis dipole (A00 and A01) contribute the most to the acoustic radiation of 
the fan.  Each of the other multipoles radiated at 13 to 20 dB less than the monopole and z-axis 
dipole. A comparison of the results for the cooling fan is found in Fig. 2.    
 

Coefficient Value 
|A00| 0.0857 
|A01| 0.0730 
|A11| 0.0202 
|B11| 0.0143 
|A02| 0.0248 
|A12| 0.0142 
|B12| 0.0096 
|A22| 0.0051 
|B22| 0.0013 

Table 2:  The absolute value of the spherical harmonic coefficient calculated from the complex 
pressure in a hemisphere surround the axial cooling fan. 
 

 
Figure 2:  The measurement and reconstruction of the cooling fan at its blade passage 
frequency, 653 Hz.  The multipole reconstruction is plotted on the same dB color scale as the 
original pressure measurement. 
 
 The monopole and z-axis dipole point sources were used to map the pressure in a plane 
located ¼" above plane containing the cooling fan.  The map was calculated as the near-field 
pressure due to minimized sound power of the primary source(s) using four symmetrically 
located control actuators in the actual locations of previous control systems used for the active 
cancellation of fan noise.  The pressure map was calculated both for the fan modeled as a single 
point monopole source as well as the monopole/dipole source found from the multipole 

Figure 1:  The dipole that was measured was located along the cartesian x-axis.  The multipole 
reconstruction is plotted on the same dB color scale as the original pressure measurement. 



expansion.  The near-field pressure nulls differ between fan models, indicating the need to 
relocate the error sensors.  As shown in Fig. 3 and Fig. 4 the pressure nulls between the control 
actuators become less defined and protrude further from the center. 
 

 
Figure 3:  A theoretical prediction of the pressure nulls resulting from minimized sound 
power of the primary source.  The map is plotted as the pressure referenced to the 
primary pressure field with the stars indicating the locations of the control actuators and 
the circle indicating the location of the primary source. 

 

 
Figure 4:  A theoretical prediction of the pressure nulls resulting from minimized sound 
power of the primary sources.  The map is plotted in the same manner as in Figure 3.  
The z-axis dipole is not visible because the pressure is plotted in the xy plane only 0.25 
inches above the plane of the monopole source and control actuators. 

 



5. CONCLUSION 
 A multipole expansion may be used to more accurately model the noise from an axial 
cooling fan.  The multipole expansion model of acoustic noise may be used for any type of noise 
source.  For example, it can be difficult to find the optimum locations of near-field error sensors 
for many different types of fans in different installations.  When the multipole expansion model 
of fan noise is used, such error sensor locations may be more accurately represented in the near-
field pressure map.  The accuracy of the multipole expansion may be calculated using the error 
between the reconstructed multipole pressure field and the original measurement.  The mean 
error in both the benchmark case and the axial cooling fan was much less than one dB. 

The noise from the axial fan can be characterized with a monopole and a dipole that is 
oriented in the flow of the fan.  This dipole may be primarily due to the positive and negative 
pressure fluctuations as the air flows through the fan enclosure.  In the near-field pressure map 
the presence of the dipole in the z-axis greatly altered the locations of the pressure nulls used in 
locating error sensors.  In future work, the error sensors will be placed in the locations 
determined in the multipole expansion model of the fan and the amount of global attenuation 
achieved will be compared to the attenuation achieved when the error sensors are located 
according to a point source model of the fan. 
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