
PHYSICAL REVIEW E 108, 064215 (2023)

Sloppy model analysis identifies bifurcation parameters without normal form analysis
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Bifurcation phenomena are common in multidimensional multiparameter dynamical systems. Normal form
theory suggests that bifurcations are driven by relatively few combinations of parameters. Models of complex
systems, however, rarely appear in normal form, and bifurcations are controlled by nonlinear combinations of the
bare parameters of differential equations. Discovering reparameterizations to transform complex equations into
a normal form is often very difficult, and the reparameterization may not even exist in a closed form. Here we
show that information geometry and sloppy model analysis using the Fisher information matrix can be used to
identify the combination of parameters that control bifurcations. By considering observations on increasingly
long timescales, we find those parameters that rapidly characterize the system’s topological inhomogeneities,
whether the system is in normal form or not. We anticipate that this novel analytical method, which we call
time-widening information geometry (TWIG), will be useful in applied network analysis.
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I. INTRODUCTION

This paper provides a method for extracting bifurcation
parameters from a set of dynamic equations by combining
information geometry and bifurcation theory. Both are useful
for modeling multiparameter systems and systems with multi-
ple regimes of behavior respectively, but together they provide
methods for data-driven analysis of a wide array of natural
phenomena. By creating an explicit connection between the
information in the signal (model output) and the model param-
eters, we identify the combinations of parameters responsible
for topological change in the dynamics, the codimension of
the bifurcation, and the timescale necessary to resolve this
information. The information further provides the directions
normal to the separatrix, which divides behavioral regimes of
the system.

Traditionally, when confronted with a high-dimensional,
multiparameter system of dynamic equations, bifurcation
analysis proceeds by attempting to simplify the system to
a manageable size. Center manifold reduction exploits the
Hartman-Grobman theorem [1] to create a lower-dimensional
linear map in the region of a critical point that is locally
accurate and is a rapid way to determine the system stabil-
ity. Shoshitaivishili extended this method to nonhyperbolic
equilibria, creating a container for critical modes to straighten
out nonlinear terms and, ideally, drop some of them [2]. Such
methods have been used to describe phenomena as diverse as
neural network optimization and foraging decisions in mon-
keys [3,4].

A related approach is the method of Poincaré-Birkhoff
normal forms. It uses appropriately centered manifolds to
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analyze which nonlinear terms are essential and must re-
main even under optimal coordinate transformations. Such
transformations are useful, because the reduced normal-form
equations typically have greater symmetry than the initial
problem, a property that can be exploited by many analytical
tools. Though powerful, “in practice lengthy calculations may
be necessary to extract the relevant normal-form coefficients
from the initial equations” [2]. Even if such coefficients can
be found, neither their interrelationship nor their relative sen-
sitivities are always apparent. It is often the case that some
parameters differ by many orders of magnitude in their effect
on long-term dynamics, and a method that does not distin-
guish among them is suboptimal for most applications.

The method of Lyupanov exponents is an admirably gen-
eral tool for analyzing the global stability of a system.
Unfortunately, it provides little information about which spe-
cific parameter combinations lead to system (in)stability. For
the purposes of bifurcation analysis, it is therefore some-
times paired with sensitivity analyses based on the global
sensitivity metrics of Sobol’ [5]. These measures, along with
useful extensions such as the Fourier amplitude sensitivity
test and importance measures [6–8], are able to determine
exactly how much of a model’s variability is due to each of
its parameters. While this often works in practice, there are
two potential pitfalls in this approach. First, it assumes that
the parameters responsible for variability are also responsible
for instability, which is not always the case. Second, if the
bifurcation is caused by combinations of many parameters
(as frequently happens), then variability will often be high
across all these parameters even though the bifurcation itself
has a low codimension. In other words, a low-dimensional
bifurcation surface generally cuts diagonally across param-
eter space unless appropriately reparameterized. Once such
a transformation is applied and the system is reduced to a
normal form (see Sec. III), then the codimension should be
apparent, but finding that reparameterization is still likely
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to be cumbersome, if not impossible, in closed form. Just
one such transformation can require several papers, as in
the case of high-dimensional diffusion-activated processes
from Kramers, through Langer, and finally to one dimension,
derived using iterations of singular value decomposition by
Berezhkovskii [9].

A third, independent line of analysis comes from renor-
malization group (RG) methods, which are usually applied to
study universal power laws near critical points. Feigenbaum
[10] was the first to note such universalities in bifurcations
of the discrete period-doubling type, a result that he and
others extended until it included all major bifurcation types
[11–15]. Working from the other direction, scientists inves-
tigating critical phenomena with RG (e.g., many behaviors
of quantum chromodynamics) have discovered bifurcations
and used the tools of one to analyze the other [16,17]. A
remarkable study found deep equivalence between RG trans-
formations and normal form theory, showing that the difficult
transformation of an ODE system into a normal form could
often be accomplished to at least second order by applying
three RG transforms [18].

More broadly, universal scaling laws and RG analysis of
critical points is often associated with emergence and the sys-
tematic irrelevance of many degrees of freedom. Recent work
has extended these ideas to a broader class of systems known
as “sloppy models” [19–23]. The moniker “sloppy” is meant
to convey that these systems have a few combinations of
parameters that are many orders of magnitude more influential
than other parameter combinations. More precisely, one unit
change in a “stiff” parameter direction has as much influence
as a million or more unit change in a different “sloppy” direc-
tion. Sloppy model analysis relies heavily on the techniques
of information geometry [20,24,25] and in this paper we use
the terms interchangeably. These techniques have motivated
novel reduction algorithms by removing unimportant, sloppy
parameters [25–27]. Recent work [28] demonstrates that as
coarse-graining of RG models proceeds, the flow causes infor-
mation of “relevant” parameter combinations to be maintained
while “irrelevant” parameters are compressed and become
sloppy. These ideas share a common goal with bifurcations
analysis in which many diverse systems are collected into
a few universal, normal forms. This paper closes the loop,
showing how information geometry applies directly to bi-
furcation analysis without passing through the “middleman”
of renormalization group theory. The usefulness of such an
analysis, which we call time widening information geometry
(TWIG), also circumvents the need for the other types of
analyses described above.

In this work, we demonstrate similar notions of “rele-
vant” and “irrelevant” parameters near a bifurcation using
the formalism of information geometry and sloppy models.
The intuition behind this approach is as follows. Topological
inhomogeneities in the flow field produce trajectories contain-
ing different information on either side of a bifurcation. For
example, on one side of a Hopf bifurcation, all trajectories
collect into a central fixed point, while they flow into an orbit
(limit cycle) on the other side. TWIG works by measuring the
information content in these trajectories at increasingly long
timescales and identifying those combinations of parameters
to which the trajectory is most sensitive. At long timescales,

these are the parameters responsible for the bifurcation,
while parameters that cause only local variability have less
impact.

Information geometry can be applied to complex systems
from many disciplines—but especially systems biology—to
iteratively “reverse engineer” optimal statistical models by
removing parameters whose value has little influence on the
macroscopic behavior of the system [19,21,26,29]. However,
it was recently appreciated that such reverse engineering can
be done even if the underlying system bifurcates into qualita-
tively different behaviors, because the information geometry
of parameters participating in the bifurcation show a charac-
teristic “sand dune” shape when crossing from one behavioral
state to another [30]. These results imply that if the functional
form of the system is known, then it should be even easier to
determine bifurcation parameters than if the system’s equa-
tions need to be inferred.

This paper is organized as follows: In Sec. II, we pro-
vide background information on bifurcations and information
geometry generally and, specifically, how we conceptualize
them for the purposes of applying the latter to the analysis
of the former. In Sec. III, we show how an IG analysis of
the normal form bifurcations rapidly provides insight into the
structure of bifurcations simple enough to be understood by
other methods. Section IV shows how this analysis extends
to more difficult bifurcations, the implications of which are
summarized in Sec. VI.

II. BACKGROUND AND PROBLEM FORMULATION

A. Bifurcations

Bifurcations frequently arise in the analysis of dynamical
systems, where one typically characterizes the flow field with
special attention to any fixed points or stable oscillations [31].
Consider a generalized system of n-coupled dynamic equa-
tions, where each equation is of the form ẏ = f (y; θ ), where
θ is a vector of m parameters. Small changes to any of the
θi values typically result in correspondingly small changes to
the n-dimensional vector field, such as small changes to the
position of a fixed point or radius of a limit cycle. Such de-
formations are topologically equivalent (meaning the number
and properties of the attractors and repellers in the field do
not change) and homeomorphic (continuous with a continu-
ous inverse). However, there may be critical parameter values
where a small change causes new fixed points to emerge from
old ones, two fixed points to approach and be mutually anni-
hilated, or limit cycles to be broken. Such nonhomeomorphic
transformations are generically called bifurcation no matter
their exact form.

Several types of simple bifurcations have been identified
and reduced to their simplest possible mathematical expres-
sion. These are the “normal forms” and are enumerated in
the section below. These forms are convenient starting points
for analysis, since they have clearly defined rate parameters
that are unambigiously responsible for causing topological
inhomogeneities. However, even elegant mathematical de-
scriptions of real-world dynamical systems rarely conform
exactly to one of the normal forms.
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FIG. 1. (a) The model manifold in data space represents all values that can be reached. The axes represent directions that are distorted in
characteristic ways as tmax increases. They can be contracted (irrelevant), expanded (hyperrelevant), or unchanged (relevant). (b) Relevance
can be quantified by observing the eigenvalues of the Fisher information matrix as tmax is increased. Eigenvalues that do not change at longer
timescales retain their relevance, while those that increase or decrease become either more or less relevant.

Bifurcation parameters for physical models often do not
align with the bare parameters. In the classic example of
boiling liquid, the bifurcation parameter is some combination
of temperature, pressure, salinity, and others. In general, a
reparameterization to a single, unambiguous bifurcation pa-
rameter may be possible in principle but often requires either
substantial additional physical insight, mathematical sophis-
tication, or both. Some researchers have even recommended
building an analogous physical circuit as the fastest method
to detect the bifurcation [32]. Complex models can have
hundreds of coupled dynamic equations with thousands of
parameters (e.g., models of sophisticated mobile phone circuit
boards [33] or complex protein networks [34]). How can we
determine which parameter (or, more likely, combination of
parameters) is responsible for the bifurcation in such cases?

B. Information geometry

The fundamental object of information geometry is the
Fisher information matrix (FIM or I), which quantifies the
information that the observations y contain about the parame-
ters θ of a dynamical system. Here we introduce the FIM for
dynamical systems.

Consider a system of ordinary differential equations where
the parameters are tuned to be exactly at their critical values,
i.e., the system is at (one of) its bifurcation point(s). The
system is allowed to evolve, and the trajectory of one of its
equations y j is sampled at several time points y j (ti ), where
ti = t0 + i

n tmax. To help visualize this process, let us imagine
a one-dimensional system,

y(t ) = θ1 + e−θ2t + eθ3t , (1)

sampled at t = {1, 2, 3} to create a vector of three observa-
tions y = {y(t1), y(t2), y(t3)} which we plot in R3, i.e., data
space. If θ3 > 0, then there is no equilibrium; if θ3 = 0 and
θ2 > 0, then the equilibrium is at θ1 + 1 or θ1 + 2 if θ2 = 0.
As the parameters of θ change, the position of y will also
change, but except for extreme values of θi, it cannot reach
all possible values in R3. The space filled by values of y that
can be reached for a given range of parameter values defines

the model manifold. A schematic of such a manifold is drawn
in Fig. 1(a).

The Fisher information is most commonly defined in
probabilistic terms as the expected Hessian matrix of the log-
likelihood:

I = −E

[
∂2

∂θ2
logL(θ |d )

]
, (2)

where θ is a vector of parameters and d is the data. For
deterministic systems such as we consider here, it is standard
practice to assume that measurements are obscured by addi-
tive Gaussian noise,

di = y(ti ) + ζ , (3)

where y(ti ) is the (deterministic) output of the model at time ti
and ζ is standard normal random variable ζ ∼ N (0, 1). This
assumption defines a probability distribution to which Eq. (2)
can be applied [24]. Because this construction is so common
in information theory, it is often referred to as the sensitivity
Fisher information matrix or sFIM [35] for reasons that will
soon be apparent. In general I can be expressed in terms of
the first derivatives only

I = −E

[
∂2

∂θ2
logL(θ |d )

]
, (4)

= E

[
∂

∂θ
logL(θ |d )

∂

∂θ
logL(θ |d )

]
. (5)

Using the second form, one can show that sFIM becomes

Ii, j =
M∑

k=1

Jk,iJk, j = (JT J )i, j, (6)

where we have introduced the Jacobian or sensitivity matrix
Jk, j = ∂yk

∂θ j
whose entries denote the sensitivity of prediction k

to changes in parameter j. In Eq. (6), M denotes the number
of observations.

The entries of the FIM indicate the sensitivity of the
model’s trajectory to changes in each pair of parameters. A
high score indicates that a parameter pair has a strong in-
fluence on model dynamics, while a small score indicates a
“sloppy” direction (parameter values can change a great deal
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without much changing y). The curvature of the likelihood
function converts distances in parameter space to distances on
the manifold in data space, making the FIM a Riemannian
metric tensor on the model manifold in data space. It is impor-
tant to note that the physical units of parameters can strongly
affect the values of the FIM. For this reason, it is common to
perform dimensional analysis before sloppy model analysis as
we do throughout this study.

In general the curvature of the likelihood surface does not
align with the bare parameters. Rather, the characterization
of the model’s sloppiness aligns with the eigenvectors of I.
Eigenvalues of the FIM are related to the singular value de-
composition of J = U�V T :

I = V �2V T , (7)

where U and V are matrices of the left and right singular
vectors of J and � is the diagonal matrix of its singular values.
This implies that the right singular vectors of the Jacobian V
are also the eigenvectors of the FIM. The eigenvectors of I
“orient” the parameter space into the parameter combinations
most relevant for changing the model’s behavior.

Imagine now that we coarsen the sampling rate by chang-
ing tmax. In our simple example, increasing tmax from 3 to 6
means the model y is sampled at t = {2, 4, 6}. This procedure
stretches the manifold in some directions and compresses it
in others. This distortion is measured by an increase or de-
crease in the eigenvalues of I, respectively. Compression of
the manifold (i.e., decreasing eigenvalue) with increasing tmax

indicates that the combination of parameters is less important
to the long-term dynamics. We call the corresponding eigendi-
rection “irrelevant.” Similarly, if the manifold stretches (i.e.,
increasing eigenvalue), then we call the corresponding direc-
tion “hyperrelevant.” Directions that are neither compressed
nor stretched are called “relevant” directions [Fig. 1(b)]. Re-
turning to the example in Eq. (1), θ1 is relevant since its
effect on the model’s output is unchanged with observation
time. In contrast, θ2 is irrelevant since the exact rate of the
decay matters less as timescales become very large, and θ3 is
hyperrelevant since small changes have large effects at large t .
Note that θ2 and θ3 are functionally interchangeable if either
is negative.

This procedure is similar to coarse-graining under RG flow
described in Ref. [28] and is used to generate their Fig. 1. In
our case, however, because we are coarsening the sampling
rate, the total observation time increases and includes new
information, i.e., observations at later times. As such, it is
not a true coarse-graining and introduces the possibility of
hyperrelevant directions, i.e., directions that become increas-
ingly important such as θ3. We will see that hyperrelevant
directions are associated with the stability or instability of the
equilibrium.

This method is also somewhat analogous to studies that
use Sobol’ sensitivity analysis to track importance at different
timescales, either bare parameters or eigenvalue combina-
tions. Such methods are excellent at providing estimates of
model variability at a given point in parameter space and
have noted both increasing and decreasing importance for
model parameters of biophysical systems [36,37]. Critics note
that these methods are computationally expensive, even when

implementing Morris acceleration [38], and the implications
for bifurcation analysis are not immediately obvious.

In addition to characterizing bifurcations, TWIG analy-
sis reveals two other features of bifurcating systems. First,
there can be parameters (or combination of parameters) that
move the location of a fixed point without causing a bifur-
cation. Such parameter combinations appear as “relevant”
eigendirections, as the new equilibrium appears in long-time
observations. These parameters need to be removed in order
to correctly identify the codimension of the bifurcation. We
do this by solving for the location of the fixed point with a
numerical root-finding algorithm and subtracting it from the
trajectory at every point. This effectively translates the fixed
point to the origin and is analogous to the recentering step
of center manifold analysis. For limit-cycle trajectories, we
recenter by subtracting off the (unstable) fixed point that must
exist within the cycle (according to the Poincaré-Bendixson
theorem [39]).

The second feature arises in such oscillating systems.
Parameters that change the phase or frequency of oscil-
lation without destroying the equilibrium itself appear as
hyperrelevant as the accumulating phase difference becomes
increasingly important at late times. Previous research has
shown that such systems frequently cause problems in an
information geometry framework by introducing “ripples”
into the likelihood surface of Eq. (2). The solution is to
perform a coordinate transformation so the period itself be-
comes a parameter. In one formulation of the FIM, this
causes the manifold to “unwind,” creating a smooth like-
lihood surface [40] and thereby eliminating a misleading
eigendirection.

Four important pieces of information come from this
TWIG analysis. First, the number of hyperrelevant and
relevant directions corresponds to the codimension of the
bifurcation system. Second, the square of each element of
the eigenvector matrix Vi j indicates the participation factor
of each bare parameter θi in eigenvector j. This last fact
follows because the participation factor pi j ≡ Ui jVi j = V 2

i j as
can be seen by combining the definition of a participation
factor [41,42] with Eq. (7) above which shows that the left
and right singular vectors of the FIM are identical. Third, the
eigendirections themselves will change as tmax increases and
parameters that influence the short-term dynamics lose their
salience at long timescales. If initial conditions are included
as parameters, then their loss of relevance is a strong indicator
that the system has been simulated “long enough” to capture
equilibrium behavior. This is not a trivial concern in practice,
where long numerical simulations are always fighting the
accumulation of computer round-off error. Finally, at equilib-
rium the relevant eigendirections point along the (potentially)
high-dimensional separatrix surface, and so the bifurcation
can be mapped through all parameter space.

Note that this procedure works no matter the number of dy-
namical variables involved in the differential equation system.
However, it presupposes that the model can be simulated on
at least one side of the bifurcation to arbitrarily long times,
i.e., it analyzes stable dynamics on the threshold of instability.
A bifurcation that switches between two different forms of
instability will not be easily detectable with this method, as
trajectories will diverge on both sides of the bifurcation. In
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the next section, we demonstrate how this procedure works
for all common normal forms of bifurcations.

III. NORMAL-FORM BIFURCATIONS

Local bifurcations can be described mathematically in a
potentially infinite number of ways, but nearly all of them can
be reparameterized, at least locally, to one of five kinds of
normal forms. These are as follows:

(1) Saddle-node: ẋ = r + x2, where one stable and one
unstable fixed point emerge from a previously uninterrupted
flow at a critical value rcrit

(2) Transcritical: ẋ = rx − x2, where a stable and an un-
stable fixed point exist everywhere but at the bifurcation, and
swap stability at the critical value

(3) Supercritical pitchfork: ẋ = rx − x3, where symmetric
stable fixed points emerge from a single fixed point, which
itself becomes unstable

(4) Subcritical pitchfork: ẋ = rx + x3, symmetric unstable
fixed points emerge from an unstable fixed point, which itself
becomes stable

(5) Hopf: a stable limit cycle emerges from what had
previously been a stable point attractor. Depending on the
coordinate system, the normal form is ż = z(a + b|z|2) (com-
plex), ẋ = −y + x(μ − r2); ẏ = x + y(μ − r2) (Cartesian),
or ṙ = r(μ − r2); θ̇ = −1 (polar).

A method able to detect bifurcation parameters for these
types of bifurcations will detect the overwhelming majority
of bifurcations we are likely to encounter. The Fisher infor-
mation as a function of tmax for each bifurcation type has a
closed-form solution, which complements and validates the
numerical results that we present here (see Appendix A).
In each case, the sensitivity with respect to the bifurcation
parameter, r, dominates the long-term dynamics of the system
in the neighborhood of the bifurcation, no matter how many
other higher-order parameters are added to the normal form.

For example, a supercritical pitchfork of the form ẋ =
rx − x3 + α1x4 + α2x5 . . . experiences a bifurcation when
r = αi = 0. At short timescales (e.g., where tmax < 1), the
system’s trajectory is strongly influenced by changes to its
initial value x0 and the higher-order α terms (for x0 > 1).
However, later dynamics show that changes to the α′

is (and
x0) barely affect the trajectory of approach to equilibrium at
0, while small modifications to r move the equilibrium itself
(Fig. 2). An eigenanalysis of the FIM (Fig. 3) quantifies these
insights and clearly demonstrate the effect of coarse-graining
on the system (i.e., increasing tmax while keeping the number
of samples constant). At very short timescales (tmax < .05),
x0 and the highest-order α term are the main participants of
the leading eigenvector, and x0 soon falls off as tmax increases;
recall from Fig. 2 that this high-order term was equivalently
able to bend the trajectory significantly until t ≈ 1. Around
tmax = 10, r begins to have a noticeable influence on the ob-
served trajectory, and correspondingly this is the point where
r becomes the dominant participant in the leading eigenvector.
For large tmax, the leading eigenvalue increases while all other
eigenvalues decrease, indicating that the system’s bifurcation
is codimension one. Note that in this range, small changes to
the initial value x0 have fallen all the way to the last eigenvec-
tor, indicating that the system has been allowed to run long

time

x
0.

0
0.

5
1.

0
1.

5
2.

0

10−2 10−1 1 10 100 1000

x⋅ = rx − x3 + α1x
4 + α2x

5 + α3x
6 + …

x0 = 2 all = 0
x0 = 1.9
r = 0.03
α1 = 0.03
α2 = 0.03
α3 = 0.03
α4 = 0.03
α5 = 0.03

FIG. 2. The trajectory of a supercritical pitchfork at the bifur-
cation point (heavy black line), and slightly perturbed from it (thin
colored lines). At short timescales, y0 (thin red) and high-order
parameters (long-dashed blue) appear relevant. But as the dynamics
progress, r (short-dashed yellow) emerges as the only parameter that
changes the long-term equilibrium point. This change from relevant
to not (and vice versa) occurs at t ≈ 10 and is reflected in the arch
shape and changing colors of Fig. 3.

enough that transient dynamics are removed or at least have
orders of magnitude less influence than any of the nuisance
parameter α′

is. There is no significance to the fact that in this
and subsequent “rainbow diagrams,” the leading eigenvalue
eventually begins to increase; this is simple case of an increas-
ing line overtaking nonincreasing ones and nothing inherent
about the highest eigenvalue at small timescales. This can be
confirmed by the change in color, indicating that the parameter
responsible for the leading eigenvector has changed.

Similar figures can be produced for the saddle-node, tran-
scritical, and subcritical pitchfork bifurcation classes. In each
case, the eigenanalysis of the FIM indicates

(i) how long the system should be simulated by the time it
takes for the effect of the initial conditions to reach the least
relevant eigenvector

(ii) the codimension of the bifurcation by the number of
nondecreasing eigenvalues (= 1 for each normal form),

(iii) the participation factor of each parameter in the (hy-
per)relevant directions by the square of the corresponding
eigenvectors (asymptotically approaching 100% r in each nor-
mal form)

(iv) the null space of the bifurcation surface, making it
possible to track the bifurcation hypersurface through param-
eter space.

These are relatively simple bifurcations, where the separa-
trix is the hyperplane r = 0. In more complicated situations
where the separatrix is a nonlinear combination of bare pa-
rameters, this analysis identifies the vector normal to the
separatrix. In principle, this local characterization could be
extended to map that separatrix [along the (hyper)relevant
directions] through the high-dimensional parameter space.
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FIG. 3. The “rainbow diagram” of the system from Fig. 2, show-
ing the FIM’s eigenanalysis at each tmax. The top panel represents
the participation of each parameter in the first eigenvector [V 2

i,1 in
Eq. (7)]. The leading eigenvector changes from α5 dominant (purple)
to r dominant (yellow) at tmax ≈ 10, i.e., just where the α5 trajectory
is replaced by the r trajectory as most divergent in Fig. 2. The large
panel below shows all seven eigenvalues [λi = √

�2
ii in Eq. (7)] at

each tmax, colored as the weighted average RGB of each parameter’s
participation factor. Thus, the top line, corresponding to the largest
eigenvalue in the top panel, starts mostly purple (α5) but turns yellow
as r dominates the first eigenvalue at larger tmax values. For all
parameters, a small change to parameter values influences trajectory
at short timescales (the rising limb) but, with the exception of r,
not at long timescales (the descending limb). The red color in the
bottom-right indicates that the initial value x0 eventually becomes
the least relevant parameter in the model. Pure colors indicate an
eigenvector pointing along a parameter axis, while mixed colors like
browns and grays indicate that many parameters participate in the
eigenvector.

Hopf bifurcations present more of a challenge: The limit
cycle that emerges from a fixed point can have both its ra-
dius and velocity manipulated by model parameters, which
can potentially provide the false impression that the system
has codimension 2 rather than the actual codimesion of 1.
Consider the following Hopf bifurcation in polar coordinates,
where, as above, additional high-order terms have been added:

ṙ = μr − r3 + α1r4 + α2r5

θ̇ = ω + βr2 + α3r3 + α4r4 + α5r5.
(8)
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FIG. 4. TWIG analysis of the Hopf bifurcation. The first of the
hyperrelevant (rising) eigenvalues comes from the periodicity of the
trajectory, whose velocity is set by ω. The second hyperrelevant
eigenvalue comes from the bifurcation itself, indicating that the Hopf
bifurcation is codimension 1, and the bifurcation depends simply on
μ, and not some complicated combination of parameters. Note that
the Hopf bifurcation is far easier to simulate at long timescales in
polar form than in Cartesian coordinates.

At the bifurcation point μ = 0, a fixed point at the origin
expands into a limit cycle. The velocity of trajectories around
this cycle are primarily driven by ω, provided y values are
small. Note that the periodicity of the Hopf bifurcation in-
troduces a second hyperrelevance to long-term dynamics.
Infinitesimal changes to velocity make little difference to the
final position of the trajectory F (tmax; y, θ ) if tmax is small but
will have an increasing effect as tmax grows. By contrast, μ

is hyperrelevant because it is the bifurcation parameter. The
increasing importance of these two parameters, in contrast to
all others, is clearly illustrated in Fig. 4.

As noted above, this ability to characterize all normal-form
bifurcations depends on the ability to isolate changes in in-
formation due to the bifurcation itself. This depends on the
only source of variation in long-term behavior coming from
the bifurcation, and so the preceding analyses were conducted
for systems exactly at the bifurcation point. We now consider
how the picture changes for dynamics near, but not exactly
at, the bifurcation point. Applying TWIG just to the left
and right of the bifurcation point of a pitchfork (r = ±.01)
shows characteristic patterns (Fig. 5). In these cases, we find
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FIG. 5. TWIG analysis near-but-not-at the bifurcation values show the diagnostic pattern of an increasing eigenvalue at intermediate
timescales, but then a decrease [in (a)] or an asymptote [in (b); top yellow curve in the tmax = 100 to 1000 range in both]. It is still relatively
easy to identify bifurcation parameters and the bifurcation’s codimension, though the falloff becomes more pronounced, and thus the clarity of
the analysis more obscured the further one moves away from the bifurcation in either direction.

that the bifurcation parameter is hyperrelevant on interme-
diate timescales (10 < tmax < 100 in Fig. 5). However, on
longer timescales (tmax > 100), the leading eigenvalue either
decreases [Fig. 5(a)] or asymptotes [Fig. 5(b)] once the trajec-
tories have converged to the fixed point, depending on whether
the location of the fixed point can or cannot be shifted by
changing the parameter values, respectively. In other words,
when approached from the r < 0 side, small changes to r
do not move the equilibrium [y(t ) → 0 as t → ∞], meaning
the exact value of r is irrelevant. But approaching from the
r > 0 side causes trajectories to run to y(t ) → ±√

r, meaning
r is relevant. Moving the system closer to bifurcation, this
intermediate regime extends further and further, until at r = 0
it occupies the entire trajectory and r is hyperrelevant at all
times t > 10.

In general, being slightly off the bifurcation obscures the
effect of the bifurcation parameter to an extent proportional
to the distance from the bifurcation. This is particularly use-
ful in the case of hemistable bifurcations, which need to be
approached from the stable side or else test trajectories will
diverge to infinity (and cause computer overflow). In the case
of the subcritical pitchfork, at the bifurcation itself (r = 0)
the system is unstable. However, at values of r → 0−, just

less than bifurcation value, TWIG can be performed and the
bifurcation characterized as above (Fig. 6).

IV. BIFURCATIONS IN NON-NORMAL FORMS

Equations describing real systems are not typically written
in one of these normal forms. So even when a researcher
knows a system contains a bifurcation, it might not be appar-
ent which one of these it is. For example, a model of a bead
on a rotating hoop

mr
∂2φ

∂t2
= −b

∂φ

∂t
− mg sin φ + mrω2 sin φ cos φ

has a supercritical pitchfork bifurcation, though it might re-
quire simulating many values of r and ω to appreciate this
[31]. Similarly, the equation

ẋ = r ln x + x − 1 + α1(x − 1)2 + α2(x − 1)3 + · · · (9)

contains a transcritical bifurcation at x = 1 when r = −1.
However, this only becomes clear after reparameterizing
the equation by R = r + 1, and X = r

2 (x − 1), when the
equation assumes the normal form Ẋ = RX − X 2 + O(X 3).
Such a substitution might not be immediately apparent to
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FIG. 6. The subcritical pitchfork cannot be analyzed using
TWIG at the bifurcation point (r = 0) because the system is unstable.
However, simulations slightly to the stable side of the bifurcation
(r → 0−) reveals the bifurcation parameter, though because analysis
happens off the bifurcation, the peak occurs at intermediate values
instead of reaching an asymptote.

a researcher; however, time-widening information geometry
clarifies the situation.

If the dynamics in Eq. (9) are run long enough, then we
observe that one eigenvalue is relevant while all others are
irrelevant. Furthermore, the corresponding participation factor
becomes dominated exclusively by r (Fig. 7). This tells us
that (1) the process has codimension 1 and (2) the reparam-
eterization involves only r. We confirm that our analysis has
converged since the initial condition y0 is the dominant partic-
ipation factor in the smallest eigenvalues. However, we note
that convergence occurs at a somewhat larger value of tmax

than in the normal form examples above. Also note that trans-
critical bifurcations have a leading eigenvalue that is relevant
rather than hyperrelevant, due to a quirk of the normal-form
algebra. See Appendix B for a thorough explanation.

But what happens when the situation is not so straightfor-
ward? Modifying the above example to the equation

ẋ = r ln(x) + a(x − α) + b(x − α)2 + · · · (10)

should still have a transcritical bifurcation for certain pa-
rameter values but no simple reparameterization to create
a normal form exists. From above, we can recognize that
when a transcritical bifurcation occurs at x = 1 for r = −1,
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FIG. 7. Equations such as Eq. (9) that are not in normal form can
be interpreted using the same procedure as for normal form bifurca-
tions. As above, the presence of just one nondecreasing eigenvalue,
whose corresponding eigenvector is dominated by the single parame-
ter r, indicates that the system has codimension 1 and the bifurcation
parameter involves only r. The relevant (not hyperrelevant) leading
eigenvalue is characteristic of a transcritical bifurcation.

α = 1. However, when α 	= 1, in the neighborhood of x = α

all the power terms are zero, but the term r ln(x) > 0 if α < 1,
suggesting that no fixed point exists in that region. The ap-
pearance or disappearance of a fixed point is the hallmark of
a saddle-node bifurcation and indicates that allowing a bit of
variability in the fixed point’s location has introduced a second
codimension to the dynamical system. This is borne out by
TWIG analysis (Fig. 8), which shows that the equation indeed
produces a hyperrelevant eigenvector corresponding to the
saddle-node parameter α, which controls the existence—not
just the location–of an equilibrium. The transcritical bifur-
cation still exists and is controlled by r, as implied by the
previous analysis. This example shows that even in situations
with two different bifurcation classes, neither of which can
be reparameterized into normal form, TWIG still allows us
to efficiently and unambiguously identify codimension and
bifurcation parameters.

A. A biophysical example

Glycolysis is a multistep process which uses the bond
energy of glucose to catabolize energy-carrying biomolecules
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FIG. 8. A difficult non-normal-form transcritical bifurcation
such as Eq. (10) can be extremely challenging to analyze analytically,
but sloppy analysis indicates one hyperrelevant parameter (corre-
sponding in this case to a saddle-node) and one relevant parameter (as
usual, indicating transcritical bifurcation). This means that this sys-
tem has a bifurcation of codimension two. Note that the participation
factor of the two leading eigendirections runs to 1.0 in the direction
of α and r respectively, indicating that the system can be placed into
normal form without a complicated recombination of parameters.

easily usable by cells, which represents one of the dominant
processes of all heterotrophic life on earth. A bottleneck in this
crucial process is the phosphorylation of fructose-6-phosphate
into fructose-1,6-bisphosphate catalyzed by the enzyme phos-
phofructokinase. The complicated five-species mass-action
equation describing this reaction’s kinetics can be simplified
using Tikhonov’s theorem and assuming low concentrations
of ATP to the simple dimensionless system [43,44]:

ẋ = −x + ay + c1x2y + c2x3

ẏ = b − ay + c3x2y + c4y2,
(11)

where x and y are the concentrations of ADP and F6P re-
spectively, and the four ci constants are nuisance parameters
added to mask the system dynamics. There is a curved bifur-
cation surface that separates the range of kinetic parameters
a, b which lead to either a fixed point at (b, b

a+b2 ) when
c1 = 1, c3 = −1 as in the canonical model, or a stable limit
cycle. The separation between the fixed point and limit-cycle
regimes has the form b2 = 1

2 (1 − 2a ± √
1 − 8a) [31]. The
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FIG. 9. Analysis of the “glycoscillator” bifurcation [Eq. (11)].
The frequency of the oscillations are driven by c4, while the radius
of oscillations can be controlled with just one of the a, b parameters
discovered by Sel’kov [43].

resulting oscillations in glycolytic activity predicted by this
analysis have been observed in vivo since the early 1970s [45].

A TWIG analysis of this system provides several insights,
summarized in Fig. 9. First, even though the separatrix be-
tween fixed point and limit cycle in a, b space is a nonlinear
curve, because b can be reparameterized as a function of
a, it is codimension one. Second, the “nuisance” parame-
ter c4 introduces a change in the period of the oscillations,
which means that infinitesimal changes in its value cause
larger deviations in final trajectory the longer the simula-
tion runs. This shows up as a hyperrelevant direction in
TWIG; however, as discussed above, it is not a second
codimension.

V. CHAOTIC SYSTEMS

Systems showing chaotic behavior have long represented a
challenge to traditional categories of thinking, and the diffi-
culty of distinguishing deterministic chaos from randomness
is practically its own subdiscipline [31,46–49]. In the context
of TWIG analysis, there are two characteristics of the system
that need to be considered carefully.

First, unlike other systems considered here, one hallmark
of chaos is long-term sensitive dependence on initial con-
ditions, or the “butterfly effect.” Because of this, a TWIG
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analysis carried out in the chaotic regime, in contrast to
Fig. 3 where the parameter x0 becomes the least relevant,
will classify initial condition parameters as relevant. Note that
if the chaotic system produces a strange attractor, then the
initial conditions will change the location of the system on
the attractor at long timescales but not the shape of the at-
tractor itself, which prevents these parameters from becoming
hyperrelevant. That is, the maximum distance between two
trajectories begun at slightly different initial conditions will
eventually saturate on opposite sides of the attractor and not
increase without bound.

Second, the four classic examples of chaotic systems ap-
proach chaos through a complicated series of bifurcations
rather than a singular event as in the normal-form bifurcations
above. The logistic map famously contains a period-doubling
“bifurcation cascade,” with the distance between these bifur-
cation events decreasing geometrically by the Feigenbaum
constant α universally [10,11,31]. There is thus a “fuzzy
boundary” between the periodic behavior of, say, an 8-cycle
and the chaotic region as we pass through the increasingly
narrow 16-cycle region, 32-cycle region, and so forth. The
Hénon map experiences a similar bifurcation cascade along
the line b = 0.3 as a increases from 1 to 1.5 [50], while the
Rössler attractor has a bifurcation cascade in the opposite di-
rection on the plane a = 0.2, c = 5.7 as b decreases from 1.5
towards 0 [51]. As we show below for a Rössler system, these
boundaries are not just fuzzy but also fractal. Most complex
of all, the Lorenz system experiences a pitchfork bifurcation
at r = 1, whose two stable points then experience Hopf bi-
furcations at r ≈ 24.74, while the unstable point undergoes
a “homoclinic explosion” at r ≈ 13.926 that produces an “a
thicket of infinitely many saddle-cycles and aperiodic orbits”
[31]. If even these pedagogical “toy models” of chaos have
such indeterminate boundaries, then it is likely that examples
of chaotic systems encountered “in the wild” will as well.

While the FIM may be evaluated at any point in this fuzzy
region between order and chaos, its interpretation is less clear.
The eigenvectors, which indicate the direction normal to the
separatrix in other systems, lose this meaning since there
is no direction normal to a fractal surface. Note that this
also holds true for the intermittency route to chaos as well.
Abrupt changes to chaos, with or without smooth changes in
fractal dimension, also exist and would be expected to give
cleaner results in the TWIG analysis [52,53], but unfortu-
nately are expected to be less common and less familiar to
readers.

That being said, TWIG still can provide powerful qual-
itative insights into the nature of a period-doubling chaotic
system. The Rössler attractor defined by

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) (12)

has a well-known period doubling map revealed by decreasing
b along the parameter-space line a = 0.2, c = 5.7, with the
fuzzy transition from an 8-cycle to chaos occurring in the
region near b ≈ 0.70. TWIG analysis carried out near this
point reveals that while changes to b or c in this region can
lead to long term divergent behavior, changes to a have a
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FIG. 10. TWIG analysis of the Rössler attractor, a chaotic sys-
tem, evaluated in the region of rapid period doubling just before
the onset of chaos. Due to the butterfly effect, the initial conditions
remain relevant at long timescales and cannot be used to determine
appropriate simulation length. However, excluding these from analy-
sis, we are still able to qualitatively see that there is one hyperrelevant
direction, dominated by a. This came as a surprise to the authors,
because the bifurcation region was approached by changing values
of b until a period-doubling cascade was observed, yet TWIG uncov-
ered a greater sensitivity to a than b even in this region. This was
confirmed by sampling the parameter space in Fig. 11.

much stronger effect (Fig. 10). In other words, even though
we “walked up” to the bifurcation region in the b direction,
TWIG was able to tell us that the fuzzy bifurcation boundary
was strongly angled normal to the a direction. This insight
is not found in the usual treatments of the Rössler attractor
[31,51,54] but can be easily verified by simulating the system
in Eq. (12) at many sample parameter values in the region
around the bifurcation. This reveals flat “sheets” of periodic
behavior sandwiched between strata of chaos in the a direction
(Fig. 11); these sheets can eventually be encountered for a
fixed value of a by moving far enough in b or c, which is
essentially the process diagramed in the period-doubling map
with which we started this exercise.

Above, we made the claim that TWIG analysis could be
used to determine four characteristics of the system, the first
being the length of time to run an analysis by the decay of
sensitivity to initial conditions. For chaotic systems, this is
no longer the case due to the butterfly effect. However, by
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FIG. 11. The parameter space in the period-doubling region of
the Rössler attractor shows flat sheets of 8-cycle behavior (solid
blue spheres) sandwiched between chaos (transparent red) in the a
direction. Green spheres are simulations difficult to classify as either
8-cycle or chaotic.

removing the initial values as parameters, we see that TWIG
can still be used qualitatively to determine the other three
characteristics: bifurcation co-dimension, the null space, and
the (fuzzy) normal to the bifurcation region.

VI. CONCLUSION

Gradual time-dilation of the Fisher information matrix as
realized by our TWIG analysis is an efficient way of char-
acterizing bifurcations in a dynamical system. Researchers
have long used eigenanalysis of I to characterize the “slop-
piness” of a system, i.e., its exponential range of sensitivities
to parameter changes, and recently leveraged this accumu-
lated expertise with coarse-graining to understand phenomena
occurring at distinct timescales [28,55]. Building on these
insights, we here demonstrate that as tmax increases, the
changing eigenvalues of I (and the composition of the cor-
rresponding eigenvectors) allow us to (1) characterize the
codimension of the bifurcation, (2) quantify the participation
of each bare parameter in the bifurcation, (3) character-
ize the bifurcation’s hypersurface, and (4) have an internal
check on the length of time necessary to simulate the sys-
tem to reach equilibrium. These are substantial insights to
be gained relatively cheaply. Sloppy bifurcation analysis con-
stitutes a powerful tool to supplement traditional analytical
analysis [31,56] and other specialized analytical tools for
high-dimensional problems [6,8,10,34,54,57,58].

Insights derived from TWIG are useful not just for
theoreticians interested in characterizing a bifurcation or repa-
rameterizing a system to emphasize the bifurcation; it is also
critical for the process of fitting parameter values. The rain-
bow plots in this paper demonstrate that at the bifurcation
point, simulations frequently show a separation of over 10
orders of magnitude in their parameter sensitivity, a gap that
gets larger the longer the simulations run (or the more data
are collected, in an experimental context). If researchers care
about fitting all parameters, then it is crucial to recognize
that the effect of hyperrelevant parameters will overwhelm the
others, so only if these parameters are fixed in the experiment
can the less relevant ones be inferred [30,58]. Future work

may naturally extend the method to large systems including
those derived from partial differential equations.

Our TWIG analysis has some inherent limitations. It pre-
supposes that the model can be simulated on at least one side
of the bifurcation to arbitrarily long times, i.e., it analyzes
stable dynamics on the threshold of instability. A bifurcation
that switches between two different forms of instability will
not be easily detectable with this method, as trajectories will
diverge on both sides of the bifurcation. However, such dou-
bly unstable bifurcations may be of limited practical interest
anyway, as loss of stability is generally a far more common
real-world problem than a change in the type of instability
of a system that never was stable to begin with. Hemistable
points (as in saddle-node or subcritical pitchfork bifurcations)
are easily analyzed when approached from the stable side (see
Fig. 6); otherwise, test trajectories can diverge beyond com-
puter tolerance at moderate timescales. A notable limitation
of the method as presented here is the inability to analyze hy-
perbolic fixed points. Future work may additionally leverage
center manifold techniques to investigate bifurcations in such
systems. We note here that absolutely unstable fixed points
(i.e., where every eigenvalue is positive) can be conveniently
analyzed in TWIG simply by running time backwards, and
analyzing trajectories at ever-closer instants to the initial di-
vergence from the instability.

Because it is a particularly efficient method of determining
important information about high-dimensional bifurcations,
we anticipate that TWIG will be useful in situations with
many components where one or a few bifurcations are ex-
pected in each component. These include power grids, circuit
boards, interatomic models, complex protein regulatory net-
works, and ecosystem-based management systems of multiple
interacting populations. Such complexity presents substantial
difficulties for closed-form analysis but can be tamed with
insights gleaned from this method.

An implementation and example of TWIG analysis are
available in Ref. [59].
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APPENDIX A: FIM OF SADDLE-NODE BIFURCATIONS

The normal form of the saddle-node bifurcation is
dy

dt
= r + y(t )2 + α1y(t )3 + α2y(t )4 + . . . . (A1)

This differential equation can be solved locally when all pa-
rameters

−→
θ = 0, which happens to be the bifurcation point of

the system. At that point:

dy

dt
= y2 → dy

y2
= dt .
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Integrating both sides yields

−1

y

∣∣∣∣
y(t )

y0

= t

∣∣∣∣
t

0

1

y0
− 1

y(t )
= t

y(t ) = y0

1 − y0t
. (A2)

This implies there is a singularity at t = 1/y0, so a proper
coarse-graining procedure will involve taking data from t = 0
to some value near 1/y0, say, 0.99/y0. We avoided this sin-
gularity by using negative values for y0 and were therefore
able to run simulations to large values of tmax. As noted in
Eq. (6), to find the FIM of a system it is only necessary
to find the Jacobian, so we need only find the first partial
derivative of these data with respect to each parameter in
the model.

1. Partial derivative of r

Let the α′
is = 0. The derivative of the normal form with

respect to r becomes

∂

∂r

(
∂y

∂t
= r + y2

)
∂2y

∂r∂t
= 1 + 2y

∂y

∂r
. (A3)

We let w = ∂y
∂r , and this becomes ∂w

∂t = 1 + 2yw, which
requires the use of an integration factor to solve [60]. If p1x′ +
p0x = q, then

x = 1

μp1

[
C +

∫
μqdt

]
where μ = p−1

1 exp

(∫
p0

p1
dt

)
.

(A4)

Allowing p1 = 1, p0 = −2y, q = 1 implies that

μ = 1−1 exp

(∫ −2y

1
dt

)

= exp

(
−

∫
2y0dt

1 − y0t

)

= exp[2 ln(1 − y0t )]

= (1 − y0t )2.

Therefore,

w = C + ∫
(1 − y0t )2dt

(1 − y0t )2

=
C − (1−y0t )3

3y0

∣∣t

0

(1 − y0t )2

=
C + 1−(1−y0t )3

3y0

(1 − y0t )2
.

Recall this function is being evaluated at the initial condi-
tion, where the partial derivative w = ∂y

∂r = 0 (i.e., changes to

r do not change y0). This implies that C = − 1−(1−y0t )3

3y0
; when

t = 0 this further reduces to C = 0. Therefore,

∂y

∂r
= 1 − (1 − y0t )3

3y0(1 − y0t )2
. (A5)

2. Partial derivative of α1

Using the same procedure as above,

∂

∂α1

(
∂y

∂t

)
= ∂

∂α1

(
y2 + α1y3)

∂2y

∂α1∂t
= 2y

∂y

∂α1
+ y3 +

�����
3y2α1

∂y

∂α1

∂w

∂t
= 2yw + y3. (A6)

Note on the second line, we are able to cancel the third term
because we are evaluating the slope where α1 is zero. On the
last line, note that p0 and p1 are the same as for r, so as above
μ = (1 − y0t )2, but since now q = y3:

w = C + ∫
y3(1 − y0t )2dt

(1 − y0t )2

=
C + ∫ ( y0

1−y0t

)3
(1 − y0t )2dt

(1 − y0t )2

=
C + ∫ y3

0dt
1−y0t

(1 − y0t )2

= C − y2
0 log (1 − y0t )|t0
(1 − y0t )2

= C − y2
0 log (1 − y0t )

(1 − y0t )2
.

Again, assuming w = t = 0 → C = 0, so

∂y

∂α1
= −y2

0 log (1 − y0t )

(1 − y0t )2
. (A7)

3. Partial derivatives of higher-order α′s

Higher-order terms in the series are of the form αnyn+2

and so

∂

∂αn

(
∂y

∂t
= y2 + αnyn+2

)
∂2y

∂αn∂t

= 2y
∂y

∂αn
+ yn+2 +

��������
(n + 2)yn+1αn

∂y

∂αn

∂w

∂t

= 2yw + yn+2. (A8)
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As above, we are able to cancel (n + 2)yn+1αn
∂y
∂αn

because
we are solving for slopes about the point αn = 0. With the
same value of μ, we use integration factors to demonstrate

w =
C + ∫ ( y0

1−y0t

)n+2
(1 − y0t )2dt

(1 − y0t )2

=
C + ∫ yn+2

0 dt
(1−y0t )n

(1 − y0t )2

= C − yn+1
0

1−n (1 − y0t )1−n|t0
(1 − y0t )2

= C + yn+1
0

n−1 [1 − (1 − y0t )1−n]

(1 − y0t )2
,

which again implies that C = 0 at the initial condition t =
0, and so for n > 1 we can say

∂y

∂αn
= yn+1

0 [1 − (1 − y0t )1−n]

(1 − n)(1 − y0t )2
. (A9)

Recall that the Jacobian of our system is

J =

⎡
⎢⎣

∂y0

∂r
∂y0

∂α1

∂y0

∂α2
. . .

∂y1

∂r
∂y1

∂α1

∂y1

∂α2
. . .

. . . . . . . . . . . .

⎤
⎥⎦. (A10)

Because the Fisher information matrix I = JT J , we can
see that element I1,1 = ( ∂y

∂r )2 will be O(t2) because ∂y
∂r is

O(t1); all other elements will be a lower order of t . Thus, at
long timescales, the FIM’s element (1,1) will grow faster than
all other elements, and therefore the most relevant parameter
is clearly r.

In the case where I is being derived from data [or from
noise added to a (non-)normal form equation], the importance
of r can be evaluated by increasing σ 2 ∝ y−3

0 . Since, by the
central limit theorem standard error σ 2 ∝ n, then the number
of time points sampled should decrease as n ∝ y−3

0 .

APPENDIX B: FIM OF TRANSCRITICAL BIFURCATIONS

These have a similar normal form as the saddle-node
bifuractions above:

dy

dt
= ry(t ) − y(t )2 + α1y(t )3 + α2y(t )4 + . . . .

However, the change of sign in the second term causes the
solution to the differential equation to also have a changed
sign:

dy

dt
= −y2 → −dy

y2
= dt → 1

y

∣∣∣∣
y(t )

y0

= t

∣∣∣∣
t

0

1

y(t )
− 1

y0
= t → y(t ) = y0

1 + y0t
. (B1)

Now the singularity occurs at t = − 1
y0

, which generally
only complicates the coarse-graining if initial conditions are
negative.

1. Partial derivative of r

The full solution to the partial derivative of r is somewhat
complicated because it depends on y:

∂

∂r

(
∂y

∂t
= ry − y2

)
∂2y

∂r∂t

= r
∂y

∂r
+ y − 2y

∂y

∂r

∂w

∂t
= w(r − 2y) + y, (B2)

where w = ∂y
∂r . Recall that the derivative is being evaluated

where r = 0, and so we can argue that

∂w

∂t
+ 2yw = y →

μ = exp

(∫
2y0dt

1 + ty0

)

= exp[2 log(1 + ty0)]

= (1 + ty0)2. (B3)

Using our integration factors, we see

w =
C + ∫

(1 + ty0)2 y0

1+ty0
dt

(1 + ty0)2

= C + y0t
(
1 + y0t

2

)
(1 + ty0)2

→ C = 0

= y0t (2 + y0t )

2(1 + ty0)2
= ∂y

∂r
. (B4)

Note that in the limit that t → ∞, this expression is or-
der 0 for t ; therefore, unlike the other bifurcation classes,
transcriticals are expected to have a relevant, rather than a
hyperrelevant, leading eigenvalue. This was confirmed with
simulations (see Fig. 7).

2. Partial derivative of α1

The derivative can be set up as:

∂

∂α1

(
∂y

∂t
= −y2 + α1y3

)
∂2y

∂α1∂t

= −2y
∂y

∂α1
+ 3α1y2 ∂y

∂α1
+ y3 ∂w

∂t

= −2yw + y3. (B5)

Since we already know that μ = (1 + ty0)2, it follows that

w =
C + ∫

(1 + ty0)2
( y0

1+ty0

)3

(1 + ty0)2

=
C + y2

0

∫ y0

1+ty0

(1 + ty0)2

= C + y2
0 log(1 + ty0)

(1 + ty0)2
→ C = 0 (B6)

∂y

∂α1
= y2

0 log(1 + ty0)

(1 + ty0)2
.
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3. Partial derivative of higher-order α′s

Using similar arguments, we arrive at the conclusion that
for αn where n > 1

∂y

∂αn
= yn+1

0 [(1 + ty0)1−n − 1]

(1 − n)(1 + ty0)2
. (B7)

Plots of the sensitivities suggest that r is the dominant
parameter for values of y0 < 1, though exactly where this
transition occurs is probably worth investigating.

The top-left entry in the FIM is

I1,1 =
(

∂y

∂r

)2

=
[

y0t (y0t + 2)

2(y0t + 1)2

]2

= y2
0t2(y0t + 1)2

4(y0t + 1)4
.

(B8)

In the limit t → ∞, this approaches t4

t4 which is order
O(t0). This implies that the leading eigenvector of transcrit-
ical bifurcations will be relevant, not hyperrelevant like for
all other forms of bifurcations considered here. It is tempt-
ing to speculate that the topological interpretation of this
quirk in the algebra stems from the unique flow field around
transcritical bifurcations. For r < 0, the vector field has a
negative-positive-negative pattern; for r > 0 this negative-
positive-negative pattern is duplicated, just with an unstable
equilibrium at y = 0 which had been stable before. Only at
the critical value itself (r = 0) is there a topological inhomo-
geneity. The other bifurcations have fundamentally different
flow fields on either side of the critical value, and thus,
perhaps, their bifurcation parameters acquire hyperrelevance
rather than simply relevance. Further study is needed to prove
this conjecture.

Because ∂y
∂α1

→ O[log(t ) − 2] and ∂y
∂αn

→ O(t−1−n), sim-
ple multiplication shows that all the other entries in the FIM
will be of lower order than the top-left.

APPENDIX C: FIM OF PITCHFORK BIFURCATIONS

In the supercritical case, the normal form is

dy

dt
= ry(t ) − y(t )3 + α1y(t )4 + α2y(t )5 + . . . (C1)

and the subcritical case is the same except the sign on the
cubic term changes. At the critical value of θi = 0, the system
reduces to

dy

dt
= −y3 → −dy

y3
= dt → 1

2y2

∣∣∣∣
y(t )

y0

= t

∣∣∣∣
t

0

1

y(t )2
− 1

y2
0

= 2t → 1

y(t )2
= 2t + 1

y2
0

→ y(t ) = y0√
1 + 2ty2

0

. (C2)

Following the same logic, the formula for the subcritical
case is

y(t ) = y0√
1 − 2ty2

0

. (C3)

Note that this creates a potentially problematic singularity at
t = 1

2y2
0
.

1. Partial derivative of r

Let the αi’s = 0. The derivative of the normal form with
respect to r becomes

∂

∂r

(
∂y

∂t
= ry − y3

)
∂2y

∂r∂t

=
�
��r
∂y

∂r
+ y − 3y2 ∂y

∂r

∂w

∂t

= y − 3y2w, (C4)

where w = ∂y
∂r . Using integration factors p1 = 1,

p0 = 3y2, q = y, we see that

μ = exp

(∫
−3y2dt

)

= exp

(
−

∫
3y2

0dt

1 + 2y2
0t

)

= exp

[
3

2
ln

(
1 + 2y2

0t
)]

= (
1 + 2y2

0t
)3/2

.

Therefore,

w = C + ∫
μy(t )dt

μ

=
�C + ∫ y0√

1+2ty2
0

(
1 + 2y2

0t
)3/2

dt

(
1 + 2y2

0t
)3/2

∂y

∂r
= y0t

(
1 + y2

0t
)

(
1 + 2y2

0t
)3/2 . (C5)

Following the same logic for the subcritical case eventually
brings us to

∂y

∂r
= ty0

(
1 − ty2

0

)
(
1 − 2ty2

0

)3/2 . (C6)

2. Partial derivative of α′s

When r = 0, and all αi 	=n = 0, then the normal form re-
duces to

dy

dt
= −y(t )3 + αny(t )n+3, (C7)
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which conveniently allows us to use the same μ in-
tegration factor as above. Using the integration scheme
outlined there, after many steps we reach the conclusion
that

∂y

∂αn
= yn+1

0

2 − n

(
1 + 2ty2

0

)1−n/2 − 1

μ
. (C8)

This produces an obvious problem when n = 2, but in that
case the integration step simplifies and we find that

∂y

∂α2
= y3

0 ln
(
1 + 2ty2

0

)
2μ

. (C9)

All this indicates that in the FIM, the entry corresponding
to (∂y/∂r)2 is O(t1), while all other entries are lower order,
so r will be the only hyperrelevant direction.

APPENDIX D: FIM OF HOPF BIFURCATIONS

Analysis of the Hopf bifurcation in either the com-
plex or Cartesian formulation is complicated, because the
introduction of nuisance parameters to the normal form equa-
tions tends to alter the period of limit cycles. This means
standard trigonometric functions would also need to be altered
with time-dependent terms to dilate or expand the period for
a closed-form solution of the trajectories z(t ) or x(t ), y(t ),
respectively.

However, reparameterizing the equation into polar coordi-
nate form simplifies matters greatly. The system ṙ = r(μ −
r2); θ̇ = −1 should look familiar, as the equation for r is sim-
ply the normal form for a supercritical pitchfork bifurcation.
Therefore, deriving the elements of its Fisher information
matrix has already been performed in Appendix C, albeit with
different variable and parameter names.
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