Fall 2015 Physics 230 Course Syllabus (all sections)

Instructor: Mark K. Transtrum
Office: N241 Eyring Science Center (ESC)
Email: mktranstrum@byu.edu
Phone: 801-422-5377
Instructor Office Hours: 11:00am - Noon MWF
Course website:
http://www.physics.byu.edu/faculty/transtrum/Teaching/P230F2015.html
Grades: http://max.byu.edu
(We will not use Learning Suite)

Schedule:

<table>
<thead>
<tr>
<th>Lab</th>
<th>Section 1</th>
<th>Section 2</th>
<th>Section 3</th>
<th>Lab Topics</th>
<th>Deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 31</td>
<td>Sep 1</td>
<td>Sep 3</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sep 14</td>
<td>Sep 8</td>
<td>Sep 10</td>
<td>Functions and Lists</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sep 21</td>
<td>Sep 15</td>
<td>Sep 17</td>
<td>Plotting</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sep 28</td>
<td>Sep 22</td>
<td>Sep 24</td>
<td>Differentiation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Oct 5</td>
<td>Sep 29</td>
<td>Oct 1</td>
<td>Integration</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oct 12</td>
<td>Oct 6</td>
<td>Oct 8</td>
<td>Programming I</td>
<td>Exam 1</td>
</tr>
<tr>
<td>7</td>
<td>Oct 19</td>
<td>Oct 13</td>
<td>Oct 15</td>
<td>Programming II</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 26</td>
<td>Oct 20</td>
<td>Oct 22</td>
<td>Data Processing</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Nov 2</td>
<td>Oct 27</td>
<td>Oct 29</td>
<td>Optimization</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nov 9</td>
<td>Nov 3</td>
<td>Nov 5</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nov 16</td>
<td>Nov 10</td>
<td>Nov 12</td>
<td>Complex Analysis</td>
<td>Project Proposals</td>
</tr>
<tr>
<td>12</td>
<td>Nov 23</td>
<td>Nov 17</td>
<td>Nov 19</td>
<td>Project I</td>
<td>Exam 2</td>
</tr>
<tr>
<td>13</td>
<td>Nov 30</td>
<td>Dec 1</td>
<td>Dec 3</td>
<td>Project II</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dec 7</td>
<td>Dec 8</td>
<td>Dec 10</td>
<td>Oral Reports</td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>Dec 18, 3 pm</td>
<td>Dec 17, 7 am</td>
<td>Dec 14, 7 am</td>
<td>Final Exam</td>
<td>Project Final Reports</td>
</tr>
</tbody>
</table>

All labs are due by the beginning of the next class period. Exams, project proposals, and project reports are due at the beginning of lab on the days indicated.

Prerequisites: All students should have taken Physics 121 and 123, and be at least concurrently enrolled in Physics 220. All students should also have take Math 112 and 113, and be at least concurrently enrolled in Math 302 or 313.

Textbooks: There are no textbooks or course packets to purchase. The course materials are all available online.

Learning Outcomes: This class will help you learn to formulate and solve physics problems analytically and numerically. We will use a computational software program called Mathematica, which is a powerful tool that can be applied to a wide variety of problems.

After completing this course, you should be able to:

1. Demonstrate the ability to apply calculus, linear algebra, and complex analysis to solve undergraduate-level physics problems.

2. Demonstrate the ability to use programming constructs such as looping, conditional execution, and iteration to solve physics problems.
3. Solve equations, including systems of equation, related to physical phenomena both symbolically and numerically.

4. Demonstrate the ability to visualize, analyze, and interpret equations, data, and physical models.

Informally, the goals of this course are to

1. Teach the basics of Mathematica so that you and future professors will be able to use it as a tool.
2. Teach some general computational principles, including the basics of computer programming.
3. Review many physics and mathematics concepts which you have learned in previous classes.
4. Expose you to some new physics and mathematics concepts which you’ll see in greater detail in the future.

Student Email Addresses: I will periodically send class information via email to your email address that is listed under myBYU. If that is not a current address for you, please update it.

Department Computer Accounts: Mathematica is found on all departmental computers. In case you do not already have a departmental computer account, you can gain access to these computers by following the instructions given here: http://www.physics.byu.edu/computersupport/accounts. You will also need to get the door codes for the computer labs, see that same website for how that is done.

Mathematica is also available for free download from BYUs software website, http://software.byu.edu/. The license is probably only good for a year, but can be renewed as long as you are a student. You may also be able to purchase a student edition of Mathematica with no expiration date that you can use after you graduate (this has been the case in the past), but I don't have the details on that.

Remote server: The departmental “remote server” is a computer that you can log onto remotely and run applications. It a very useful way to use Mathematica if you don't have it installed on your personal computer. There are also some other useful programs installed that you can run this way. To access the remote server from a Windows computer (sorry, I don't know Macs), run the “Remote Desktop” program and type in `remote.physics.byu.edu` as the computer you want to connect to. Use your regular departmental login.

Grading: If you hit these grade boundaries, you are guaranteed to get the grade shown. I may make the grading scale easier than this in the end, if it seems appropriate, but I will not make it harder.

```
A 94.0%  B 85.0%  C 76.0%  D 67.0%
A− 91.0%  B− 82.0%  C− 73.0%  D− 64.0%
B+ 88.0%  C+ 79.0%  D+ 70.0%
```

Grades will be determined by the following weights:

- Laboratory assignments (labs 1-11): 50%
- Exams (All weighted equally): 25%
- Term Project: 25%

Laboratory assignments: All labs during the semester are weighted equally. They are designed to be a combination of tutorial exercises along with additional assignments requiring more independent thought. If you get stuck, you are welcome to ask for help from the TAs or other students.
Passing off lab assignments: All assignments in a given lab are weighted equally. You must get a TA to pass off your lab assignments. The TA will look at your results, ask you questions about the material, and record that you have completed the assignment. If you complete all sections of a lab, you will get full credit. If you do not complete all of the sections, you will only get partial credit for that lab.

Completing assignments: Most students will complete most labs during the regular lab period. However, if you do not finish a lab you can still get full credit by completing any remaining sections on your own before the start of the next lab period. If you need help you can talk to friends, see a TA or Dr. Transtrum during the other lab section, or make arrangements to meet with a TA at a special time. Regardless, to receive full credit, the unfinished sections must be ready for passing off at the start of the next lab period. Assignments completed and passed off after this time will only count for 50% credit.

Making up labs: If you have to miss a lab period, you have two options. (1) You can attend the other lab section, assuming there is room. (2) You can work through the lab on your own (with help from friends, a TA, or Dr Transtrum) and then arrive the next lab period ready to pass everything off.

Exams: There will be two take-home exams which you will need to do individually. The format of these will be similar to other take-home exams you may have had/will have in other classes: open book, open notes, open previous work, open any reference material you can find including internet searches, but closed people (including your friends, classmates, TAs, smart relatives, people on internet discussion boards, etc.). There will also be a cumulative final exam, given in-class at the time scheduled by BYU. All exams are weighted equally.

Term Project: The term project is an opportunity for you to extend your Mathematica skills by carrying out an in-depth project. You must work with one or two partners. Term projects should be related to something taught in Phys 121, 123, 220, and/or an advanced physics principle taught in this course. Be creative! The project should be substantial enough that it will take your group two full lab periods to complete, plus potentially a few hours outside of class. There are three parts to the term project: a proposal, an oral presentation (the main report), and a brief final report. Due-dates are on the class schedule. Additional information such as a grading rubric and a list of past term project topics can be found on the class website.

Advice from previous students: Dr. Colten asked students from Fall 2012 if they had any general advice for future students. Here are some replies:

- Do the lab assignments in the same notebook as the lab, it is easier and keeps things more organized.
- Don’t be afraid to ask others for help. Some of the stuff is tough, and if you try to do it all on your own, you will struggle.
- Don’t put anything off. Remote Desktop is your friend.
- Focus on understanding Mathematica thoroughly, and don’t simply try to get the assignment done.
- I felt like if I got to class a little early and started working on the lab then, I always seemed to do better. So maybe try and read through them a little before class.
- Make a friend to work with on the labs. Talk to your neighbors if you get stuck.
- Make sure you keep up on the labs, as you will use skills from each lab on the next ones.
• Mathematica will be your best friend in the entire world if you take the time to pay attention in the labs. Also get an early start on the assignments so you can finish early and appear to know what you're doing.

• Pay attention to the details and don't rush things. Rushing it makes it easier to make mistakes and get frustrated. If you work at a steady pace you'll be less likely to make mistakes that will be hard to find later on. Also, don't be afraid to ask the TAs for help.

• Prepare yourself as well as you can for each class period. Getting as much done during class is the most productive way to complete the assignments. It's hard to focus for 3 hours, so try to let go of any other distractions from other classes, etc. so that you can focus. Then you will not have to worry about this class outside of class.

• Work ahead for half an hour before the class period. That way, you can figure out as much as you can on your own and ask questions as soon as the period starts.

BYU Policies

Honor Code and Academic Honesty: In keeping with the principles of the BYU Honor Code, students are expected to be honest in all of their academic work. Academic honesty means, most fundamentally, that any work you present as your own must in fact be your own work and not that of another. Students should avoid academic dishonesty and misconduct in all its forms, including but not limited to plagiarism, fabrication or falsification, cheating, and other academic misconduct. Violations of this principle may result in a failing grade in the course and additional disciplinary action by the university. It is the university's expectation, that each student will abide by all Honor Code standards. Please call the Honor Code Office at 422-2847 if you have questions about those standards.

Sexual Harassment: Title IX of the Education Amendments of 1972 prohibits sex discrimination against any participant in an educational program or activity that receives federal funds. The act is intended to eliminate sex discrimination in education and pertains to admissions, academic and athletic programs, and university sponsored activities. Title IX also prohibits sexual harassment of students by university employees, other students, and visitors to campus. If you encounter sexual harassment or gender-based discrimination, please talk to your professor or contact one of the following: the Title IX Coordinator at 801-422-2130; the Honor Code Office at 801-422-2847; the Equal Employment Office at 801-422-5895; or Ethics Point at http://www.ethicspoint.com, or 1-888-238-1062 (24-hours).

Student Disability: Brigham Young University is committed to providing a working and learning atmosphere that reasonably accommodates qualified persons with disabilities. If you have any disability which may impair your ability to complete this course successfully, please contact the University Accessibility Center (UAC), 2170 WSC or 422-2767. Reasonable academic accommodations are reviewed for all students who have qualified, documented disabilities. The UAC can also assess students for learning, attention, and emotional concerns. Services are coordinated with the student and instructor by the UAC. If you need assistance or if you feel you have been unlawfully discriminated against on the basis of disability, you may seek resolution through established grievance policy and procedures by contacting the Equal Employment Office at 422-5895, D-285 ASB.

Children in the Classroom: The serious study of physics requires uninterrupted concentration and focus in the classroom. Having small children in class is often a distraction that degrades the educational experience for the entire class. Please make other arrangements for child care rather than bringing children to class with you. If there are extenuating circumstances, please talk with your instructor in advance.