Careers for Physics Majors

1. Essential skills
2. Salaries
3. Physics B.S. career statistics
4. Physics M.S career statistics
5. Physics PhD career statistics

Most of the information is from the American Institute of Physics.

Brigham Young University Dept. of Physics and Astronomy
CNN 2013 lowest unemployment

Take this kind of ranking with a “grain of salt”. But unemployment is low among physicists and astronomers.

Average MCAT scores 2012

<table>
<thead>
<tr>
<th>Major</th>
<th>Physical Science</th>
<th>Biological Science</th>
<th>Verbal Reasoning</th>
<th>Number of Applicants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>10.8</td>
<td>10.8</td>
<td>9.9</td>
<td>633</td>
</tr>
<tr>
<td>Physics</td>
<td>11.1</td>
<td>10.4</td>
<td>9.8</td>
<td>228</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>11.1</td>
<td>10.6</td>
<td>9.6</td>
<td>1,147</td>
</tr>
<tr>
<td>Mathematics</td>
<td>10.6</td>
<td>10.4</td>
<td>9.3</td>
<td>340</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>10.9</td>
<td>10.1</td>
<td>9.4</td>
<td>135</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>10.1</td>
<td>10.6</td>
<td>9.5</td>
<td>1,615</td>
</tr>
<tr>
<td>English</td>
<td>9.6</td>
<td>10.1</td>
<td>10.2</td>
<td>380</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>10.1</td>
<td>10.4</td>
<td>9.0</td>
<td>2,864</td>
</tr>
<tr>
<td>Chemistry</td>
<td>9.5</td>
<td>10.0</td>
<td>9.0</td>
<td>2,113</td>
</tr>
<tr>
<td>Microbiology</td>
<td>9.2</td>
<td>10.1</td>
<td>8.8</td>
<td>759</td>
</tr>
<tr>
<td>Psychology</td>
<td>9.1</td>
<td>9.6</td>
<td>9.1</td>
<td>2,327</td>
</tr>
<tr>
<td>Biology</td>
<td>9.0</td>
<td>9.7</td>
<td>8.7</td>
<td>13,605</td>
</tr>
<tr>
<td>Premedical</td>
<td>8.3</td>
<td>8.9</td>
<td>8.1</td>
<td>587</td>
</tr>
<tr>
<td>All Majors</td>
<td>9.5</td>
<td>9.9</td>
<td>9.0</td>
<td>44,464</td>
</tr>
</tbody>
</table>
Knowledge and Skills Regularly Used by Physics Bachelor’s Employed in the Private Sector, Classes of 2009 & 2010 Combined

- Solve Technical Problems
- Work on a Team
- Technical Writing
- Knowledge of Phys. or Ast.
- Perform Quality Control
- Use Specialized Equip.
- Design & Development
- Programming
- Manage Projects
- Work with Customers
- Advanced Math
- Simulation or Modeling
- Computer Admin.
- Manage People
- Manage Budgets

Employment in Engineering

Employment in Computer Science or Information Technology

Percent
Starting salaries by degree and type of employment

Starting Salaries in the Private Sector

Physics Degree Recipients, Classes of 2007 & 2008

- Physics PhDs
- Physics Master's
- Physics Bachelor's in STEM Jobs
- Physics Bachelor's in non-STEM Jobs

Typical Salaries in Thousands of Dollars

Note: Typical salaries are the middle 50%, i.e., between the 25th and 75th percentiles. STEM refers to positions in Science, Technology, Engineering, and Math.
B.S. Physics Career Statistics

Includes info for all our majors:
physics, applied physics, physics-astronomy and teaching majors.
Status One Year After Earning a Physics Bachelor’s, Classes of 2009 & 2010 Combined

Graduate Study

Physics & Astronomy: 36%
Other Fields: 24%
Employment: 35%
Unemployment: 5%

(N=4,219)
Trends in Status One Year After Earning a Physics Bachelor’s Classes 1995 through 2010

Percent

Employment

Physics or Astronomy Graduate Study

Graduate Study in Other Fields

Unemployment

Degree Class
Comparison employment by field

Unemployment Rates for Professionals
Annual 2001-2010

- Computer
- Engineering
- All Professionals
- All Workers
Field of Employment for Physics Bachelor’s in the Private Sector, Classes of 2009 & 2010 Combined

- Engineering: 32%
- Computer or Information Systems: 21%
- Non-STEM: 26%
- Other STEM: 8%
- Other Natural Sciences: 8%
- Physics or Astronomy: 5%

STEM refers to natural Science, Technology, Engineering, and Mathematics.

http://www.aip.org/statistics
About 60% go to grad school

Fields of Study for Physics Bachelor’s Continuing Directly Onto Graduate Study, Classes of 2009 & 2010 Combined

- Physics or Astronomy: 61%
- Engineering: 19%
- Other: 20%

(N=2,436)
Starting Salaries for Physics Bachelor’
Classes of 2009 & 2010 Combined

Employer

Private Sector STEM (N=315)
Private Sector non-STEM (N=107)
Civilian Govt. incl. Natl. Labs (N=81)
Active Military (N=50)
High School Teachers (N=73)
College or University (N=102)

Typical Salaries
(in thousands of dollars)

0 10 20 30 40 50 60 70

Figure includes only bachelor’s in full-time, newly accepted positions.

Note: Typical salaries are the middle 50%, i.e. between the 25th and 75th percentiles. STEM refers to positions in Natural Science, Technology, Engineering, and Math.

Private Sector, STEM*
(N=20)

Private Sector, Non-STEM*
(N=21)

College / University
(N=26)

Typical Salaries in Thousands of Dollars

Note: Typical salaries are the middle 50%, i.e., between the 25th and the 75th percentiles.

*STEM refers to positions in natural science, technology, engineering and math.
Job Satisfaction of Physics Bachelor's in Private Sector STEM Positions, Classes of 2009 & 2010 Combined

<table>
<thead>
<tr>
<th>Factor</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Security</td>
<td>90%</td>
</tr>
<tr>
<td>Level of Responsibility</td>
<td>85%</td>
</tr>
<tr>
<td>Opportunity for Advancement</td>
<td>80%</td>
</tr>
<tr>
<td>Salary and Benefits</td>
<td>75%</td>
</tr>
<tr>
<td>Intellectual Challenge</td>
<td>60%</td>
</tr>
<tr>
<td>Overall</td>
<td>70%</td>
</tr>
</tbody>
</table>

Percentages represent the physics bachelor's who chose “very satisfied” or “somewhat satisfied” on a four-point scale that also included “somewhat dissatisfied” and “very dissatisfied”.

STEM refers to natural Science, Technology, Engineering and Math

http://www.aip.org/statistics

Job Satisfaction of Physics Bachelor's in Private Sector Non-STEM Positions, Classes of 2009 & 2010 Combined

<table>
<thead>
<tr>
<th>Factor</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Security</td>
<td>85%</td>
</tr>
<tr>
<td>Opportunity for Advancement</td>
<td>80%</td>
</tr>
<tr>
<td>Salary and Benefits</td>
<td>75%</td>
</tr>
<tr>
<td>Level of Responsibility</td>
<td>65%</td>
</tr>
<tr>
<td>Intellectual Challenge</td>
<td>50%</td>
</tr>
<tr>
<td>Overall</td>
<td>70%</td>
</tr>
</tbody>
</table>

Percentages represent the physics bachelor's who chose “very satisfied” or “somewhat satisfied” on a four-point scale that also included “somewhat dissatisfied” and “very dissatisfied”.

STEM refers to natural Science, Technology, Engineering and Math

http://www.aip.org/statistics
Job Satisfaction of Physics Bachelor’s in High School Teaching Positions, Classes of 2009 & 2010 Combined

Percentages represent the physics bachelor’s who chose “very satisfied” or “somewhat satisfied” on a four-point scale that also included “somewhat dissatisfied” and “very dissatisfied”.

http://www.aip.org/statistics
Job Satisfaction of Physics Bachelor’s Employed in Civilian Government or National Labs, Classes of 2009 & 2010 Combined

- Job Security
- Salary and Benefits
- Level of Responsibility
- Opportunity for Advancement
- Intellectual Challenge
- Overall

Percentages represent the physics bachelor’s who chose “very satisfied” or “somewhat satisfied” on a four-point scale that also included “somewhat dissatisfied” and “very dissatisfied”.

http://www.aip.org/statistics
Job Satisfaction of Physics Bachelor’s in the Active Military, Classes of 2009 & 2010 Combined

Percentages represent the physics bachelor’s who chose “very satisfied” or “somewhat satisfied” on a four-point scale that also included “somewhat dissatisfied” and “very dissatisfied”.

http://www.aip.org/statistics
Unemployment for physicists is among the lowest among physical science and engineering majors.

Why? Physicists are prepared to work in a wide range of fields.
What Do High School Physics Teachers Teach?
Recently Hired Teachers with Physics Degrees

- 39% Exclusively Physics
- 34% Mostly Physics
- 27% Some Physics

Other Subjects:
- Math
- Physical Science
- Chemistry
- Biology
- Applied Science

The average teaching load is 5 classes per term.

Source: AIP High School Physics Teacher Survey, 2005
Master’s degree physics

- Engineering: 40%
- Computer or Information Technology: 19%
- Physics or Astronomy: 17%
- Other Natural Science, Technology or Math: 14%
- Non-STEM: 10%

Note: STEM refers to positions in Science, Technology, Engineering and Math. Field of employment was not asked of the class of 2006.

http://www.aip.org/statistics
Note: Figure includes US trained physics master’s who remained in the US after receiving their degree and excludes master’s receiving their degree from one of the two military academies.

http://www.aip.org/statistics

Employer
- Private Sector
- Civilian Government
- High School Teaching
- College or University

Note: Typical salaries are the middle 50%, i.e., between the 25th and 75th percentiles. Figure does not include salaries for master’s holding part-time positions.

http://www.aip.org/statistics

Percent

- Private Sector: 49%
- College or University: 21%
- High School: 13%
- Civilian Government: 9%
- Active Military: 2%
- Other: 7%

Note: Figure includes master’s who were employed part-time and master’s continuing in positions they held while pursuing their master’s.

http://www.aip.org/statistics
Physics PhD Career Statistics

Physics PhDs
1 Year Later
Classes of 2009 & 2010 Combined

1550 Physics Doctorates
16% left the U.S.

1300 Remained in the U.S.
59%
29%
7%

Postdoc Positions
N
560 - University
170 - Government (incl. Labs)
40 - Other

Potentially Permanent Positions
N
215 - Private Sector
80 - Academe
60 - Government (incl. Labs)
20 - Other

Other Temporary Positions
N
75 - Academe
20 - Other

4% of those in the U.S. were unemployed the winter after receiving their degrees.
1% of those in the U.S. were not employed and not seeking employment.
Initial Employment of Physics PhDs in the U.S. 1979 through 2010.

In 1991, the survey questionnaire was changed to measure "other temporary" employment as a separate category. Data only include U.S.-educated PhDs who remained in the U.S. after earning their degrees.
Engineering: 14%
Business or Finance: 6
Education: 5
Medical Services: 3
Computer software: 3
Other sciences: 6
Other: 5

- Employment primarily in other fields
- Employment in physics - different subfield from dissertation
- Employment in physics - same subfield as dissertation
Physics PhDs Starting Salaries, Classes of 2009 & 2010 Combined

Potentially Permanent Positions

- Private Sector (N=91)
- Government Lab (N=25)
- University & 4-Year College (N=38)

Postdocs

- Government Lab (N=95)
- University (N=371)

Typical Starting Salaries in Thousands of Dollars
Astro PhDs

Starting Postdoc Salaries for Astronomy PhDs, Classes of 2007, 2008 & 2009 Combined.

Academic
(N=113)

Government
(N=20)

Typical Salaries in Thousands of Dollars

Note: Data are limited to PhDs who earned their degrees from a US university and remained in the US.

Academic includes: Universities, university-affiliated research institutes (UARI) and observatories.

Government includes: National laboratories and other federal agencies.
Primary Type of Support for Physics Doctoral Students

![Bar chart showing the distribution of support types over years of study.]

Source: AIP Graduate Student Survey, 2006

Typical Stipends

First-Year Physics Graduate Students

- PhD Students:
 - Teaching Assistant
 - Research Assistant
 - Fellowship

- Students in Master’s Departments:
 - Teaching Assistant

Typical stipends are the middle 50%, i.e., between the 25th and 75th percentiles.

PhDs by Subfield

Physics & Astronomy PhDs of 2005 & 2006

- Condensed Matter: 315
- Astronomy & Astrophysics: 215
- Particles & Fields: 201
- Nuclear Physics: 91
- Atomic & Molecular: 86
- Biological Physics: 79
- Optics & Photonics: 72
- Applied Physics: 39
- Materials Science: 28
- Relativity: 26
- Surface Physics: 26
- Atmospheric & Space: 25
- All Other: 197

Data reflect all doctoral-granting US physics and astronomy departments.
Interpersonal and Management Skills Regularly Used by New Physics PhDs, Classes of 2009 & 2010 Combined

<table>
<thead>
<tr>
<th>Skill</th>
<th>Postdocs: All Sectors (N=533)</th>
<th>Potentially Permanent: Private Sector (N=117)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working on a Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing People</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing Budgets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working with Clients</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Who Use Regularly
Table 4. Salaries for university assistant professors by years since PhD, March 2006.

<table>
<thead>
<tr>
<th>Years since PhD</th>
<th>Average salary</th>
<th>Median salary</th>
<th>Typical salary range (a)</th>
<th>Standard deviation</th>
<th>Median age</th>
<th>Number of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 9-10 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>within 5</td>
<td>60.3</td>
<td>61.0</td>
<td>52.5 to 67.0</td>
<td>10.2</td>
<td>34</td>
<td>86</td>
</tr>
<tr>
<td>5 to 9</td>
<td>63.3</td>
<td>63.0</td>
<td>56.0 to 70.0</td>
<td>10.9</td>
<td>37</td>
<td>120</td>
</tr>
<tr>
<td>10 to 14</td>
<td>62.6</td>
<td>62.0</td>
<td>52.0 to 68.0</td>
<td>13.9</td>
<td>42</td>
<td>32</td>
</tr>
<tr>
<td>15+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Base 11-12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>within 5</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>5 to 9</td>
<td>80.9</td>
<td>73.0</td>
<td>62.5 to 84.0</td>
<td>26.4</td>
<td>35</td>
<td>18</td>
</tr>
<tr>
<td>10+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Too few respondents for reliable calculations.

(a) Twenty-five percent of the salaries fall below the typical salary range and twenty-five percent are above the typical salary range.
Table 3. Salaries for university associate professors by years since PhD, March 2006.

<table>
<thead>
<tr>
<th>Years since PhD</th>
<th>Average salary (in thousands of dollars)</th>
<th>Median salary (in thousands of dollars)</th>
<th>Typical salary range (a)</th>
<th>Standard deviation</th>
<th>Median age</th>
<th>Number of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 9-10 month</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>within 5</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>5 to 9</td>
<td>74.9</td>
<td>75.0</td>
<td>60.0 to 88.9</td>
<td>17.4</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>10 to 14</td>
<td>75.9</td>
<td>75.0</td>
<td>65.4 to 87.0</td>
<td>15.0</td>
<td>42</td>
<td>102</td>
</tr>
<tr>
<td>15 to 19</td>
<td>74.1</td>
<td>74.0</td>
<td>63.0 to 86.0</td>
<td>14.7</td>
<td>47</td>
<td>69</td>
</tr>
<tr>
<td>20 to 24</td>
<td>71.0</td>
<td>70.0</td>
<td>64.0 to 81.5</td>
<td>16.3</td>
<td>53</td>
<td>30</td>
</tr>
<tr>
<td>25+</td>
<td>71.7</td>
<td>70.0</td>
<td>63.0 to 80.0</td>
<td>13.0</td>
<td>61</td>
<td>32</td>
</tr>
<tr>
<td>Base 11-12 month</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>within 10</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>10 to 14</td>
<td>88.0</td>
<td>80.0</td>
<td>73.0 to 98.0</td>
<td>21.4</td>
<td>44</td>
<td>19</td>
</tr>
<tr>
<td>15+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Too few respondents for reliable calculations.

(a) Twenty-five percent of the salaries fall below the typical salary range and twenty-five percent are above the typical salary range.
Table 1. Salaries for university full professors on 9-10 month salary base by years since PhD, March 2006.

<table>
<thead>
<tr>
<th>Years since PhD</th>
<th>Average salary</th>
<th>Median salary</th>
<th>Typical salary range (a)</th>
<th>Standard deviation</th>
<th>Median age</th>
<th>Number of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>within 10</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>10 to 14</td>
<td>87.5</td>
<td>83.0</td>
<td>75.0 to 94.0</td>
<td>24.1</td>
<td>42</td>
<td>34</td>
</tr>
<tr>
<td>15 to 19</td>
<td>90.0</td>
<td>85.5</td>
<td>73.0 to 102.0</td>
<td>21.7</td>
<td>47</td>
<td>102</td>
</tr>
<tr>
<td>20 to 24</td>
<td>105.8</td>
<td>101.1</td>
<td>83.5 to 120.0</td>
<td>29.1</td>
<td>51</td>
<td>105</td>
</tr>
<tr>
<td>25 to 29</td>
<td>101.6</td>
<td>97.5</td>
<td>80.0 to 113.0</td>
<td>28.2</td>
<td>56</td>
<td>98</td>
</tr>
<tr>
<td>30 to 34</td>
<td>108.1</td>
<td>102.0</td>
<td>90.0 to 125.0</td>
<td>29.6</td>
<td>60</td>
<td>108</td>
</tr>
<tr>
<td>35+</td>
<td>116.8</td>
<td>120.0</td>
<td>90.0 to 137.1</td>
<td>32.7</td>
<td>66</td>
<td>121</td>
</tr>
</tbody>
</table>

* Too few respondents for reliable calculations.

(a) Twenty-five percent of the salaries fall below the typical salary range and twenty-five percent are above the typical salary range.

Table 2. Salaries for university full professors on 11-12 month salary base by years since PhD, March 2006.

<table>
<thead>
<tr>
<th>Years since PhD</th>
<th>Average salary</th>
<th>Median salary</th>
<th>Typical salary range (a)</th>
<th>Standard deviation</th>
<th>Median age</th>
<th>Number of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>within 15</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>15 to 19</td>
<td>119.1</td>
<td>113.0</td>
<td>97.7 to 120.0</td>
<td>36.9</td>
<td>49</td>
<td>30</td>
</tr>
<tr>
<td>20 to 24</td>
<td>128.0</td>
<td>119.0</td>
<td>100.0 to 151.0</td>
<td>43.3</td>
<td>52</td>
<td>34</td>
</tr>
<tr>
<td>25 to 29</td>
<td>120.4</td>
<td>110.0</td>
<td>100.0 to 132.0</td>
<td>29.5</td>
<td>56</td>
<td>29</td>
</tr>
<tr>
<td>30 to 34</td>
<td>141.3</td>
<td>130.0</td>
<td>103.2 to 170.0</td>
<td>40.0</td>
<td>62</td>
<td>33</td>
</tr>
<tr>
<td>35+</td>
<td>181.2</td>
<td>165.0</td>
<td>130.0 to 210.0</td>
<td>62.0</td>
<td>67</td>
<td>38</td>
</tr>
</tbody>
</table>

* Too few respondents for reliable calculations.

(a) Twenty-five percent of the salaries fall below the typical salary range and twenty-five percent are above the typical salary range.
Table 6. Salaries in industry by years since PhD, March 2006. (a)

<table>
<thead>
<tr>
<th>Years since PhD</th>
<th>Average salary</th>
<th>Median salary</th>
<th>Typical salary range (^{(b)})</th>
<th>Standard deviation</th>
<th>Median age</th>
<th>Number of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>within 5</td>
<td>86.2</td>
<td>85.0</td>
<td>75.0 to 98.0</td>
<td>18.7</td>
<td>35</td>
<td>78</td>
</tr>
<tr>
<td>5 to 9</td>
<td>106.9</td>
<td>103.0</td>
<td>86.4 to 124.0</td>
<td>33.2</td>
<td>38</td>
<td>152</td>
</tr>
<tr>
<td>10 to 14</td>
<td>114.3</td>
<td>111.8</td>
<td>97.0 to 125.0</td>
<td>29.2</td>
<td>43</td>
<td>108</td>
</tr>
<tr>
<td>15 to 19</td>
<td>124.1</td>
<td>116.0</td>
<td>100.0 to 140.0</td>
<td>34.6</td>
<td>49</td>
<td>101</td>
</tr>
<tr>
<td>20 to 24</td>
<td>124.5</td>
<td>111.3</td>
<td>98.4 to 140.0</td>
<td>43.7</td>
<td>52</td>
<td>118</td>
</tr>
<tr>
<td>25 to 29</td>
<td>131.4</td>
<td>125.0</td>
<td>108.0 to 146.0</td>
<td>41.0</td>
<td>56</td>
<td>103</td>
</tr>
<tr>
<td>30 to 34</td>
<td>137.0</td>
<td>130.0</td>
<td>110.0 to 170.0</td>
<td>45.9</td>
<td>61</td>
<td>64</td>
</tr>
<tr>
<td>35+</td>
<td>153.5</td>
<td>150.0</td>
<td>110.0 to 180.0</td>
<td>55.4</td>
<td>66</td>
<td>41</td>
</tr>
</tbody>
</table>

(a) Postdoctorates not included. There were not enough postdoctorates to calculate reliable median salary.

(b) Twenty-five percent of the salaries fall below the typical salary range and twenty-five percent are above the typical salary range.