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ABSTRACT

ON THE VARIABILITY OF THE FINE STRUCTURE CONSTANT

Jason L. Evans

Department of Physics and Astronomy

Master of Science

This thesis addresses the issue of the time variability of the fine structure

constant, alpha. Recent claims of a varying alpha are set against the established

standards of quantum electrodynamical theory and experiments. A study of the fea-

sibility of extracting data on the time dependence of alpha using particles in Penning

traps is compared to the results obtained by existing methods, including those using

astrophysical data and those obtained in atomic clock experiments. Suggestions are

made on the nature of trapped particles and the trapping fields.
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Chapter 1

Introduction

Physics is full of constants. They show up in nearly every equation. They

allow physicists to write two related quantities as an equality. Without this ability to

write equations as equalities physics would lack the power of quantitative prediction.

The constants are generally inserted into the equations by physicists. As the number

of theories that rely on a particular constant increases, this constant becomes known

as a fundamental constant. Even though a particular constant may show up in several

theories, it is still an assumption that it really is a constant. It could be that it is

approximately constant, or only constant under a given set of conditions.

However, if the previous assumption is not true, this has theoretical implica-

tions. It means that the theories are either inaccurate or incomplete, neither of which

is acceptable. If, for instance, the speed of light c is time dependent, what is the effect

on the Lorentz transformation? Would Lorentz invariance still be a good criterion

for selecting theories?

Starting with Dirac in the nineteen thirties and continuing to current models

of string theory, theorists have proposed theories with time-dependent constants.

However, no experimental data have confirmed these predictions.

The experimental implications or time-dependent constants could lead to ei-

ther misinterpretation of data or even contradictions. Varying constants complicate

science, especially the field of metrology. The important task of continuously in-

creasing the precision of physical constants would become meaningless because our

standards would have different values at different times. As the experimentalists

1



reach an accuracy that is sensitive to this variation, two experiments performed only

a year apart could find contradictory results for the value of the constants.

It is hard to believe that a parameter defined to be constant could actually

change with time, but in 1999[9] a group of astrophysicists under John K. Webb at

the University of New South Wales, Sydney, Australia, gave a convincing argument

that this happens. Their claim was that the fine structure constant, α, had a larger

value 109 years ago.

A cosmological change in alpha does not require a current variation of alpha,

but the question still arises: can an earthbound laboratory experiment with high

precision measure a variation of alpha? There have been several attempts by atomic

clock physicists to verify this claim. However, laboratory experiments have been

unable to reach the same level of precision in alpha variability measurements. The

reason for this is that the added accuracy of atomic clocks cannot compensate for the

large comparison times in astrophysics. The astrophysical comparison times are ten

orders of magnitude larger than realistic laboratory comparison times.

There are other paths to explore the variability of alpha, such as using nuclear

and geological data. I have chosen not to address these issues in this work, referring

the reader to a complete review by Uzan[1].

Instead I have chosen to pursue two unexplored paths to gain new under-

standing on variability of the fine structure constant. First I investigated existing

data to determine if it could be used and reinterpreted to detect the variability of

the fine structure constant. If successful, this would clearly be the simplest and most

economical method of determining the variability of alpha. Quantum electrodynam-

ics(QED) is known for its precise measurements. Can the precision of QED be used

to determine the variation of alpha? There are fifty years of electron anomaly data

that could be used to calculate alpha. Fifty years of data might allow for an extended

comparison time and might constrain the variability of alpha.

Second, I laid the foundation of a novel technique to obtain data on the vari-

ability of the fine structure constant by studying frequency measurements in the

Penning trap and borrowing inspiration from the resonance technique used in atomic
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clocks physics. The main features of this technique are spelled out in this work and

arguments are presented for using specific systems in the trap. The influence of per-

turbing effects is also investigated, but further studies will be needed to check on the

ultimate feasibility of the experiment. Readers familiar with the physics of atomic

clocks and Penning traps can go straight to sections 7.4-7.6 to find the meat of the

new proposal.

In this work I investigate different aspects of the variability of alpha and in

particular I explore whether some ingenious laboratory experiment measuring the

anomalous magnetic moment can be found to help resolve the issue.

I start out by reviewing the status of constants in physics and concentrate on,

arguably, the most important one of all, alpha, the fine structure constant. Theoreti-

cal implications on the Lorentz covariance of a theory with varying alpha are explored

in Chapter 3. In Chapter 4, I review the precision data that are currently available in

QED to determine if new experiments are really needed to decide on the variability

of alpha or whether existing data are sufficient. Then I analyze the astrophysical

method in Chapter 5. In Chapter 6, I study two particular methods of extracting

alpha variability data using atomic clocks. I discuss in some detail the geonium ex-

periments that measure the electron anomaly in Chapter 7. Finally in Chapter 8, I

compare the advantages and disadvantages of three methods for measuring the vari-

ability of the fine structure constants and offer final conclusions. In the appendices

I review the derivation of the value of g, the Landé factor predicted by Dirac, and

g− 2, the first order electron anomaly, as predicted by Schwinger. Tables and figures

appear where they belong in the text and are listed separately in the introductory

pages of the thesis.
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Chapter 2

Constants and Alpha

As already stated, physics is full of constants. In order to relate two separate

quantities that arise in experiment, the necessity of using constants appears. The

constants make these relations into an equality. They transform a qualitative state-

ment into a quantitative one. The more accurately the constants are known, the more

exact the relation is. In this chapter we define what it takes to be a fundamental

constant and introduce the fine structure constant, α.

2.1 Constants of Physics

Constants that appear very frequently are given the name of fundamental

constants. Examples of these fundamental constants are c, h, and e. Here c is the

speed of light, the constant that defines relativity; h is known as Planck’s constant, it

can be said to define quantum theory, and e is the smallest increment of free electric

charge that can be measured. These constants, and a handful of others, play a crucial

role in defining the most fundamental theories of physics. Hence, they are known as

fundamental constants.

Although it would seem that a particular constant would have a defined mag-

nitude, this is not the case. Most constants take on different values depending on the

units they are displayed in. This means that the actual value of the constant will vary

from unit system to unit system. An example of this is g, the gravitational accelera-

tion. In SI units g is about 9.80m/s2, but in Imperial units it is 32ft/s2. This leaves

a lurking ambiguity in the magnitude of constants with units. An example where

this leads to problems is in the conversion of joules(J) to electron volts(eV). The
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conversion factor for this change of units is the charge of the electron. The problem

arises because of the limited accuracy on the charge of an electron. This means that

a measurement made in one unit system may not be converted to a measurement in

another unit system with equal accuracy.

Some constants in physics are dimensionless. Because dimensionless constants

have no units, the magnitude will be unaffected by a change of units, thus removing

the previously mentioned ambiguity. This has led to the belief that dimensionless

constants play a more fundamental role in physics. An example of a unitless constant

is the Reynolds number. The Reynolds number

Re =
ρvl

η
, (2.1)

is used to determine the conditions under which fluid flow will become turbulent.

It is dependent on ρ, the density, v, the velocity, η, the viscosity, and l, the linear

dimension of the system. Because this constant is independent of the units used, they

do not play a role in its value. The physics of turbulent flow can now be defined in

terms of its fundamental aspects without the consequences of changing units. This

allows experimental work to be done on smaller models with the assurance that the

results will translate to larger objects if the variables are modified so as to leave this

particular combination unchanged.

Another unitless constant, but of more foundational importance to physics,

is the fine structure constant, α. It is more fundamental than the Reynolds number

because it shows up in theories dealing with relativity, quantum theory, and electro-

magnetism. Another more fundamental aspect of α is that it is unique: it retains the

same value for all theories and systems. The fine structure constant has the form

α =
e2

~c
. (2.2)

As an aside we note that some texts define

α =
e2

4πε0~c
, (2.3)
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because of their choice of electromagnetic units. This does not affect our conclusion

since α is still dimensionless under both definitions and still retains the same value

for all units.

2.2 Time Dependent Constants

Because we believe that physics today is the same as yesterday, it seems absurd

to think that something such as a constant would have time dependence. However,

there are people that have considered just that.

2.2.1 Theoretical Search for Time Dependent Constants

When Dirac examined a complete set of unitless constants, composed of ratios

of what he believed to be the most fundamental constants, he found that they split

into two groups of different magnitudes. The values in these groups were separated

by many orders of magnitude. This led Dirac to believe that these groups were very

fundamental. One of the constants Dirac considered to be of fundamental importance

was Hubble’s constant. Hubble’s constant is time dependent. To preserve the funda-

mental importance of the groups, Dirac proposed that the other member of the group

must be time dependent as well. This led Dirac to propose that the gravitational

constant G is time dependent[3].

This suggestion has led others to consider the possibility of time dependent

constants. Even the quickly growing field of string theory suggest that some constants

may be time dependent[6].

2.2.2 Experimental Search for Time Dependent Constants

The experimental search for time dependent constants is moving forward on at

least two fronts. The first method, used by astrophysicists, is to use large time scales

that will magnify the change. This method has led at least one group to propose a

time dependent fine structure constant [9].
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The other method uses high precision measurements that are run on much

shorter time scales. This method has the advantage of greater control over the ex-

periment, but lacks the large times scales allowed in the astrophysical observation.

These two methods raise the question as to whether they are really measuring

the same thing. If the fine structure constant underwent change in the early universe

but this change has levelled off, these two methods would give different answers.

At this stage, however, each method must still push forward to a greater degree of

precision before we can resolve this question.

2.3 The Fine Structure Constant

The first place where the fine structure constant showed up was in the splitting

of the energy levels in atoms [13]. This fine structure removes the degeneracy of given

energy levels by splitting them into levels with different total angular momentum.

As is seen in figure 2.1 the n = 2 level of the hydrogen atom splits so that the

p states with j = 3/2 are no longer degenerate with the other p and s states with

j = 1/2. This can be seen in the formula for the energy of the fine structure

Efs
jn =

mc2α4

8n4

[
3− 3

j + 1/2

]
, (2.4)

where j is the quantum number for the total angular momentum. This is a con-

tribution that supplements the energy predicted by Schrödinger. The energy levels

predicted by the Schrödinger’s equation are [12]

En = −α2mc
2

2n2
. (2.5)

The fine structure constant has a value of approximately 1/137. This means

that the energy splitting of the fine structure is of order α2 or approximately 10−4 the

size of the energy level separation predicted by Schrödinger. Experimentally this is

the first place that the fine structure constant appeared. However, it is also present in

the hyperfine splitting, the Lamb shift [14] and almost everything that has its origin

in Quantum Electrodynamics (QED).

8



Figure 2.1: Energy splitting of the hydrogen n=2 states according to Schrödinger
(left) and Dirac (right)

2.4 Time Dependent Fine Structure Constant

Although the origin and even the name of the fine structure constant suggest

that it is independent of time, this cannot be taken for granted. One of the first

suggestions that alpha was time dependent was proposed by string theorists. Many

forms of string theory allow for and even require a time dependent fine structure

constant. This has led to many experimental searches for this time dependence of

the fine structure constant. Before 1999[9] there was no experimental evidence to

vindicate the string theorists’ claims. In 1999 John K. Webb found evidence of a

time dependent fine structure in the spectra of quasars[9].
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Chapter 3

Investigation of Lorentz Covariance

If the astrophysical claim that the fine structure constant is changing is correct,

what is the origin of the variation of the fine structure constant? As was stated earlier

the fine structure constant is composed of three other fundamental constants e, the

charge of an electron, h, Planck’s constant, and c, the speed of light. The search for

the origin of this variation of the fine structure constants can be rephrased as a search

for which one or more of these three constants is changing [34].

It seems very unlikely that the charge of an electron is changing. The reason

for this view stems from the fact that charge is ultimately just a counting unit due to

the quantization of charge. It counts the number of electrons (or protons). Coulomb’s

force law could really be rewritten in the form of a number of electrons (or quarks)

times some other factors. This form of Coulomb’s law would work just as well as the

currently accepted form. If Coulomb had known that the charge of an electron was

quantized the charge of an electron would most likely be one. Now it seems unlikely

that one electron in the future will be a fraction of an electron in a million years. This

would suggest that charge is more than a counting unit, a notion that we reject[34].

Another unlikely candidate for alpha’s time dependence is Planck’s constant.

An argument against h-variation goes like this: quantum systems are entangled, with

h being a measure of the degree of entanglement. This entanglement links all systems

and a variation of h in space-time would require noticeable and completely new time

dependent results here on earth[34].

This has led some (Peres[34]) to suggest that the cause of alpha variation is

a varying speed of light, c. One can argue that the speed of light is really just a

11



scaling factor between space and time. There would be little difference between a

world where c was constant and a world where c was time dependent. The difference

would be in the degree of relativistic effects, not in a manifestation of new effects. In

the next section we explore the possibility of a time-dependent speed of light.

3.1 Lorentz Transformation

In the early twentieth century it was apparent that the laws of electricity

and magnetism were not invariant under a Galilean transformation. Because of this,

many physicists believed that electromagnetic fields were propagating through a fluid

known as the ether. The ether would explain the lack of invariance in Maxwell’s equa-

tions under a Galilean transformation since the ether frame would be the only frame

in which Maxwell’s equations would be valid. In spite of this strong belief, Michel-

son and Morley were unable to measure the speed of the earth through the ether.

Lorentz found a transformation of space-time, the Lorentz transformation, that keeps

Maxwell’s equations invariant. However, Lorentz still believed in the ether. It wasn’t

until Einstein proposed his theory of special relativity that Lorentz transformations

were given proper footing as a statement about a transformation between values ob-

served by different observers, rather than a physical transformation of space and time.

Since that time, Lorentz transformations have become a very fundamental aspect of

physics and Lorentz invariance is used as a criterion for selecting theories.

3.2 Time Dependent Lorentz Transformations

In examining the consequences of a time varying speed of light on current

electromagnetic theory, I first look at the effect on Lorentz transforms themselves,

because of their foundational importance. The origin of the Lorentz transformation

is rooted in a belief that the laws of electricity and magnetism are the same for all

observers. Because of this, I investigate the Lorentz invariance of Maxwell’s equations

if a time dependent speed of light is assumed. Is it conceivable that there exist a time-

dependent speed of light that is still consistent with Maxwell’s equations and the form

12



of the Lorentz transformation? To test for invariance, Maxwell’s equations for a field

F µν in the presence of a current Jν

∂µF
µν = µ0J

ν , (3.1)

where µ0 is the permeability of free space, are transformed into a new reference frame

using the the Lorentz transformation in matrix form

Λµ
ν =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 , (3.2)

where

β =
v

c
, (3.3)

and

γ = (1− β2)1/2. (3.4)

Identifying the matrix elements in Eq. (3.1) as tensorial components, we get

Λσ
ν∂µF

µν = Λσ
νµ0J

ν . (3.5)

This is followed by a transformation of the derivatives, tensors and vectors of

the equation, leading to

Λσ
νΛα

µ∂α

[
Λµ

δ Λν
ηF

δη
]

= Λσ
νµ0Λ

ν
βJ

β. (3.6)

If a time or position dependence of the speed of light is assumed, then the

derivative can no longer pass up the Lorentz transformation matrices, because they

have become space and time dependent. The product rule can be used which leads

to the following equation

13



Λσ
νΛα

µΛµ
δ Λν

η

(
∂αF

δη
)

+ Λσ
νΛα

µF
δη

(
∂αΛµ

δ Λν
η

)
= Λσ

νµ0Λ
ν
βJ

ν . (3.7)

From the property of Lorentz transformations

Λσ
µΛµ

α = δα
σ , (3.8)

Eq. (3.9) becomes

∂αF
ασ + Λσ

νΛα
µF

δη
(
∂αΛµ

δ Λν
η

)
= µ0J

σ. (3.9)

Maxwell’s equations will be invariant if

F δηΛσ
νΛα

µ∂αΛµ
δ Λν

η = 0 (3.10)

for all values of σ, the only fixed index.

If the speed of light is considered to be time dependent only, and not space

dependent, then the derivatives become ∂0. Because Lorentz transformations are

ultimately functions of β, Eq. (3.10) can be reduced to

F δηΛσ
νΛ0

µ

∂

∂β
(Λµ

δ Λν
η)
dβ

dt
= 0. (3.11)

Everything to the the left of the time derivative of β can be divided out,

leading to an equation of the form

dβ

dt
= 0. (3.12)

The only solution to this is a constant β. If β is constant, then it is required

that c be a constant as well.

One of the consequences of relativity is that it places space and time on the

same footing. This leads to the question of whether the Lorentz transformation allows

for a space-time dependent speed of light. This means that Eq. (3.10) must be shown

to be satisfied for all values of σ and α. This is done by summing over the repeated

indices. Setting σ = 0 and summing over all other indices in Eq. (3.10), the following

differential equations is found
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F 31∂3β + F 21∂2β = 0. (3.13)

Because F 31 and F 21 are completely independent of one another, the terms

multiplying them must each be zero separately. This leads to the conclusion that the

derivatives of β with respect to y and z are zero. This means that β is independent

of y and z and therefore c is independent of y and z. Setting σ = 2, the following

differential equation is found

F 02∂1β + F 12∂0β = 0. (3.14)

F 02 and F 12 are also completely independent of each other and therefore their

multiplying coefficients must be zero. This also leads to the conclusion that the

derivatives of β with respect to x and t are zero, implying that β is independent of x

and t and therefore c is independent of x and t.

The conclusion is that a constant speed of light is necessary for Lorentz in-

variance. However, this is not so alarming to many physicists today. Many current

theories require a local breaking of Lorentz invariance[6].
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Chapter 4

Fifty Years of g-2

In recent years astronomical observations have been presented that make a

case for a time dependent α. Because of the difficulty in interpreting astronomical

data, physicists are looking for an experiment that can be performed in a laboratory

to help substantiate or disprove the astronomical observations. However, this task

is very difficult. The astrophysicists have an advantage because they are able to use

large comparison times that are on the order of 109 years. On the other hand, labo-

ratory experiments have the advantages of repeatability and greater control over the

experimental environment. Is it possible to incorporate the advantages of these two

regimes simultaneously, creating the best possible method for measuring a variation

in the fine structure constant? In an attempt to use these two advantages I have com-

bined the g − 2 data which comes from earth bound experiments, considered them

over the past fifty years (giving a comparison time of about 102) and used them to

check for alpha variability.

4.1 Fine Structure

The Schrödinger equation predicts that in hydrogen, electrons with the same

principal quantum numbers have the same energy. However, the relativistic kinemat-

ical correction and the spin-orbital correction split degenerate states by lifting the

degeneracy.
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This splitting of energy levels is called the fine structure of an atom and it is

proportional to the square of a unitless constant called the fine structure constant α,

where

α =
e2

~c
. (4.1)

4.2 QED and g-2

The spin magnetic moment ~µs of an electron is related to its spin angular

momentum ~S through the following formula:

~µs = −g e

2m
~S. (4.2)

Here, m is the mass of an electron, e is its charge, and g is its Landé factor. Using

Dirac’s relativistic quantum mechanics, the Landé factor is predicted to be exactly

2 for an electron. My derivation of this result is presented in Appendix A. How-

ever, the current experimental value is 2.002319304 for the Landé factor [32]. The

extra contribution to the magnetic moment found in the Landé factor is called the

anomalous magnetic moment. Quantum Electrodynamics (QED) is able to predict

the anomalous magnetic moment very precisely. The electron anomaly ae is defined

as

ae =
g − 2

2
, (4.3)

where g is the Landé factor. The electron anomaly would be zero for a pure Dirac

electron.

In the theory of Quantum Electrodynamics (QED) the anomalous magnetic

moment and the fine structure constant are related. The relation can be illustrated by

considering corrections to the vertex of QED. The vertex diagram of QED represents

a travelling particle which has either absorbed or emitted a quantum of light. The

elementary vertex, which involves only one interaction, can be seen in figure 4.1. A

derivation of the contribution of this diagram is given in Appendix B.

The corrections to the vertex incorporate an increasing number of interactions.

The lowest order correction to the vertex can be seen in figure 4.2.
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Figure 4.1: The elementary vertex of QED

Figure 4.2: The first correction to the elementary vertex of QED
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Higher order corrections to the vertex, which have a larger number of lines and

interactions, contribute less to the anomalous magnetic moment. Each new photon

line in a Feynman diagram involves new elementary vertices and each pair of vertices

in a Feynman diagram contributes a factor of α. The calculation of all Feynman dia-

grams with every possible interaction leads to a perturbative series in alpha . However

as the diagrams become more complicated they involve an increasing number of ele-

mentary vertices. The paths now involve the creation and annihilation of particles,

in the virtual sense. An example of this would be the creation and annihilation of an

electron and a positron pair. However, one should consider all charged particles, since

they all interact with the electromagnetic field. As the particles created become more

massive, their contribution to the anomalous magnetic moment decreases. This can

be understood in terms of the energy required for a particle to take a given path. The

paths that involve heavier particles require more energy and are therefore less likely

to happen. The lowest energy contributions to the anomalous magnetic moment in

QED can be grouped into four groups as follows [28]:

ae = A1 + A2(me/mu) + A2(me/mτ ) + A3(me/mµ,me/mτ ), (4.4)

where the parameters refer to functional dependence.

The first term, labelled A1, is the contribution to the anomalous magnetic

moment due to photon interaction with electron and positron pairs only. Because

this term involves interactions with photons only, it will be the largest contribution

to the anomalous magnetic moment. The term A2(me/mµ) is the contribution to

the magnetic moment from interactions involving electrons, muons, and their an-

tiparticles. Because this term involves diagrams with heavier particles being created

and destroyed it will contribute less than A1. A2(me/mτ ) is the contribution to the

anomalous magnetic moment of interactions involving electrons, tauons, and their

antiparticles. A3(me/mµ,me/mτ ) is the contribution to the anomalous magnetic mo-

ment of electrons, muons, tauons, and their antiparticles all in a single diagram. This
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term will contribute the least of the four because of the very massive particles in-

volved. Each of these terms in Eq. (4.4) is composed of an infinite series of the

form

Ai =
∞∑

n=1

A
(2n)
i (

α

π
)n, (4.5)

where the coefficients A
(2n)
i carry the mass dependence.

The coefficients in the series of alpha are determined from calculations of the

respective Feynman diagrams. The first three coefficients of the series for A1 have

all been determined analytically and many of the other terms have been calculated

numerically. The coefficients determined numerically have an added uncertainty asso-

ciated with them[28]. The strong and weak particle contributions have been neglected

in Eq. (4.4) because they are small.

4.3 Astrophysical Evidence of Changing Alpha

In recent years, Webb et al. claimed to have detected a variation of the fine

structure constant. Comparing Mg and Fe lines in quasar data with the corresponding

current values, Webb et al. measured an average change of ∆α/α= (−1.1±4)×10−5

for a red shift of z=.5 to 3.5 where z is defined as

z =

√
1 + β

1− β
− 1, (4.6)

and ∆α is

∆α = α0 − αz (4.7)

where α0 is the current α and αz is the value of α at the corresponding redshift z.

4.4 Calculation of Alpha From g-2 Data

From Eq. (4.3)-(4.5) the fine structure constant can be solved for in terms of

the anomalous magnetic moment and the coefficients of the perturbative series. Using

the data that is available for the anomalous magnetic moment since the 1940’s[27],
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a plot of alpha versus time can be made. Because of the complexity of this formula

and the fact that it is a perturbative series, I only consider the contributions to the

anomalous magnetic moment from the A1 terms. As explained above, the terms

involving massive particles are much higher in energy and hence contribute much less

to the calculation of the anomalous magnetic moment. I begin my calculations by

only giving consideration to the term linear in alpha of the A1 contribution to the

anomalous magnetic moement. This leads to an equation for inverse alpha of the

form:

1

α
=

1

2aeπ
(4.8)

where ae is the anomalous magnetic moment. Using this relationship and the g − 2

data from the past fifty years, I plot inverse alpha versus time. I then determine the

error of the inverse of alpha due to the error on the measurement of the anomalous

magnetic moment as reported in the experimental publications. I then plot inverse

alpha with inverse alpha plus the error and with inverse alpha minus the error on the

same graph as inverse alpha. The error takes the form

∆
1

α
= −∆ae

2aeπ
. (4.9)

This allows for a comparison between Webb et al.’s predicted slope and the

g− 2 data. I repeat the analysis keeping both the linear and quadratic terms in α in

Eq.(4.5). This approximation gives a formula of

1

α
=

2A
(4)
1

π

(
−A2

0 +

√
(A

(2)
0 )2 + 4A

(4)
1 ae

) (4.10)

where ae is the anomalous magnetic moment and the A
(2n)
i terms are defined in

Eq.(4.5). The error for this approximation is determined by taking a derivative of the

inverse alpha relation
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∆
1

α
=

4(A
(4)
1 )2∆ae

π

(
−A2

0 +

√
(A

(2)
0 )2 + 4A

(4)
1 ae

)2 √
(A

(2)
0 )2 + 4A

(4)
1 ae

. (4.11)

A plot of inverse alpha and inverse alpha plus or minus the error is given in

figure 4.3. The same procedure was used in calculating the value of inverse alpha

in a third order approximation with similar result. Because of increasing complexity

and the lack of significant increase in accuracy due to fourth order terms in alpha

and higher, these approximations are not calculated. The plot of the third order

approximation is shown in figure 4.3.
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Figure 4.3: Alpha data from QED since 1950

The data before 1975 has extremely large error bars, making it unhelpful in

constraining the variability of alpha. Some of the results appear to be wrong because

they are not consistent with other measurements of the electron anomaly. Because of
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this lack of accuracy, I discard the data before 1975 and plotted the rest of the data,

as seen in figure 4.3.
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Figure 4.4: Alpha data from QED since 1978

However, the data since 1975 was not accurate enough to confirm the variation

that was presented by Webb et al.. The reason for this is that the data is only as

good as the worst data point for the time period considered. This means that, for

data after 1975, the oldest point really determines the level of accuracy. And as is

seen in figure 4.4 even the later more accurate data is unable to compete with the

accuracy of astrophysical measurement.
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Chapter 5

Astrophysical Claims on Alpha Variability

5.1 Motivation

In search of an experimental method to verify string theory claims that the

fine structure constant might be time dependent, a group in Australia under John K.

Webb analyzed astrophysical data from quasars[9]. In this chapter we will present the

method that led astrophysicists to claim that α is changing and we will show their

data. To end the chapter we will also present some astrophysical data that contradict

these original claims and conclude on the status of α variability from astrophysics.

5.1.1 Quasars

The name quasar comes from the contraction of QuAsi-Stellar Radio Sources.

Quasars were originally discovered as an intense point-like source of radio waves [35].

Because of the large intensities measured, they were originally believed to be stars in

our galaxy. However, it has been discovered that quasars are actually very distant

objects and therefore extremely intense. They are now believed to be radiation signals

from the center of a galaxy. This radiation indicates the formation of a black hole.

These black holes are surrounded by large clouds of dust. These dust particles are

pulled in by the forming black hole. As these particles are pulled in, they orbit due

to the presence of a strong magnetic field. This orbital motion causes synchrotron

radiation in the form of radio waves. This radiation is selectively absorbed by the sur-

rounding gas clouds. This absorption leads to a spectrum that can then be analyzed

by astronomers.
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5.1.2 Analysis

In order to obtain a significant constraint on the variability of the fine structure

constant one needs either very precise experiments or very long comparison times.

Long comparison time will magnify the variation and so accommodate less accurate

measurements. Quasars are only present in emissions that are over 1 billion years

(1016s) old. This allows for comparison on large time scales and makes quasars good

candidates for testing the variability of the fine structure.

The methods that was previously used for detecting time variations of α con-

sisted in detecting variations of the relativistic fine structure splitting of alkali-type

doublets (AD). The separation of the lines in one multiplet is proportional to α2. Thus

small variations in the separation are proportional to α [9]. This can be understood

by examining the following energy separation equation

E2 − E1 = Aα2. (5.1)

This energy separation leads to a time dependent frequency that is propor-

tional to alpha in the following way

dω

dt
=

1

~
d(E2 − E1)

dt
=

2Aα

~
dα

dt
. (5.2)

In order to gain accuracy Webb et al. compares wavelengths in transitions

belonging to different ions, in particular transitions from MgII and FeII that are

commonly seen in quasar signals. They develop a procedure for simultaneously ana-

lyzing the spectra of MgII and FeII. The transitions used by Webb et al. are ”MgII

2796/2803 doublet and up to five of FeII transitions,(FeII 2344,2374,2383,2587, 2600

Å), from three different multiplets” [9]. The advantage of a comparative technique

is that MgII transitions frequencies are one order of magnitude less sensitive to vari-

ations in alpha than the transition in FeII. Magnesium is less sensitive because the

coefficients in the expression for the energy transitions are an order of magnitude

smaller. This means that the magnesium atom acts as a reference with which to

gauge the variation of the iron transitions. The comparison decreases the uncertainty
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in the measurement and allows for smaller error bars in the data. The energy equation

used by Webb et al. to assess the variation of the fine structure constant is

Ez = Ez=0 + [Qi1 +Ki1(LS)]Z2

[(
αz

α0

)2

− 1

]
+Ki2(LS)2Z4

[(
αz

α0

)4

− 1

]
, (5.3)

where Z is the nuclear charge, L and S are the orbital and spin angular momentum

respectively and α0 and αz are defined in section 4.3. The coefficients Qi1 are relativis-

tic coefficients that are calculated numerically from a many body theory. Ki1 , and

Ki1 are relativistic spin orbit coefficients. The different coefficients for each transition

are denoted by the index i. If the coefficients for each transition are determined, the

equations for the transition frequencies in magnesium become

MgII 2P J = 1/2 : ω = 35669.289(2) + 119.6x (5.4)

J = 3/2 : ω = 35760.835(2) + 211.2x

and the equation for the transition frequencies in iron become (Adapted from Webb

et al.[9])

FeII 6D J = 9/2 : ω = 38458.9871(20) + 1394x+ 38y

J = 7/2 : ω = 38660.0494(20) + 1632x

6F J = 11/2 : ω = 41968.0642(20) + 1622x+ 3y (5.5)

J = 9/2 : ω = 42114.8329(20) + 1772x

6P J = 7/2 : ω = 42658.2404(20) + 1398x− 13y,

where x =

[(
αz

α0

)2

− 1

]
and y =

[(
αz

α0

)4

− 1

]
. Using the data from quasars the αz is

determined which will best fit each of the previous seven equations simultaneously.

5.2 Data

The original paper presented by Webb et al. that proposed a time varying

fine structure constant involved a survey of 25 different quasars. These quasars had
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a redshift range of .05 < z < 1.6. If the entire sample is averaged a variation of

∆α/α = −1.1 ± 0.4 × 10−5 is found. However the variation is dominated by the

measurement with z > 1, where ∆α/α = −1.9 ± 0.5 × 10−5. The variation for the

measurement with z < 1 is ∆α/α = −0.2 ± .04 × 10−5, which is consistent with a

constant α.

To further their case for a varying fine structure constant, Webb et al. in-

creased the redshift range to 0.5 > z > 3.5. In order to increase their sample size, it

was necessary to alter their original experiment for the redshift range of 1.8 < z < 3.5.

Instead of using a comparative technique of FeII and MgII for this range they now

used NiII, CrII and ZnII. They also considered some older techniques for measuring

the variability of α as can be seen in Table 5.1.

Sample Method Nabs Redshift ∆α/α(10−5

FeII/MgII MM 28 0.5 < z < 1.8 −0.70± 0.23
NiII/CrII/ZnII MM 21 1.8 < z < 3.5 −0.76± 0.28
FeIV AD 21 2.0 < z < 3.0 −0.5± 1.3
21cm/mm radio 2 0.25,0.68 −0.10± 0.17

Table 5.1: A comparison of different methods for measuring the variation of alpha
for different redshifts. Adapted from Webb et al. [8]

If the data sets are binned into groups with similar redshifts, this leads to the

plot that can be seen in figure 5.1.

The graph clearly shows a variation of the fine structure constant, with in-

creasing effect as the red shift grows larger. However, as the redshift grows larger,

the error bars also become larger.

Although Webb et al. concluded that the fine structure constant is changing

using the Multiplet Method (MM), recently other researchers [11] have also published
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Figure 5.1: The plot after the binning of quasar data (adapted from [8])

results using this method. In order to verify the sensitivity of their results, these re-

searchers first fabricated data that corresponded to a varying fine structure constant.

They then used this data to test the accuracy of MM. They found that, when us-

ing the comparison technique of MM, it is best to compare multiplets that act as

singlets. This gave criteria from which to select quasars for analysis. Using these

criteria, 18 quasars were selected for analysis using MM. This led to a variation of

alpha of ∆α/α = −0.06± .06× 10−5 for a red shift of 04 < z < 3.4.

Therefore, later work by different astrophysical groups seem to significantly

decrease the solidity of the original claim. However, it should be noted that Webb et

al. has mentioned that systematic effects could be present and has made an effort to

remove them.
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Chapter 6

Atomic Clocks and Alpha Variability

Currently the best method for determining the variability of the fine structure

constant from an earth bound experiment comes from atomic clock measurements.

6.1 Two Methods

Atomic clock measurements can be broken into two separate categories. One

method involves the comparison of transitions present in two different atoms[22].

The other method involves the comparison of two different transitions with nearly

equal transition frequencies that are in the same atom[25]. Both of these methods

have allowed atomic clock physicists to lead the way in the measurement of alpha

variability in laboratory experiments. We review briefly the principles on which both

methods are based and we compare their results. We will get some of our inspiration

for the method we develop in Chapter 7 from the nearly degenerate level method.

6.1.1 Comparison of Hyperfine Splitting in Different Atoms

The theory of atomic clocks is based on a comparison of two separate clocks.

To understand this need for a comparison let us consider a wrist watch and a clock

on the wall. If the wrist watch is running slow, how do I know it is running slow? I

have no way of knowing it is running slow unless I compare its time measurement to

another clock, such as the clock on the wall. Because different atomic clocks have a

different dependence on α, if α is changing, they will ”slow” at different rates. This

means a change in α will be observed as one of the clocks running slow.
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One type of atomic clock that is used in this manner is based on the frequency

of the hyperfine splitting of two different atoms A and B. Time is measured by first

defining a length of time, say a second, as a certain number of periods of the hyperfine

frequency in atom A.

Figure 6.1: Node comparison between two clocks

Time is defined in terms of the number of nodes of the electromagnetic wave

of the hyperfine transition see figure 6.1. These frequencies can be determined to

approximately 1 part in 1015 leading to a very sensitive method for detecting frequency

drift and hence a variability of alpha.

The formulas for the frequencies associated with hyperfine splitting is very

complicated with coefficients depending on physical parameters that contain large

error bars[22]. However, this difficulty can be overcome when a ratio of frequencies

is considered. This ratio provides a way of comparing two frequencies and will allow

for detection of a relative frequency drift. Any frequency drift found in this manner

32



would indicate a varying alpha. The general expression for frequency, As of a hyperfine

splitting in an atom of atomic number Z is

As =
8

3
α2glZ

z2

n3
∗

(
1− d∆n

dn

)
Frel(αZ)(1− δ)(1− ε)

me

mp

R∞c. (6.1)

The gI l term is the nuclear Landé factor, me and mp are the electron mass

and proton mass respectively, R∞c is the Rydberg constant in frequency units, z

is the the net charge of the remaining ion after removing valence electrons, n∗ is

the effective quantum number, and ∆n = n − n∗ is the quantum defect for the nth

state. The term 1− δ corrects for the deviation from a pure Coulomb potential and

1 − ε is the correction for the finite size of the nucleus. Frel(Zα) is a relativistic

expression that contains the dependence on the atomic potential. Its explicit form

is given in Eq.(6.3)[22]. The only relevant factors in this expression, however, are

those that are dependent on α. This means that the only two factors that will cause

a frequency shift due to variations in alpha are the Frel(αZ) and the α2 terms. The

α2, however,disappears when a ratio of two frequencies is considered. This leaves the

Frel(αZ) term as the only possible cause for a frequency drift. In order to magnify

the variation of α in this type of experiment, one can take a natural log of this ratio

as follows

d

dt
ln

(
A1

A2

)
= α

d

dα
[ln(Frel(αZ1))− ln(Frel(αZ2))]

(
1

α

dα

dt

)
. (6.2)

We notice here that this method will only be relevant for two atoms with

different atomic numbers. The functional form of Frel(αZ) is given by[22]

Frel(αZ) = 3[λ(4λ2 − 1)]−1, (6.3)

where λ is defined as

λ = [1− (αZ)2]1/2. (6.4)

Knowing the functional form of Frel(αZ) the derivative in Eq.(6.2) can be

taken to give:
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α
d

dα
ln(Frel(αZ) = LdFrel(αZ), (6.5)

where Ld is a function of λ. This allows for a simplification of Eq.(6.2) leading to the

following expression

d

dt
ln

(
A1

A2

)
= (LdFrel(αZ1)− LdFrel(αZ2))

(
1

α

dα

dt

)
. (6.6)

This formula is used as a yes/no indicator. The ratio of two frequencies is

periodically calculated for nearly a year. A yes response comes if the variation of the

frequencies due to alpha changing is greater than the noise of the experiment.

An added feature of this method is that it allows for comparison of hyperfine

transition frequencies in many different atoms. The atoms that are most often used

are hydrogen, rubidium, cesium, and singly ionized mercury, because they are well

defined systems that can be used as atomic clocks. The best comparison using the

method in Eq.(6.6) comes from comparing the hyperfine transition frequencies of

hydrogen and mercury because of the large difference in Z. A large difference of Z2−

Z1 maximizes the coefficients in front of α̇/α in Eq.(6.6). If this term is maximized, a

small variation in α will lead to a large drift in the hyperfine frequencies and is hence

much easier to detect. Using hydrogen and mercury in very accurate measurements,

atomic clocks have measured no frequency drift and therefore no variation of α thus

far. But they are only able to put an upper limit on the variation of α, namely α̇/α =

3.7 × 10−14/yr. This constraint, however, is not competitive with the astrophysical

measurement. Also, it may not necessarily be the best method for using atomic clocks

as we will discuss in the next section.

6.1.2 Comparison of Two Transitions Between Two Nearly Degenerate

States

The second method used by atomic clock physicists to measure the variability

of the fine structure constants is to use an atom with two nearly degenerate levels[25].

The experiment is focused on a transition between these two nearly degenerate levels
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on the one hand, and a third level on the other. This can be seen in figure 6.2 where

A and B are the nearly degenerate states and G is the third state. If an atom with

this behavior is simultaneously illuminated by two lasers able to stimulate transitions

A↔ G and B ↔ G, a beat frequency will appear. This beat frequency will be much

smaller than the two incident frequencies because the original transitions are nearly

equal in energy. The measurement of this smaller beat frequency for the transition

between A↔ B can be accomplished in a slightly different way, as seen in the work

of Nguyen et al.[23].

Figure 6.2: Transitions between two nearly degenerates labelled A and B(adapted
from [23])

Because the beat frequency is several orders of magnitude smaller, it is easier

to measure. Measurement of this beat frequency also allows for a more sensitive de-

tection of the frequency drift between each of the two atomic transitions compared
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to other atomic clock methods. The reason for this can be understood by consider-

ing two transitions which are equivalent in their first five(5) significant figures. For

examples when two frequencies

ω1 = 565641934.3493.... ω2 = 565643658.6465.... (6.7)

are subtracted, a new frequency appears

ω2 − ω1 = 1724.2972... . (6.8)

A measurement of this difference with an accuracy of only eight(8) significant

figures is able to detect a drift between frequencies of thirteen(13) decimal places.

This means that the detection of the beat frequency of two nearly degenerate levels

leads to a much more sensitive detection of the transitions frequencies drift. If the

two nearly degenerate levels have different dependence on α, the beat frequency can

be used as an indicator of α variability. Experimental methods measuring transitions

between two nearly degenerate states are currently being performed in the hope of

acquiring an accuracy of α̇/α ∼ 10−18/yr[23]. This is three orders of magnitude

better than the accuracy acquired by the astrophysicist and four orders of magnitude

better than the two atom atomic clock method presented in Section 6.1.1. This level

of accuracy would allow for possible verification of the astrophysicists’ claims.

6.2 Discussion

Our discussion of atomic clock experiments leads to the conclusion that mea-

surement of nearly degenerate energy levels is likely to give an added sensitivity to the

physical behavior being measured. The reason for this is that it pushes the needed

accuracy into decimal places that can be measured. It will be shown in chapter seven

that this technique can be adapted for use in the Penning trap. It can be adapted

using the electric field to force the spin flip frequency and the modified cyclotron

frequency to be nearly equal.
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Chapter 7

The Penning Trap

Geonium is an expression that was coined by Dehmelt[33]. Geonium is the

name given to a single particle in a Penning trap. The term was used as the name for

this state because geonium is in essence a bound state of an electron with the earth.

The basis of our interest in the geonium trap is a comparison of two different frequen-

cies, the spin precession and the cyclotron frequency. Classically the frequency is the

inverse of the period which would corresponds to the time required to close an orbit.

In quantum mechanics a frequency is directly proportional to the energy which cor-

responds to a transition between two different allowed energy levels. In the geonium

experiment the classical and quantum frequencies are identical. In the geonium ex-

periment two different frequencies are compared, the cyclotron frequency and the spin

flip frequency. Because these frequencies depend on different dynamics but similar

constants, a measurement of the anomalous magnetic moment is possible. Another

advantage of using these two frequencies is that both of them can be measured in

the same experiment, because both frequencies are characteristic of a constant mag-

netic field. In section 7.1 I present my derivation of classical and quantum solutions

in the standard problem of the uniform magnetic field. In section 7.2 I present my

derivation for the equivalent solution in the field of the Penning trap. I have thus

checked independently the results originally derived by Sokolov and Pavlenko[10] and

quoted in Van Dyck[32]. In section 7.3 I work out the effect of perturbing fields in

a Penning trap. In section 7.4 I analyze the measurement of the anomaly frequency

in a Penning trap, the time-dependent anomaly frequency in 7.5, and in section 7.6 I

extend the analysis to include other particles.
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7.1 The Uniform Magnetic Field

All measurable frequencies needed to determine the anomalous magnetic mo-

ment appear whenever an electron is placed in a uniform magnetic field. However,

even if a uniform magnetic field were obtainable, it is very difficult to trap a particle

in a uniform magnetic field. But the consideration of a particle in a uniform magnetic

field will elucidate the essential features of this experiment. The two main features

needed to measure the anomalous magnetic moment are a spin flip frequency and a

cyclotron frequency, both of which are present in a uniform magnetic field.

7.1.1 Classical Trajectories

The cyclotron frequencies are obtained by solving Newton’s equations for a

charged particle exhibiting circular motion in a uniform magnetic field. The cyclotron

frequency is the angular velocity at which the particle orbits in the magnetic field.

The equation of motion for a charged particle in uniform magnetic field is

mv2

r
= qvB. (7.1)

If the the angular velocity ω, defined as

v = ωr (7.2)

is introduced in Eq.(7.1) and then solved for, the following relationship is found

ω =
eB

m
≡ ωc, (7.3)

where ωc is the cyclotron frequency.

Although this is a purely classical calculation, it suggests that the energy of a

particle orbiting in a uniform magnetic field is dependent on the same factors as in

the spin precession case, except for the Landé factor. If this assumption holds true

in the quantum case, then a measurement of these two frequencies will enable the

calculation of the anomalous magnetic moment directly from observable quantities.
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7.1.2 Quantum Levels

We will now tackle the same problem from a quantum mechanical point of

view (the Landau problem). The Landau problem consists in solving the Schrödinger

equation for a particle in a uniform magnetic field. The differential equation to be

solved takes the form
1

2m
(−i~~∇− e

c
~A)2ψ = Eψ. (7.4)

Here ~A is the magnetic vector potential which is related to the magnetic field

~B in the usual way

~B = ~∇× ~A. (7.5)

Because of the gauge freedom of electromagnetism an ambiguity arises. Which

gauge should be used, and does the gauge affect the wave function and energies of the

solution? Another choice that arises is that of the coordinates. Because the symmetry

of the geonium trap is cylindrical, I have chosen to solve this problem in cylindrical

coordinates (ρ, φ, z). The problem is solvable in Cartesian coordinates with a different

choice of gauge [30]. I have chosen the gauge where the vector potential is given as

~A =
Bρ

2
φ̂, (7.6)

where B is the magnitude of ~B.

Because the potential is only a function of the radial coordinate ρ, the equation

can be shown to be separable in cylindrical coordinates. The solution is assumed to

be of the form

Ψ(ρ, φ z) = R(ρ) exp(ikz) exp(ilφ), (7.7)

where k and l are constants to be determined later. If the wave function is assumed

to be of this form, the partial differential equation is transformed into the following

ordinary differential equation:

R′′(ρ) +
1

ρ
R′(ρ) + (

2mE

~2
− k2 + 2lγ − γ2ρ2 − l2

ρ2
)R(ρ) = 0 (7.8)

where the constant gamma contains the strength of the magnetic field

γ =
eB

~c
. (7.9)
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It can be shown that this differential equation has singular points at the origin

and at infinity. In order to get a differential equation that is solvable, the singular

behavior needs to be removed. The singular behavior of the solution is removed by

first making a change of variable

r = γρ2. (7.10)

After this change of variables is performed, the following substitution, inspired

by the singular behavior of the equation, is made

R(r) = exp(−r
2
)r

l
2Q(r). (7.11)

This transforms the differential equation into a well-known expression

rQ′′(r) + (l − r + 1)Q′(r) + nQ(r) = 0, (7.12)

where the constant n combines physical parameters, including the still undetermined

energy E of the system, as follows

n =
mE

2~2γ
− k2

4γ
− 2l + 1

2
. (7.13)

The solution to this differential equation is the well-known associated Laguerre

polynomials Ll
n. In order for the solution to be finite, the series must terminate,

forcing the constants n and l to be integers. The radial solution and the energy

values take the form

R(ρ) = exp(−γρ2)(γρ2)
l
2Ll

n(γρ2), (7.14)

E = (2n+ l + 1)~ωc, (7.15)

where n is the radial quantum number and l is the azimuthal quantum number, which

can be positive or negative. Thus we see that the quantum frequency for a transition

between two adjacent energy levels is the same as that of the classical problem in

analogy to what happens in the case of the simple harmonic oscillator.
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7.1.3 Classical Precession

We now consider a particle with a magnetic moment in a uniform magnetic

field. The classical problem is to solve the torque equation relating the torque ~τ to a

magnetic moment and an external magnetic field. The equation of motion is

~τ = ~µ× ~B (7.16)

The magnetic moment of a particle of charge e and mass m is related to the

angular momentum ~L of the particle by the gyromagnetic ratio γ such that

~L =
~µ

γ
, (7.17)

and

γ =
ge

2m
. (7.18)

Torque is the time derivative of angular moment

~τ =
d~L

dt
. (7.19)

Combining Eq.(7.16)-(7.17), and Eq.(7.19) leads to

d~µ

dt
= γ~µ× ~B. (7.20)

This differential equation has an exact solution for a uniform magnetic field

~B = B0ẑ. (7.21)

The solution for this field configuration is

~µ = A [cos(γB0t+ δ)x̂+ sin(γB0t+ δ)ŷ + Cẑ] , (7.22)

where δ and C are constants of integration related to initial values. From examining

the solution, it is seen that the frequency at which the spin precesses around the

magnetic field is

ω0 = γB0 =
geB0

2m
. (7.23)

We will see that this is the same as the spin flip frequency for an electron in

a uniform magnetic field.
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7.1.4 Spin Flip

The spin precession frequency is obtained by considering the Hamiltonian,

(H ), of the form

H = −~µ · ~B (7.24)

where the magnetic moment ~µ and the magnetic field

~B are defined as

~µ = −g e

2m
~S (7.25)

~B = B0ẑ (7.26)

In the following equations e is the charge of an electron, g is the Landé factor,

m is the mass of an electron and ~S is the spin vector. Substituting Eq. (7.25)-(7.26)

into Eq. (7.24) gives an eigenvalue equation

µzBzX = g
eB0

2m
SzX = λX, (7.27)

where

Sz =
~
2
σz, (7.28)

and σz is a Pauli matrix. The solution of this eigenvalue problem is

X+ =

 1

0

 , (7.29)

X− =

 0

1

 , (7.30)

with energy eigenvalues of

λ = E± =
±~ω0

2
, (7.31)

and where ω0 is the spin precession frequency defined as

ω0 =
geB0

2m
. (7.32)
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As is seen from the eigenvalues of this equation, the energies of these states

are dependent on the value of the Landé factor, g. This means that g can be obtained

by a measurement of the energies of spin precession. However, without a comparison

there is no way to get directly at g without relying on other experimental data, which

increases the error. By considering the cyclotron frequency of a given particle and its

accompanying spin flip frequency, the Landé factor is found as the ratio

g =
2ω0

ωc

. (7.33)

If a particle could be contained by a uniform magnetic field while the mea-

surements of ω0 and ωc are made, the problem of measuring the anomalous magnetic

moment could be solved. However, this is impossible in the present configuration. In

order to contain a particle, an electric field must be added to confine the particle in

the axial direction. According to Maxwell’s equations the divergence of the electric

field must be zero in a region with no charge. In order to keep the divergence of

the electric field zero, in addition to the axial component of the electric field there

will be a radial component. This added radial electric field will cause a shift in the

cyclotron frequency from that of the pure magnetic field. To obtain an accurate calcu-

lation of the anomalous magnetic moment, a relation between the measured cyclotron

frequency and the actual cyclotron frequency must be found.

7.2 Physical Quantities in the Penning Trap

The trap that is used in the geonium experiment is the Penning trap. A Pen-

ning trap is composed of a uniform magnetic field that is superimposed on an electric

field that is predominantly a quadrupole field. The quadrupole field is obtained by

precision machining of the electrodes in the shape of hyperbola. If this is done the

equation for the potential in the Penning trap is

Φ(r, z) = U0
r2 − 2z2

4Z2
0

, (7.34)

where U0 is the potential on the electrode and Z0 is a measure of the size of the trap.

A simple picture of the trap can be seen in figure 7.1.
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Figure 7.1: Lay out of the Penning trap (adapted from [26])

Due to the complexity added by the electric field, the particle will now exhibit a

more complicated motion. Instead of a simple circular orbit the particle will perform

simple harmonic motion in the axial direction and the previously simple circular

orbits will now become the superposition of two circular orbits of different sizes. The

trajectory of the particle can be seen in figure 7.2.

7.2.1 Classical Frequencies in the Trap

Because the divergence of the electric field must be zero in a region with no

charges, the electric field must have a radial component. This is seen to be true when

the electric field is calculated from the potential

e ~E = −~∇Φ =
−U0

2Z2
0

[−rr̂ + 2zẑ]. (7.35)
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Figure 7.2: Classical trajectories in the Penning trap (adapted from [26])

This radial portion of the electric field alters the simple form of Newton’s

equations for a particle in a uniform magnetic field. The added forces due to the

superimposed electric field are

Fr = mar = e
U0

2Z2
0

r = mω2
rr, (7.36)

Fz = maz = −U0

Z2
0

z = −mω2
zz, (7.37)

ω2
r =

ω2
z

2
=

U0

Z0m
. (7.38)

Newton’s equation for the radial motion of a particle in a Penning trap becomes

qvB − m0ω
2
zr

2
=
m0v

2

r
. (7.39)

If constants are collected and defined the equation for the frequency ω becomes

2ω(ωc − ω) = ω2
z , (7.40)

with the following definitions
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ω =
v

r
, (7.41)

ωc =
eB

m
. (7.42)

The frequency ω in Eq. (7.40) can now be solved for. As is clear from Eq.

(7.40) the radial electric field has changed the frequency of oscillation. Because the

equation for the frequency is quadratic there will be two different frequencies. The

two allowed orbital frequencies are

ω =
ωc ±

√
ω2

c − 2ω2
z

2
, (7.43)

which is approximately equal to

ω = ω′c ≈ ωc − δe, (7.44)

ω = ωm = δe ≈
ω2

z

2ωc

. (7.45)

These two new frequencies are defined as the modified cyclotron frequency ω′c

and the magnetron frequency ωm. The cyclotron frequency is the frequency at which

the particle orbits the magnetic fields and the magnetron frequency is the frequency

at which the center of the cyclotron orbit rotates about the center of the trap. An

illustration of this is shown is figure 7.3.

An advantage of using the Penning trap is that the frequencies of a perfectly

aligned trap, ω′c, ωm, and δe, are independent of the particle location in the trap. This

is a significant advantage because it creates a relation between ωz and ωm that can

be used to identify trap imperfections.

7.2.2 Classical Trajectories in the Trap

Using the Lorentz force equation the equations of motion for the particle in

the trap can be found. The equations reduce to[32]

ẍ− ω2
z

2
x+ ωcẏ = 0, (7.46)
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Figure 7.3: Comparison of cyclotron and magnetron radii (adapted from [32])
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ÿ − ω2
z

2
y − ωcẋ = 0, (7.47)

z̈ +
ω2

z

2
ż = 0. (7.48)

The z equation describes a one-dimensional simple harmonic oscillator and is

easily solved. The solution to the z equation is harmonic. In order to solve the x and

y equations it is easiest to complexify the variables as follows

ξ = x+ iy. (7.49)

If this substitution is made, the differential equations for x and y can be

combined into one differential equation of the form

ξ̈ − ωcξ̇ − i
ω2

z

2
ξ̇ = 0. (7.50)

This equation is easily solved

ξ = rc exp(iω′ct+ δ1) + rm exp(iωmt+ δ2) (7.51)

where ωc and ωm are as defined in Eq.’s(7.44)-(7.45) and rc, rm, δ1, and δ2 are deter-

mined from the initial conditions.

7.2.3 Quantum Solutions of the Penning Trap

The quantum solution is obtained by solving Schrödinger’s equation in the

following form[10]

1

2m
(−i~~∇− e

c
~A)2ψ(r, θ, φ) + Φ(r)ψ(r, θ, φ) = Eψ(r, θ, φ), (7.52)

where the electric and magnetic potential are defined as follows

Φ(r, z) = e2a
r2 − 2z2

2
, (7.53)

~A =
Br

2
φ̂, (7.54)

and
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a =
U0

2Z2
0

. (7.55)

Because the symmetry of the trap is known, a good guess for the solution

(which turns out to be correct) is

Ψ(ρ, φ z) = R(ρ)u(z) exp(ilφ), (7.56)

if the energy is defined as

E = E1 + E2. (7.57)

After separation the remaining two differential equations take the form

R′′(ρ) +
1

ρ
R′(ρ) + (

2mE1

~2
− 2lγ − γ2

1ρ
2 − l2

ρ2
)R(ρ) = 0, (7.58)

u′′(z) + (
2m0E2

~2
− γ2

2z
2)u(z) = 0. (7.59)

The radial equation is solved by first making a change of variables

ρ = γ1r
2. (7.60)

The differential equation then takes the form

R′′(ρ) +
1

ρ
R′(ρ) + (

mE1

2~2γ1

− γl

2γ1ρ
− l2

4ρ2
− 1

4
)R(ρ) = 0. (7.61)

In order to remove the singular behavior at the origin and at infinity the

following substitution is made

R(r) = exp
(
−ρ

2

)
ρ

l
2Q(ρ). (7.62)

Notice the similarity to the pure magnetic field Eq.(7.11). The new differential equa-

tion for Q(ρ) simplifies to

ρQ′′(ρ) + (l − ρ+ 1)Q′(ρ) + nQ(ρ) = 0, (7.63)

where l is the azimuthal quantum number and n is defined as
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n =
mE1

2~2γ1

− l + 1

2
− γl

2γ1

. (7.64)

The solution to this differential equation is

R(r) = exp(−γ1r
2

2
)(γ1r

2)
l
2Ll

n(γ1r
2), (7.65)

where Ll
n(γ1r) are the associated Laguerre polynomials.

The axial equation is solved by first removing the singular behavior at infinity

by making the following substitution

U(z) = exp

(
−γ2z

2

2

)
Z(z), (7.66)

followed by a change of variable of

ζ =
√
γ2z (7.67)

the differential equation then takes the following form

Z ′′ − 2ζZ ′ + 2nZ = 0, (7.68)

with the quantum number k defined as

k =
mE2

~2γ2

− 1

2
. (7.69)

The solutions are the Hermite polynomials and the complete axial solution is

U(z) = exp

(
−γ2z

2

2

)
Hk(

√
γ2z). (7.70)

This solution requires that the quantum number n be an integer for the solution

not to diverge.

The total energy due to the radial motion and the axial motion is as follows

E(0)
n = ~

(
ω′c(s+

1

2
)− ωm(n+

1

2
) + ωz(k +

1

2
)

)
, (7.71)

where s = n + l. If the γ factors in the frequencies are replaced by their physical

parameters the frequencies can be defined as follows
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ω′c =
ωc

2
+
ωc

2

√
1− 4amc2

B2
, (7.72)

ωm =
ωc

2
− ωc

2

√
1− 4amc2

B2
, (7.73)

and

ωz =

√
2e2a

m
. (7.74)

As is seen from this discussion, the frequencies of the quantum solution are the

same as the frequencies from the classical solutions. However in the quantum case,

the frequencies represent an energy transition and not an actual frequency. Now that

the solutions have been found for a particle in the Penning trap, consideration must

be given on how to make a measurement in the trap. In particular the effect of stray

fields must be considered in order to know the accuracy of measurements in the trap.

7.2.4 Spin Flip in the Penning Trap

Because the Penning trap has a uniform axial magnetic field, the spin contri-

bution can be easily accounted for. An axial magnetic field leads to a σz contribution

in the Hamiltonian. Because σz is a diagonal matrix, the up and down component

will never mix. This means that the spinor solution previously found in section (7.1.4)

will still work. This leads to an equation for the total energy

E(0)
n = ~

(
ω′c(s+

1

2
)− ωm(n+

1

2
) + ωz(k +

1

2
) +mωs

)
, (7.75)

where m is the spin quantum number.

7.3 Perturbation of the Penning Trap

If a good measurement of the variability of the fine structure constant is to

be made, the Penning trap needs to be insensitive to extraneous magnetic fields. In

order to determine the trap’s sensitivity to these extraneous magnetic fields, they will

be treated as a perturbation of a perfect trap.

51



7.3.1 Perturbations Under a Constant Magnetic Field

The total magnetic field in the trap can be decomposed as a sum of the un-

perturbed field plus a small perturbation. The magnetic field can be defined in terms

of a vector potential ~A in the following way

~B = ~∇× ~A. (7.76)

Because this is a linear relation the magnetic vector potential can also be

decomposed into the unperturbed potential plus a small perturbation

~A→ ~A+ g ~A′. (7.77)

The Schrödinger equation for the new system is only slightly modified to give

(−i~~∇− e

c
( ~A+ g ~A′))2Ψ + VΨ = EΨ. (7.78)

This can be rewritten as

(−i~~∇− e

c
~A)2Ψ + VΨ (7.79)

−ge
c
[(−i~~∇− e

c
~A) · ~A′ + ~A′ · (−i~∇− e

c
~A)] + g2A′2 = EΨ.

The wave function and the energy are then expanded as power series in the

parameter g in the following way

En = E(0)
n + gE(1)

n ...., (7.80)

Ψn = Ψ(0)
n + gΨ(1)

n ...., (7.81)

which are then substituted into Eq.(7.79). If only the terms that are zeroth order in

g are kept, the resultant equation is

(−i~~∇− e

c
~A)2Ψ(0)

n + VΨ(0)
n = E(0)

n Ψ(0)
n . (7.82)
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This is the equation for the unperturbed Penning trap, justifying the assump-

tion that the solution can be written as a perturbation of the unperturbed trap

solution. If the terms that are first order in g are kept, the following relationship is

found

(−i~~∇− e

c
~A)2Ψ(1)

n + VΨ(1)
n − e

c
{(−i~~∇− e

c
~A), ~A′}Ψ(0)

n = (7.83)

E(1)
n Ψ(0)

n + E(0)
n Ψ(1)

n ,

where the curly bracket denotes an anticommutator ({A,B} = AB +BA).

If the previous equation is projected onto the unperturbed wave function, the

equation becomes

〈Ψ(0)
n |(−i~~∇− e

c
~A)2|Ψ(1)

n 〉+ 〈Ψ(0)
n |V |Ψ(1)

n 〉 (7.84)

−〈Ψ(0)
n |{(−i~~∇− e

c
~A),

e

c
~A′}|Ψ(0)

n 〉 = E(1)
n 〈Ψ(0)

n |Ψ(0)
n 〉+ E(0)

n 〈Ψ(0)
n |Ψ(1)

n 〉.

Using the fact that the unperturbed Hamiltonian is hermitian and can operate

unchanged to the left, the equation simplifies to

E(0)
n 〈Ψ(0)

n |Ψ(1)
n 〉 − 〈Ψ(0)

n |{(−i~~∇− e

c
~A),

e

c
~A′}|Ψ(0)

n 〉 = (7.85)

E(1)
n + E(0)

n 〈Ψ(0)
n |Ψ(1)

n 〉.

This leads to an expression for the first order energy

−〈Ψ(0)
n |{(−i~~∇− e

c
~A),

e

c
~A′}|Ψ(0)

n 〉 = E(1)
n . (7.86)

The expression for the unperturbed energy given by Eq.(7.71) as

E(0)
n = ~

[
ω′c(n+

1

2
)− ωm(s+

1

2
) + ωs(k +

1

2
)

]
, (7.87)

which is clearly not degenerate since ω′c, ωm and ωs given in Eq.(7.106), (7.73), and

(7.74) are not commensurate. This means that non-degenerate perturbation theory

can be used in this problem.
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Because the trap is small, a constant perturbing field should be a good ap-

proximation to most fields. The solution of the perfect trap has a constant magnetic

field in the axial direction therefore a perturbation in this direction can be accounted

for by substituting B → B+gB′ into the unperturbed solution. However, a magnetic

field in a direction perpendicular to the axis needs to be treated as a perturbation. A

vector potential for a constant magnetic field (Bx, By, 0) in the plane perpendicular

to the axis is

A′z = B′
xy −B′

yx. (7.88)

When written in cylindrical coordinates this potential becomes

A′z = ρ(B′
x sin(φ)−B′

y cos(φ)). (7.89)

In order to evaluate the first correction to the energy, the anti-commutator in

Eq.(7.86) must be expanded and simplified. When expanded the anti-commutator in

Eq.(7.86) becomes

−2(
e

c
)2 ~A · ~A′ − i

e

c
~((~∇ · ~A′) + 2 ~A′ · ~∇). (7.90)

This expression can be simplified using the fact that the perturbing vector

potential is in the ẑ direction, the unperturbed vector potential is in the φ̂ direction

and the perturbing potential is divergenceless. This simplification gives

e

c
{(−i~~∇− e

c
~A), · ~A′} = −i2~A′z

e

c

∂

∂z
. (7.91)

This allows the first order corrections to the energy to be written as

E(1)
n = 〈Ψ(0)

n |i2~A′z
e

c

∂

∂z
|Ψ(0)

n 〉. (7.92)

If Az is substituted and the φ integral is shown explicitly, the expression for

the energy can be written as

E(1)
n = −2

e

c

∫ 2π

0

(B′
x sin(φ)−B′

y cos(φ))dφ〈Ψ(0)
n (ρ, z)|ρi~ ∂

∂z
|Ψ(0)

n (ρ, z)〉. (7.93)
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Each of these φ integrals is separately zero, thus leading to a vanishing energy

correction

E(1)
n = 0. (7.94)

The next and first nonvanishing contribution from the perturbative field is

of order g2. This shows that the Penning trap has a low sensitivity to extraneous

magnetic fields in the direction perpendicular to the axis.

7.3.2 Perturbation Under z -independent Magnetic Fields

The previous results can be shown to be valid for any magnetic field that

can be obtained from a magnetic vector potential in the z direction that has no z

dependence. Every magnetic field perpendicular to the axial direction can be written

in terms of a vector potential of this form. Substituting this vector potential into

Eq.(7.86)

{(−i~~∇− e

c
~A), ~A′} = −2

e

c
~A · ~A′ − i~((~∇ · ~A′) + 2 ~A′ · ~∇), (7.95)

leads to

{(−i~~∇− e

c
~A), ~A′} = −i2~A′z(ρ, φ)

∂

∂z
. (7.96)

This time the z dependent portion of the wave function is shown explicitly in

the expansion for the lowest order correction

E(1)
n = −e

c

∫ ∞

0

dzHn(
√
γ1z) exp(

−γ1z
2

2
)
∂

∂z
Hn(

√
γ1z) exp(

−γ1z
2

2
) (7.97)

×e
c
〈Ψ(0)

n (ρ, φ)|i2~A′z(ρ, φ))|Ψ(0)
n (ρ, φ)〉,

where Hn(
√
γ1z) are the Hermite polynomials. If the derivative is expanded, the

integral expression becomes
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∫ ∞

0

dzHn(
√
γ1z) exp(

−γ1z
2

2
) (7.98)

×(nHn−1(
√
γ1z) exp(

−γ1z
2

2
)− zγ1Hn(

√
γ1z) exp(

−γ1z
2

2
)dz

The first term in this expression is zero due to the orthogonality of the Hermite

polynomials. The second term is zero because Hermite polynomials have either even

or odd parity and z has odd parity which means that the integral is equal to its

negative under coordinate reversal and therefore zero. This result can also be found

in Merzbacher[12] Eq.(5.32). The first order correction to the energy vanishes

E(1)
n = 0. (7.99)

The insensitivity of the trap remains even in this case. This means that experi-

mentalists can be confident that their measurements are unaffected by stray magnetic

fields.

7.4 Measurements in the Penning Trap

The high stability of the Penning trap has allowed experimentalists to contain

a charged particle for up to several months and this helped in making high precision

measurements using the Penning trap.

Although the Penning trap is an excellent method for confining a particle it

does not readily allow for measurement. However, if a small inhomogeneous magnetic

field is added, the trap is given the flexibility necessary for high precision measure-

ments. This small magnetic field is added by placing a small circular nickel wire

which is coaxial with the trap and centered on the z axis halfway between the two

electrodes. The power of this small magnetic field is that it can cause spin flip, and

at the same time, it provides a method to detect this spin flip. The magnetic field

that allows this to be done is of the form (β � B0)

~B = −βzxx̂− βzyŷ + β(z2 − ρ2/2)ẑ. (7.100)
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The inclusion of this magnetic field does two things. First, it creates a spin

dependence in the axial frequency ωz. To see why this happens, first consider the

potential energy due to the magnetic field in Eq.(7.100). The potential energy due

to this field that contributes to the axial oscillation is (on axis, x = 0, y = 0)

U ′
m = −~µ · ~B = −µzβz

2. (7.101)

The force due to this magnetic field is

F z
m = −∂U

′
m

∂z
= 2µzβz. (7.102)

The equation for the total force on a particle in the trap must be modified to

include the new term

Fz = maz = −mω2
z0
z + 2µzβz. (7.103)

The new frequency of the axial motion is

ω2
z = ω2

z0
− 2µzβ

m
. (7.104)

The ωz is now dependent on the orientation of the spin. Because ωz is spin

dependent, experimentalists are able to determine the spin orientation from measuring

ωz. Because ωz is three orders of magnitude smaller than the other frequencies of the

trap, it can be measured by detecting an image charge current. This allows for

detection of the spin without greatly disturbing the system.

The other feature of the added magnetic field is its ability to force spin flip.

This is accomplished by oscillating the magnetic field of the nickel wire at the fre-

quency ω′a which is defined as

ω′a = ωs − ω′c. (7.105)

The oscillating field can be decomposed into two different fields precessing in

the opposite sense as seen in figure 7.4. From this point of view the particle will see a

field that is precessing at ωs = ω′a +ω′c. This means that the particle sees a magnetic
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Figure 7.4: The field of the nickel wire (adapted from [32])

field that is at the spin flip frequency. A particle that is modulated at the spin flip

frequency will have maximal oscillation between its two spin states. This means that

when an experimentalist is locked into the correct ω′a the system will have a maximal

number of spin flips. Experimentalists can determine that the frequency they are

modulating the magnetic field at, is ω′a, by monitoring the axial frequency. Under

this technique the axial frequency is only used to determine the number of spin flips

so as to determine when the maximal rate of spin flip occurs. Although this has been

outlined for the trap, this is true for the unprimed frequencies that are found in a

uniform magnetic field as well. Figure 7.4 illustrates the case of a uniform magnetic

field, however, the diagram would be identical for the Penning trap.
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7.5 Time Dependent Alpha Measurements in a Penning Trap

The geonium experiment has built into it a method for measuring the time de-

pendence of the fine structure constant. This method is manifest in the measurement

of ωa. Because ωa is the difference between ωs and ωc it should drift as α drifts. The

reason for this is that the spin flip frequency, ωs, is dependent on the Landé factor,

g. The Landé factor is related to the anomalous magnetic moment, which is related

to α through QED. On the other hand the cyclotron frequency, ωc, is independent

of α. It is a measure of the response of a charged particle to a magnetic field and

is independent of its spin. This means that the frequency ωa is highly sensitive to

changes in ωs. Because ωa ≈ 10−3ωs, a drift in ωa corresponds to a drift in ωs of three

more significant figures than are present in ωa.

At first glance it may appear that the addition of the electric field in the

trap allows for nearly infinite accuracy on the detection of the variability of the fine

structure constant. A first thought would be to use the electric field to push ω′c and

ωs even closer, and hence allowing for even more sensitivity on ωs. However, things

are not that simple. If the solution of the frequencies of the trap are examined, it is

found that there is a minimal difference between ωs and ω′c for a particle confined in a

trap. The allowed cyclotron frequencies in the trap comes from the following relation

ω′c =
ωc ± ωc

√
1− 4amc2

B2

2
, (7.106)

where a is a measure of the magnitude of the electric field, B is a measure of the

magnitude of the magnetic field, m is the mass of an electron, c is the speed of light

and ωc is the cyclotron frequency if the electric field were zero. In order to keep the

particle bound there are two constraints on a. First, a must be small enough so that

the term in the square root in Eq.(7.106) is real. If the radical becomes imaginary the

particle will be able to escape in the radial direction, because the force of the radial

electric field is greater than the radial force due to the magnetic field. This means

that the particle will escape in the ρ̂ direction. The other constraint is a > 0. The

reason that a has to be greater than zero is to retain confinement in the ẑ direction.
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If a changes signs and becomes negative, the electric field, which was confining the

particle in the ẑ direction, becomes a nonconfining field and the particle is free to

leave the trap. However, it should be noted that the radial magnetic confinement is

now reinforced by the electric field.

Because of the constraints necessary for confinement, the maximal value for

the cyclotron frequency in the trap occurs when the radical in Eq. (7.106) is equal

to one. This occurs when a = 0, leading to a maximum cyclotron frequency equal

to the cyclotron frequency without the electric field. Thus the frequency ω′a can

never be smaller than aeωs, where ae is the anomalous magnetic moment. Therefore,

the maximal accuracy gain on ωs through measurement of ωa is only three orders

of magnitude. Because experimentalists can obtain a drift sensitivity on δωa/ωa of

approximately 1 ppb, a sensitivity of 1 ppt can be obtained on the drift of ωs. This,

however, is not competitive with atomic clock measurements.

7.6 Possible Extensions of the Resonance Measurement

7.6.1 Smaller Anomaly Frequency

We determined previously in this chapter that a measurement of the anomaly

frequency in the trap could not be smaller than aeωc. The reason for this is that a

trapped particle can never have its cyclotron frequency and spin flip frequency closer

than aeωc. This can be seen by reexamining Eq. (7.106)

ω′c =
ωc

2
+
ωc

2

√
1− 4amc2

B2
. (7.107)

The maximum value for ω′c is obtained when the radical reduces to one. This

corresponds to a zero electric field solution. Then Eq. (7.107) reduces to the cyclotron

frequency of a particle in a uniform magnetic field which is

ωc =
eB

m
. (7.108)

The difference between cyclotron frequency in the absence of an electric field

and the spin flip frequency is
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ωs − ωc =
geB

2m
− eB

m
=
g − 2

2

eB

m
= aeωc, (7.109)

as previously stated. However, this constraint is not present on a free particle. If a

in equation 7.107 is taken to be a < 0, which corresponds to reversing the electric

field, the spin flip frequency and the cyclotron frequency could be made equal. The

problem with doing this is that the particle is free to escape in the axial direction and

thus measurement is not possible using the method outlined by Dehmelt. But if a

measurement of the anomaly frequency of a single significant figure were possible, it

would yield infinite accuracy on the drift of the spin flip frequency. This would make

it a competitive method for determining the variability of α.

7.6.2 Systems With Landé Factors Less Than 2 and Greater Than 1

Another option for measuring variability of α using a geonium type experiment

is to look for systems with Landé factors that are less than two and greater than one.

The reason that this would be a useful system is that the spin flip frequency is now

smaller than the cyclotron frequency. Because the spin flip frequency is now smaller

it may be possible, within the constraints on the electric field of the trap, to make it

equal to the cyclotron frequency. This can be seen by examining Eq. (7.106) again

ω′c =
ωc

2
+
ωc

2

√
1− 4amc2

B2
. (7.110)

From this equation it can be shown that the range of the cyclotron frequency

is ωc/2 < ω′c < ωc. The cyclotron frequency ω′c of the trap varies as a, the strength of

the electric field, and B, the strength of the magnetic field, vary. As a is increased the

value of the cyclotron frequency decreases. Because the spin flip frequency is less than

the cyclotron frequency for a system with 1 < g < 2, increasing the electric field will

bring the frequencies closer. If the frequencies are made equal the anomaly frequency

of the trap is zero. This means that a measurement of the anomaly frequency will

lead to infinite accuracy on the drift of the spin flip frequency assuming that the field

strengths could be determined exactly. An infinite accuracy on the spin flip frequency

would lead to an infinite accuracy on the variability of the fine structure constant.
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The challenge is now to find a system with a Landé factor that is less than

two and greater than one. Leptons can not be used. The Landé factor predicted by

Dirac’s equation for leptons is two. The only possibility of finding a lepton with a

Landé factor less than two is for the anomalous magnetic moment to be negative.

It should be noted that antiparticles have the opposite sign in their gyromagnetic

ratio but the same sign in the anomaly. However, QED predicts that the first order

contribution to the anomalous magnetic moment of all the leptons is the same. This is

a positive value which leads to a positive anomalous magnetic moment for all leptons,

whether particle or antiparticle.

The next simplest particles to consider are the nucleons. The two types of

nucleons are the protons and the neutrons. The neutron has a Landé factor less

than zero, namely -1.91. Since only the magnitude really matters this would work,

however, because the neutron has no charge, there is no corresponding cyclotron

frequency. Thus such measurements on the neutron are not possible. The proton on

the other hand has a charge but its Landé factor has a value greater than two and

therefore does not qualify either.

Our next consideration is to use atomic nuclei. The g factors of nucleons

add approximately. This means that if a nucleus with 1 < g < 2 and spin 1/2 can

be found it might be possible to create a system with a cyclotron frequency and a

spin flip frequency that are equal. Searching for nuclear g factors we found only six

different stable nuclei that satisfy the condition on g. They can be seen in table 7.1.

Although these atoms have the correct spin and their Landé factor fall within

the acceptable range, there still may be some experimental problems associated with

using them in the Penning trap experiment. In order to make these measurements,

the atom must be completely ionized. The reason for this is that the electron magnetic

moment is about 2000 times larger than the nuclear magnetic moment. If any elec-

trons are present their magnetic moment would dominate. There is a large collection

of literature using atomic geonium with atomic ions in a Penning trap[16, 17, 18, 19].

The second question that arises is to what extent a bare nucleus can be trapped in a

Penning trap after all its electrons have been removed.
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Z Element Atomic Number Landé Factor Lifetime
15 Phosphorus 29 1.2349(3) 4.1 s Not Stable

31 1.13160(3) Stable(100%) Stable
50 Tin 117 1.00104(7) Stable(7.7%) Stable

119 1.04728(7) Stable(8.5%) Stable
81 Thallium 203 1.62225787(12) Stable(29.5%) Stable

205 1.63821461(12) Stable(70.5%) Stable

Table 7.1: Nuclei with 1 < g < 2 and spin 1/2 (adapted from [31])

Assuming that such an experiment is possible a theoretical concern becomes to

determine how the magnetic moment depends on the fine structure constant. The g

factor of nuclei is dependent on contributions from quantum chromodynamics(QCD)

as well as QED contributions. This means that a drift in the anomaly frequency could

be detecting a varying strong coupling constant, as well as a varying fine structure

constants, α. However, if the strong coupling constant is assumed to be time inde-

pendent then a drift in the anomaly frequency can be assumed to be detecting the

variation of alpha. On the other hand models of grand unification seem to imply that

the time variation of the electromagnetic coupling constant α and the strong coupling

constant should be correlated.

In order to determine the α dependence of the nucleus, consideration will be

given to the nuclear moments of the proton and the neutron. The magnetic moment

of a baryon is due to contributions from its three quarks labelled 1,2,3 as seen in the

following relation[29]

~µp = ~µ1 + ~µ2 + ~µ3. (7.111)

If quarks are Dirac particles (spin 1/2 particles with charge q and mass m)

their magnetic moment will have a similar form to that of the electron

~µi =
qi
mi

~Si. (7.112)
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This leads to the magnitude of the magnetic moment of the quarks of

µ =
q~
2m

. (7.113)

The magnetic moments for the up(u), down(d), and strange(s) quarks are

given explicitly as

µu =
2

3

e~
2muc

=
2

3

me

mµ

µB,

µd = −1

3

e~
2mdc

, (7.114)

µs = −1

3

e~
2msc

.

Knowing the quark magnetic moments, and using the wave function of the

baryon |B ↑〉, the magnetic moment of the baryons can be calculated as follows

µb = 〈B ↑ |(~µ1 + ~µ2 + ~µ3)z|B ↑〉 =
2

~

3∑
i=1

〈B ↑ |µiSi|B ↑〉. (7.115)

The wave function takes the following form for a proton

√
2

3
(u(↑)u(↑)d(↓))− 1

3
√

2
(u(↑)u(↓)d(↑))− 1

3
√

2
(u(↓)u(↑)d(↑)) + permutations.

(7.116)

If the the sum in Eq. (7.115) is evaluated using the wave function in Eq.

(7.116) and knowing that

µ1Szu(↑) = µ1
~
2
u(↑), (7.117)

and

µ1Szu(↓) = −µ1
~
2
u(↓), (7.118)

the following result is obtained

µp =
1

3
(4µu − µd). (7.119)
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Using this method a value of 2.79 is obtained for the Landé factor of the

proton. The actual value of the proton’s magnetic moment is 2.793[29] which is in

good agreement with theory. Using the same formalism for the neutron the magnetic

moment is found to be

µn =
1

3
(4µd − µu). (7.120)

This predicts a Landé factor of -1.86 which is very close to the measured value

of -1.913[29].

It may appear that the fine structure constant is not present in the nuclear

magnetic moments. However, this calculation has ignored the radiative correction

that would come from QED. The first order correction term for the analogous mag-

netic moment of Dirac particles comes from the analysis of the following Feynman

diagram:

Figure 7.5: Feyman diagram for the quark-photon vertex
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This leads to the Schwinger term for the contribution to the quark anomalous

magnetic moment

q2

~c2π
. (7.121)

The only difference in the Schwinger term, when using quarks as opposed to

electrons, is that the charge would be (2/3)e for the up quark and (1/3)e for the down

quark. Using the correction term from Eq. (7.121) to fix the values of the up quark

and down quark magnetic moments we obtain

µu ⇒ (1 +
4α

9π
)µu, (7.122)

and

µd ⇒ (1 +
α

9π
)µd. (7.123)

Applying Eq.(7.122) and Eq. (7.123) to the expression for the magnetic mo-

ments, Eq. (7.119), leads to the following corrected magnetic moment µ̃p

µ̃p =
1

3
(4µu − µd) +

1

3
(
16α

9π
µu −

α

9π
µd). (7.124)

Because the masses of the up and down quarks are approximately equal

µu ≈ −2µd. (7.125)

This means that Eq.(7.124) can be simplified to

µ̃p ≈ µp −
33α

27π
µd, (7.126)

where µp is the magnetic moment of the proton without the QED corrections. The

corrected proton magnetic moment is 2.7924. This shows that the magnetic moment

of the proton is dependent on the value of alpha. A similar calculation can be done

for the neutron leading to a corrected magnetic moment for the neutron µ̃n

µ̃n ≈ µn +
12α

27π
µd, (7.127)
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where µn is the Landé factor of the neutron without the QED corrections. This leads

to a predicted value for the neutron of 1.861.

Because the magnetic moment of the nucleons is dependent on the fine struc-

ture constant, the nuclear magnetic moment must also be dependent on the fine

structure constant. This can be seen by examining the energy wells associated with

the nucleons. The nucleons split into two separate energy wells for protons and neu-

trons. They are then paired up according to their spin. The nuclear magnetic moment

is then approximately equal to that of the unpaired nucleons. We thus expect nuclear

magnetic moments to be linearly dependent on the fine structure constant as a result

of lowest order QED corrections as seen in Eq.(7.126) and Eq.(7.127).
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Chapter 8

Comparison of the Three Methods

After having reviewed several methods for determining the variation of the fine

structure constant, the question arises as to which method yields the highest precision.

This will be determined by examining the three methods: the astrophysical method,

the atomic clock method, and our newly proposed Penning trap method. Relevant

data are summarized in table 8.1.

Field Measurement Order of Magnitude Author
Astrophysics I −5.8± 1.4 10−16yr−1 [8]
Astrophysics II −0.65± 1.85 10−16yr−1 [11]
Atomic Clocks I ≤ 3.7 10−14yr−1 [22]
Atomic Clocks II ? 10−18yr−1 [23]
Oklo 0.4± 0.5 10−17yr−1 [18]

Table 8.1: The constraints on alpha variability (adapted from [8, 11, 22, 23, 18])

8.1 Astrophysical Advantages and Disadvantages

8.1.1 Advantages

Astrophysical experiments are very promising for measuring the variability of

the fine structure constant. The sensitivity of the astrophysical measurements to a

varying fine structure constant is due to the large comparison times that characterize
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cosmology. Because it takes light several billion years to arrive at earth from distant

galaxies, the light that is observed is very old. This allows physicists to look back in

time and see what the universe was like in the past. The astrophysicist can obtain

comparison times of up to 1010yrs. Because the comparison times are so long, the

actual change of alpha is many orders of magnitude larger than that obtained in earth

bound experiments. This means that the required accuracy for a given sensitivity is

much less. The other advantage of astrophysical observation is the nearly endless

amount of data to be collected. Astrophysicists can collect huge data sets that will

help them build their statistics, allowing them to reduce their error bars, and possibly

find ways to throw out anomalies.

8.1.2 Disadvantages

Although it may seem that the advantages of astrophysical observation make

it the obvious choice for detecting the variability of the fine structure constant, there

are difficulties that greatly limit the accuracy obtained. The largest disadvantage of

astrophysical measurements is the presence of large error bars. In fact the error bars

for astrophysical data are so large that they almost completely offset the advantages

associated with large time scales. Another disadvantage of astrophysical measurement

is the large distance between the location of emission and that of detector. Because of

this large distance the observer can never be certain whether the light was affected by

other processes during its journey to the receiver on earth. Yet another disadvantage

of astrophysical measurements is that the environment can not be controlled. This

leaves a degree of uncertainty in what the astronomer is actually observing. This also

means that the system can not be strained in order to optimize the outcome. In other

words: the astronomers have to take what they get. Lastly, the astrophysical data

are interpreted against very complex atomic calculations.
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8.2 Atomic Clock Advantages and Disadvantages

8.2.1 Advantages

Using atomic clocks is currently the best method for measuring the variability

of α in an earth bound experiment. The main advantage of atomic clocks is the level

of accuracy in the data. The frequency of an atomic clock can be determined to 1 part

in 1015. This high precision allows experimentalists to currently probe the variability

of alpha to 10−14yrs−1.

Another advantage of atomic clocks is that the measurements are made on

atoms. Atoms form microscopic traps for the electron with a very stable environment.

The atom is ultimately a trap made by nature. These natural traps are all identical.

This means that experimentalists do not have to worry about trap imperfections

when working with atoms. The other advantage of the atomic clock experiment is the

stability of the experiment. This high stability in time allows atomic clock physicists

to make measurements for time frames up to a year. This leads to comparison times

on the order of a year. Although this is short compared to cosmological time scales

for an earth bound experiment this is quite long.

An advantage of any earth bound experiment, like the ones based on atomic

clocks, is the added flexibility. The flexibility of atomic clocks comes from the freedom

to choose from several atomic systems, when making an atomic clock measurement.

Atomic physicists can optimize their results by determining the best atoms to com-

pare. There is also flexibility found in the method of measurement. By using different

methods to make measurements, increased sensitivity may be possible.

8.2.2 Disadvantages

The big disadvantage of atomic clocks, as compared to astrophysical observa-

tion, is the time scale. With a comparison time of 1yr, the accuracy of the atomic

clock measurements needs to be ten orders of magnitude better. This is obviously

a large obstacle to overcome. Another challenge is the complexity of atomic bound

states. The atomic theory of the fine structure splitting is very complicated and
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therefore limited in accuracy. This means that experimentalists have to find a way

to get around limitations in order to get precise predictions. An example of this can

be seen in the ratio used by Prestage [22].

8.3 Advantages and Disadvantages of Penning Trap Methods

8.3.1 Advantages

The Penning trap is a very simple trap. This simplicity makes it optimal for

designing precision measurements. One of the advantages of the geonium type exper-

iments is the environment, the Penning trap, can be controlled. The experimentalist

has nearly complete control of the electric and magnetic field configurations that con-

fine the trapped particle. This allows experimentalists to get the most out of their

experiments. This simplicity of the trap leads to a clean and neat theory. The wave

function and energy of the electron can be found exactly in the Penning trap, at

least in the non relativistic domain that we have considered. The Penning trap has

the advantage of a stable environment as well. Physicists have been able to trap an

electron in the Penning trap for several months. This time frame is of the order of

that of the atomic clock experiments.

The Penning trap has a significant amount of flexibility. The flexibility of

the Penning trap comes from two features of the experiment. Just like the atomic

physicists are able to chose what type of atom to use in their clock, an experimentalist

using a Penning trap can choose what type of particle to use, including composite

systems like an atom or the nucleus of an atom. Another flexibility of the Penning

trap is that it allows for control of the fields. This means that experimentalists can

create an environment that will magnify the features they are searching for. This is

probably the most significant advantage.

8.3.2 Disadvantages

The disadvantages of the Penning trap are threefold. The largest disadvantage

is in the comparison times. The comparison times are of the same order as that of the

atomic clocks. This means that measurements made in the Penning trap must be at
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least 10 orders of magnitude more accurate in order to compete with the astrophysical

measurements.

The second disadvantage comes from trap stability. Because the Penning trap

is man made, it has associated imperfections. These errors are due to the uncertainty

in the field configuration. This uncertainty is present because the electrodes in the

experiment can never be perfectly machined nor perfectly aligned. This uncertainty

in the field configuration puts a constraint on the accuracy of the frequency mea-

surements. However, the Penning trap has a feature that is able to minimize this

disadvantage. In the Penning trap, if the following condition is present,

ωm 6= ω2
z

2ω′c
, (8.1)

then the experimentalist knows that the trap is not properly machined and/or aligned.

This allows for correcting the problem.

A third disadvantage is that the theory for the magnetic moment being mea-

sured is complicated. For leptons this is not a problem as QED is well understood.

However, for composite particles such as baryons, nuclei and atoms the theory is

messy and not completely understood, as they involve QCD and multielectron bound

state QED. Of course, bringing in new parameters, like αQCD, can lead to false inter-

pretations of α variability, as the new parameters could themselves be time dependent.

This leads to an added uncertainty in the measurements being made.

8.4 An Ultimate Experiment?

Our discussion leads to the question as to what might be the ultimate ex-

periment. The ultimate experiment would have large comparison times, just as in

astrophysics. The trap would also need to be without flaws, just as an atom is. The

perfect experiment would also give the experimentalist control of the field configura-

tion, just as the Penning trap does. This means that the best method for determining

the variability of α would be a naturally occurring geonium trap without flaws that

is present in quasars. Until we have found such a system we will have to continue to

improve the three methods discussed in this chapter separately.
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Chapter 9

Conclusion

This thesis has shown that, if the fine structure constant is time dependent,

current theories may have to be be drastically remolded or even abandoned. It has

revealed the fact that g − 2 experiments from the past fifty years lack the accuracy

necessary to put a constraint on the variability of alpha. It has also shown that a

Penning trap containing leptons has many difficulties to overcome if a competitive

measurement of α variability is to be made. However, if composite particles are

considered, it may be possible to create a competitive experiment for measuring

the variability of α. Another aspect of the trap that is promising is to look at the

relativistic solution in the trap. Because of the link between spin-flip and cyclotron

frequency in this regime, new methods to measure α variability may become possible.

This should be the subject of future work. It may be possible to use our proposal on

nuclei, and adapt it to the bound electron Landé factor experiments[16, 17, 18]. This

should also be a subject of future work.
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Appendix A

The Free Electron Landé Factor

One of the great triumphs of relativistic quantum theory, namely the Dirac

equation, was that it predicted that the Landé factor was 2. This feature of the Dirac

equation, however, is not obvious. In order to extract the Landé factor, we start with

Dirac’s equation with minimal coupling1

[ 6 p− e 6 A−m]Ψ = 0, (A.1)

then multiply this equation by [6 p− e 6 A+m] to get

[(6 p− e 6 A)2 −m2]Ψ = 0. (A.2)

The equation is then expanded to give

[ 6 p2 + e2 6 A2 − e (6 p 6 A+ 6 A 6 p)−m2]Ψ = 0. (A.3)

Simplification occurs when we separate the symmetric and antisymmetric parts

of the product of gamma matrices

γµγν = gµν + iσµν , (A.4)

and substitute this expression into Eq.(A.3) to get

[p2 + e2A2 − e (gµν + iσµν) (pµAν + Aµpν)−m2]Ψ = 0. (A.5)

1In the appendices, c = 1, ~ = 1 6 p ≡ γµpµ, and γµ are the Dirac matrices (see ref [15] for more
details), Greek indices vary from 0 to 3 and Latin indices vary from 1 to 3.
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If the previous expression is expanded, the term containing σµν can be shown

to be

iσµν (pµAν + Aµpν) = −σµνFµν . (A.6)

This leads to the following form of the second order Dirac equation

[
p2 + e2A2 − e (pµAµ + Aµpµ) + eσµνFµν −m2

]
Ψ = 0. (A.7)

Eq. (A.7) can be simplified using the following relations[20]

σ0k = iαk, (A.8)

σij = iεijkσk, (A.9)

and

σµµ = 0, (A.10)

where σk is a 2× 2 matrix with the kth Pauli matrix on the diagonal, and αk = γ0γk:

[
p2 + e2A2 − e (pµAµ + Aµpµ)− ie~α · ~E + e~σ · ~B −m2

]
Ψ = 0. (A.11)

In the previous equation the electric field ~E and the magnetic field ~B are

defined as (compare Eq.(7.76))

Bk = εilmF
lm = iεijk(piAj + Aipj) (A.12)

Ek = F0k =
p0Ai + piA0

i

where

A0 = φ. (A.13)
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It is now clear that the term with the σµν in Eq.(A.7) is the origin of the ~σ · ~B

term in Eq.(A.11). It will be shown that this term leads to the magnetic moment of

the particle.

The previous expression (A.11) can be put in the form of the Klein-Gordon

equation with minimal coupling plus spin in the following way

[
(ε− eΦ)2 − (~p− e ~A)2 − ie~α · ~E + e~σ · ~B −m2

]
Ψ = 0, (A.14)

where ε is the energy coming from the time derivative operator, ~E is the electric field,

~p is the three momentum, and ~B is the magnetic field. The non relativistic limit will

be taken in order to show that the ~σ · ~B is the source of the magnetic moment. This

is done by decomposing the wave function into upper and lower comonents[20]

ψ =

 χ

ξ

 . (A.15)

The Dirac equation decouples leads to two coupled equations

(ε− eΦ−m)χ− ~σ · (~p− e ~A)ξ = 0 (A.16)

(ε− eΦ +m)ξ − ~σ · (~p− e ~A)χ = 0

The lower component, ξ, of the wave function corresponds to the contribution

associated with antiparticles and is very small in the non relativistic limit. ξ can be

extracted from the second equation in A.17

ξ =
~σ · (~p− e ~A)χ

(E − eφ+m)
(A.17)

A similar decomposition of the 2nd order Dirac equation, Eq.(A.14) gives

[
(ε− eΦ)2 − (p− eA)2 + e~σ · ~B −m2

]
χ+ ie~σ · ~Eξ = 0 (A.18)[

(ε− eΦ)2 − (p− eA)2 + e~σ · ~B −m2
]
ξ − ie~σ · ~Eχ = 0
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where ~σ are now regular Pauli matrices. If Eq.(A.17) is substituted into the first

relation in Eq.(A.19), we obtain a decoupled exact equation for the upper components

[
(ε− eΦ)2 − (p− eA)2 + e~σ · ~B −m2

]
χ− ie~σ · ~E ~σ · (~p− e ~A)χ

(E − eΦ +m)
= 0. (A.19)

When taking the non relativistic limit, the following substitution is made to

acknowledge the fact that the definition of the non relativistic energy ε does not

include the rest energy m

E = m+ ε, (A.20)

in Eq. (A.19) with the assumption that ε � m and eΦ � m (weak field). After

making the non relativistic (ε � m) and weak field (eΦ � m) assumption and

keeping only terms up to first order in ε and Φ, Eq.(A.19) becomes

[
m2 − 2eΦm+ 2εm− (p− eA)2 + e~σ · ~B −m2

]
χ (A.21)

+

[
e

2m
~σ · ~Ef × (~p− e ~A)− ie

2m
~Ef · (~p− e ~A)

]
χ = 0.

The terms that are divide by m can be ignored in this non relativistic approx-

imation because they are small compared to the other terms. This leads to a Pauli

like equation

[
eΦ− ε+

1

2m
(p− eA)2 − e

2m
~σ · ~B

]
χ = 0. (A.22)

Examining the term with the sigma matrices, it can be seen that the Landé

factor is 2 just as expected. It should be emphasized that this exact result was

obtained from the nonrelatvistic limit of the Dirac equation. In contrast the contri-

bution of the anomalous magnetic moment necessitates a fully relativistic calculation

as explained in Appendix B.
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Appendix B

Anomalous Magnetic Moment of the Free Electron

This section is inspired by the treatment found in Ryder [15] and Huang [20].

The anomalous magnetic moment is found by considering corrections to the defining

vertex of QED. The Feynman diagram for this vertex of QED can be seen in figure

4.1.

Feynman rules tell us that the elementary vertex corresponds to a factor of

ieγu. This factor can be decomposed into a momentum and a magnetic moment term

through Gordon decomposition of the current

u(p′) [γσ]u(p) = u(p′)

[
pσ + p′σ

2m
+
iqνσµν

2m

]
u(p). (B.1)

As shown in Appendix A, the magnetic moment is present in the term that

contains the σµν matrix. This means that the bare vertex in QED contains the

magnetic moment with a Landé factor of two just as Dirac predicted. In order to find

the anomalous magnetic moment, the corrections to the vertex need to be calculated.

This implies a transformation

γσ ⇒ γσ + Λσ (B.2)

The diagram for the first order correction to the vertex can be seen in figure

4.2.

Feynman rules tell us that the photon propagator contributes a factor−igµν/k2,

where k is the 4-momentum of the photon, which corresponds to the sinusoidal line

in the diagram and that the Dirac propagator contributes a factor i/(6 p−m) which
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corresponds to the straight line. Using these rules, the Feynman diagram without the

legs can be converted into an integral expression,

I = (−ie)3

∫
d4k

(2π)4

−igµν

k2
γµ

i

(6 p− 6 k)−m
γσ

i

(6 p′− 6 k)−m
γν . (B.3)

The gamma matrices are removed from the denominator using the following

relation

1

(6 p− 6 k)−m
=

(6 p− 6 k) +m

(6 p− 6 k)2 −m2
(B.4)

which leads after some simplification to

I = −(e)3

∫
d4k

(2π)4

gµνγµ((6 p− 6 k) +m)γσ((6 p′− 6 k) +m)γν

k2((p− k)2 −m2)((p′ − k)2 −m2)
. (B.5)

In order to perform this integral the expression is converted to a triple integral

I =
−2(e)3

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k (B.6)

gµνγµ((6 p− 6 k) +m)γσ((6 p′− 6 k) +m)γν

(k2(1− x− y) + ((p− k)2 −m2)x+ ((p′ − k)2 −m2)y)3

where the identity Eq.(B.7) has been used.

1

abc
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

(a(1− x− y) + bx+ cy)3
(B.7)

Simplification of the denominator followed by the substitution k = k′−px−p′y

leads to the integral expression

I =
−2(e)3

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k′ (B.8)

γν(6 p(1− x)− 6 p′y− 6 k′ +m)γσ(6 p′(1− y)− 6 px− 6 k′ +m)γν

(k′2 − (px+ p′y)2 + p2x+ p′2y −m2(x+ y))3
.

When the numerator is expanded it has terms that are quadratic, linear, and

independent of k′. The terms linear in k′ integrate out. The terms quadratic in k′ are

divergent and are cancelled by counterterms in the Lagrangian in the renormalization
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procedure. The term independent of k′ is the only piece that contribute to the

anomalous magnetic moment. The integral corresponding to this term, I0, takes the

following form

I0 =
−2(e)3

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k′ (B.9)

γν(6 p(1− x)− 6 p′y +m)γσ(6 p′(1− y)− 6 px+m)γν

(k′2 − (px+ p′y)2 + p2x+ p′2y −m2(x+ y))3

The integral over k′ can be evaluated using the following d-dimensional integral

expression

∫
ddp

(p2 − 2pq −m2)α
= (−1)

d
2 iπ

d
2
Γ(α− d

2
)

Γ(α)

1

(−q2 −m2)α− d
2

(B.10)

with α = 3 and d = 4, and yields

I0 =
−i(e)3

16π2

∫ 1

0

dx

∫ 1−x

0

dy (B.11)

γν(6 p(1− x)− 6 p′y +m)γσ(6 p′(1− y)− 6 px+m)γν

(px+ p′y)2 − p2x+ p′2y +m2(x+ y))3
.

This expression now leads to an expression involving products of three, four

and five gamma matrices. The integral in Eq. (B.11) can be simplified using the

gamma matrix contraction identities in table B.1, after which at most three gamma

matrices will remain. Further simplification is obtained through multiplication on the

left by u(p′) and on the right by u(p). Then using the anti-commutation relations of

the γµ matrices, we move all 6 p′ factors in the numerator to the left so that they may

act on u(p′) and move all 6 p factors to the right so that they may act on u(p). Since

the end legs of the Feynman diagram correspond to free particles, satisfying the free

Dirac equations

6 pu(p) = mu(p), (B.12)

and
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γλγ
αγλ = −2γα

γλγ
αγβγλ = 4gαβ

γλγ
αγβγδγλ = −2γαγβγδ

Table B.1: Useful identities

u(p′) 6 p′ = mu (B.13)

the convergent part of the numerator of Eq. (B.11) becomes

−4mp′σ[y2 − y + xy]− 4mpσ[x2 − x+ xy]− 4m(x− y)[pσ − p′σ]. (B.14)

The denominator can be simplified by using the on mass-shell condition for

the external legs

√
p2 =

√
p′2 = m. (B.15)

This allows the denominator to simplify to m2(x + y)2. Combining the sim-

plified expressions of the denominator with the terms in Eq. (B.14) implies that the

vertex modification from Eq.(B.2) becomes

ieΛ(2)
σ =

ie3

4π2m

∫ 1

0

∫ 1−x

0

(−p′σ[y2 − y + xy]− pσ[x2 − x+ xy]− (x− y)[pσ − p′σ])

(x+ y)2
.

(B.16)

When the integrals are performed the value for the correction to the vertex is

Λ(2)
σ =

−e2

16π2m
(pσ + p′σ) =

α

4πm
(pσ + p′σ), (B.17)

where

α =
e2

4π
. (B.18)
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Using the Gordon decomposition for the current on the corrected vertex term

gives

u(p′)
[
− α

4πm
(pσ + p′σ)

]
u(p) = u(p′)

[
γσ
−α
2π

+
α

2π

iqνσµν

2m

]
u(p). (B.19)

As was seen in Appendix A, the factors multiplying the σµν give the magnetic

moment in the nonrelativistic limit thus leading to a total expression for the Landé

factor of

g

2
= (1 +

α

2π
). (B.20)
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