Qualifying Exam for Graduate Students – Aug 2009
Physics and Astronomy Department, Brigham Young University

Worked Problem Section
Instructions:

This is the second of two parts of the qualifying exam. This section requires worked-out answers. It will be worth 2/3 of the total exam. There are 12 topics, of which you must choose eight to answer. The eight topics you choose will be weighted equally.
The 12 topics are:

1. Mathematical Physics

2. Mechanics

3. Thermodynamics

4. Electrodynamics 1

5. Electrodynamics 2

6. Quantum Mechanics 1

7. Quantum Mechanics 2

8. Optics

9. Acoustics 1

10. Acoustics 2

11. Astronomy 1

12. Astronomy 2

Work each problem on the paper that has been provided. Start each problem on a new piece of paper. When you finish the exam, make sure that all of your work is placed in the appropriate divider sections.

You will have four hours for this section.

Some possibly helpful electricity/magnetism equations: 
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Name: ____________________________________
Mathematical Physics 
A long metal bar of length L and thermal diffusivity c is insulated so that no heat can leak out its sides.  It is put into an oven and heated to a uniform temperature of 120 degrees.  After it has reached equilibrium one end (that we call x = 0) is insulated and the other end (at x = L) is attached to a temperature reservoir at 70 degrees.  Find an expression for the temperature, T, as a function of both x and time, t.  Describe in words what you expect the final state (after a very long time) to be and verify that your expression goes to that state.  Qualitatively sketch the temperature as a function of x at several times from the initial state to the final state.  The heat flow equation is 
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Mechanics
A uniform heavy chain of length a hangs initially with a part of length b hanging over the edge of a table.  The remaining part, of length a-b, is coiled up on the edge of the table.  If the chain is released, find the speed of the chain when the last link leaves the end of the table.  (Ignore frictional forces.)

Thermodynamics 
A very simplistic model of a DNA strand is that of a “zipper” of L links in which each link is open or closed. If the link is closed, we ascribe zero energy to it. If it is open, it has energy . (One can interpret this as saying that energy is required to split a DNA molecule.) However, we also demand that the strand or zipper can only unzip from one end (say, the left end). This means that a link can only open if all the links to its left are also open.

(a) To get started, assume a very short DNA strand or zipper of L = 3 links at some temperature, T. Write down all the possible states of this zipper. Using classical (i.e. Boltzmann) statistics, find the partition function, Z, for this system. For each state, find the probability of being in that state.

(b) Repeat part (a) for general L.

(c) Find the Helmholtz free energy, F, the thermal energy, U, and the entropy, S, of this system in the large L limit.
If it helps, some formulas for the latter quantities are
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where  = 1/kT, k is Boltzmann’s constant, V and N are volume and particle number, respectively.
Electrodynamics 1
a) Use Gauss’s law in integral form 
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to determine the electric field 
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 inside a sphere of radius R carrying a uniform charge distribution 
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. Take advantage of the spherical symmetry to choose the appropriate Gaussian surface.

b) Using the result from a) determine the value of the volume integral
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using the same Gaussian surface as in a).

c) Using b) calculate the potential 
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 assuming now a uniform polarization 
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 inside the sphere.

d) Show that the resulting electric field inside the sphere is proportional to the polarization and find the correct constant of proportionality.

e) Using b)  calculate the vector potential 
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 (in the Coulomb gauge), assuming now a uniform magnetization 
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 inside the sphere.

f) Show that the resulting magnetic field inside the sphere is proportional to the magnetization and find the correct constant of proportionality.

Electrodynamics 2 
An alternating current I0cost flows down a straight wire, which runs along the z-axis of the figure shown. Surrounding the z-axis is a second wire, forming a toroidal coil with square cross-section of side a. The coil has an inner radius b, a self-inductance
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and a resistance R. Demonstrate to the reader that you understand the concept of “back emf” by finding the back emf in the toroidal coil from the current flowing in the coil itself. Use the quasistatic approximation. 
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and a resistance R. Demonstrate to the reader that you understand the
concept of “back emf” by finding the back emf in the toroidal coil from
the current lowing in the coil itself. Use the quasistatic approximation.

See Fig. 1.
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Figure 1: An alternating current Iy coswt flows down a straight wire, which
runs along the axis of a toroidal coil with square cross-section of side a and
an inner radius b.





Figure: An alternating current I0cost flows down a vertical straight wire. A second wire forms a toroidal coil with square cross-section of side a and an inner radius b.

Quantum Mechanics 1 
Let’s consider a particle in an infinite square well: 

the potential is 
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The particle is initially in the ground state
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1) Find the wave function 
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at any time t

2) Find the ‘revival’ time T after which the wave function 
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returns to its initial form 
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3) Find
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for any time t. Does 
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depend on time?

Hint: The general solution for the wave form of a particle in such infinite square well is  
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where 
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Useful integral:
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Quantum Mechanics 2 
Calculate the lifetime 
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 of an electron in the 3s state of hydrogen.  Give your answer in the form 
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HINT: It turns out that 
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; you may rely on this fact to avoid some calculations.

Note: 
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Optics 
a) Find the Fraunhofer diffraction (far field) intensity pattern 
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for two identical rectangular apertures (illuminated uniformly by light of wavelength ) as shown at the right, of size a by 4a,   whose centers are separated horizontally (x direction) by a distance b.  Your answer should be real, and normalized such that the maximum intensity has the arbitrary value
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Possibly useful:
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b). Sketch or describe the 2-D Fraunhofer pattern you would expect from the two apertures, and how it changes with b.  (Can be done with conceptual understanding, or you can use your analytic results from a.)

Notes: There are at least three ways to do this problem: one method uses only one listed equation, two methods use two equations.  It's easiest if you put the origin in the most symmetric location.  Partial credit given for calculation of diffraction from one aperture if you can't do it for both

Acoustics 1 
1. Two identical microphones are placed near a trumpet player, one directly in front and the other directly in back.  You may assume that the mics are located equidistant from the bell.  The trumpet player sounds a note one octave below concert A, with a fundamental frequency of 220 Hz.  The spectrum analyzer to which microphones are connected registers 92 dB, 76 dB, and 65 dB for the first three harmonics as measured by the microphone in front.  On the other hand, the analyzer shows 90 dB, 64 dB, and 40 dB for the same harmonics and the microphone to the rear.  

a. Calculate the overall sound pressure level of the first three harmonics both in front of and behind the trumpet player.

b. Identify the physical principle behind the different readings on the spectrum analyzer and explain why the differences between the measurements will increase as a function of harmonic number.

2. Consider a square membrane, 1 m on each side, for which the wave speed is 28.0 m/s.  The top, bottom, and left edges are rigidly fixed.  The right edge, however, is free to vibrate.

a. Find an expression for the vibration of this membrane.  (If you know the general solution for the vibration of the membrane, you do not need to begin with separation of variables for full credit.)

b. Do you expect degeneracy for this membrane?  Explain why or why not.

c. Calculate the natural frequencies of the first four modes. 

d. Sketch the modal patterns for these modes.

Acoustics 2 
1. The complex specific acoustic impedance of a spherically radiated pressure wave is given as 


[image: image45.wmf](

)

[

]

j

kr

kr

kr

c

+

+

=

2

0

1

r

z

,

where k is wavenumber, r is the radius from the source, 
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and c are the ambient density of and sound speed inside the medium, and j is the square root of -1.

a) What is a definition of specific acoustic impedance?

b) Note that k and r appear together. What physical significance does kr have?

c) What physical significance does 
[image: image47.wmf]c
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have?

d) What does the fact that z is complex tell you about the relationship between the wave’s pressure and particle velocity?

e) Describe the near and far field limits of z and how this is related what is physically happening with the wave’s pressure and particle velocity.  Draw a (rough) plot of the real and imaginary parts of z as a function of kr.

2.  Sound propagation in air has been found to be nearly adiabatic.  When Newton investigated the sound speed, he assumed an isothermal process, which resulted in a sound speed that was significantly lower than experiments showed.  (Newton never did figure out his error.)

a) What is the difference between an adiabatic and an isothermal process?  

b) Why is it reasonable conceptually that, e.g., a 1-kHz signal be an adiabatic rather than an isothermal process?

Astronomy 1 
The Arecibo radio telescope (the largest radio antenna in the world with a diameter of 300 m) was recently used in radar mode, tuned at a wavelength of 70cm, to measured a Doppler shift from peak to peak of 9.4 ( 10-7 cm for Mercury.  

(a) What is the rotational period for this planet?  (R = 2439 km, c = 3 ( 105 km/s) 

(b) Estimate the width from thermal Doppler broadening of the Hydrogen-alpha line at 656.3 nm for a 10,000 K star. 

(c) Now you observe a similar star that is moving towards you at 1000 km/s.  By how much is its light shifted by its motion through space?  

(d) At what wavelength will you observe the H-alpha line?  In what portion of the electromagnetic spectrum will this line be located? 

(e) Now you observe a galaxy receding from us at 0.6 times the speed of light.  At what wavelength will you observe the H-alpha line?  In what portion of the electromagnetic spectrum will this line be located?

Astronomy 2 
Suppose the local intensity of a radiation field is perfectly isotropic, i.e., Iν(θ,φ) = I = constant.  This would be the case (at least nearly so), at the center of a star.  In such an unlikely environment find in terms of I:




(a) the mean intensity, 
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(b) the net flux, 
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(c) the energy density, 
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(d) the radiation pressure, 
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(e) the first moment of intensity, Eddington’s 
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(f) the second moment of intensity, Eddington’s 
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