Physics 321

Hour 16
Lagrangian Dynamics

Bottom Line

- The Lagrangian is defined as $\mathcal{L} = T - U$
- When we minimize the “action integral”
 $$S = \int_{t_1}^{t_2} \mathcal{L}(x, \dot{x}, t) dt,$$
 the value of $x(t)$ that is given is the actual motion of an object.
- This means that
 $$\frac{\partial \mathcal{L}}{\partial x} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}}$$
- This is all magic.

Changing the Names...

$$S = \int_{t_1}^{t_2} \mathcal{L}(x, \dot{x}, t) dt$$

S is an extremum (so varying the path a little does not change S) if

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}}$$

Is there a function \mathcal{L} such that S is stationary for the actual $x(t)$ chosen by nature?

-- Comparison with results from “standard” Newtonian mechanics shows that there is!

Changing the Names...

$$S = \int_{t_1}^{t_2} \mathcal{L}(x, \dot{x}, t) dt$$

The Lagrangian

$$S = \int_{t_1}^{t_2} \mathcal{L}(x, \dot{x}, t) dt$$

S is called the “action integral” and \mathcal{L} is the “Lagrangian”

$$\mathcal{L} = T - U$$

Using The Lagrangian

- Find the kinetic and potential energies
- Construct the Lagrangian
 $$\mathcal{L} = T - U$$
- Use Lagrange’s Equation
 $$\frac{\partial \mathcal{L}}{\partial x} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}}$$
- We never need to consider the action integral
Using The Lagrangian

- Variable = \(q \) (like \(x \) or \(\theta \))
- Generalized momentum (like \(p \) or \(L \))

\[p = \frac{\partial L}{\partial \dot{x}} \]

- Lagrange's Equation

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{\partial L}{\partial x} \]

\[\dot{p} = \frac{\partial L}{\partial q} \]

Examples
- A mass \(m \) falls freely
- A mass \(m \) is acted on by a spring with constant \(k \) (no gravity)
- Add gravity
- Add friction

Using The Lagrangian

\[\dot{p} = \frac{\partial L}{\partial q} \]

In a simple case \(\dot{p} \) is the force as is \(\frac{\partial L}{\partial q} = -\frac{\partial V}{\partial q} \)

The Lagrangian and Mathematica

pendulum.nb
spring pendulum.nb
parabolic bowl.nb