The solution to the radial equation for the inverse square force law is:

\[r(\phi) = \frac{c}{1 + \epsilon \cos(\phi)} = \frac{1 + \epsilon}{1 + \epsilon \cos(\phi)} r(0) \]

In this form, \(\epsilon \) is taken as positive with the minimum \(r \) on the positive \(x \) axis. If the minimum \(r \) is on the negative \(x \) axis, \(\epsilon \) is negative.

You should recognize the following values of \(\epsilon \):

- \(\epsilon = 0 \) circle
- \(0 < \epsilon < 1 \) ellipse
- \(\epsilon = 1 \) parabola
- \(\epsilon > 1 \) hyperbola

The energy is related to the eccentricity, \(\epsilon \), by the following equation:

\[E = \frac{\alpha^2 \mu}{2 L^2} \left(\epsilon^2 - 1 \right) \]

where the force is \(F = \alpha/r^2 \) and \(L \) is the angular momentum.

1. We begin with essentially the same problem as homework problem 22.1. This time specify the following:

 (a) The particles are attracted by an attractive central force = \(-\alpha/r^2\). \(\alpha = 0.1875 \times 10^7 \).

 (b) The masses of the two objects are \(m_1 = 150 \) kg and \(m_2 = 300 \) kg.

 (c) The total energy is \(E = -156250 \) J.

 (d) The separation distance at \(t = 0 \) s is \(a = 10 \) m.

 (e) At \(t = 0 \) s, the radial velocity of each object is zero.

 Make a plot of \(r(\phi) \) and also a plot of \(r_1 \) and \(r_2 \) separately.

2. For the same data as in homework problem 23.1, solve the radial equation for total energies of \(-180000 \) J, \(-100000 \) J, \(-50000 \) J, \(0 \) J, and \(+50000 \) J. Plot each orbit and make a graph of the total effective potential (real + centrifugal) for each system.

3. Find the eccentricity for each orbit of homework problem 23.2. Plot each orbit using Eq. 8.59 from the text combined with the initial conditions.