Magnetic Fields, Special Cases

Physics 106

Concepts:
1. Magnetic field of a long, straight wire
2. Magnetic Force between Two Parallel Conductors
3. Magnetic Field of a Current Loop
4. Magnetic Field of a Solenoid

Units

<table>
<thead>
<tr>
<th>Magnetic Field, Tesla (T),</th>
<th>$[B] = \frac{Wb}{m^2} = \frac{N}{C \cdot m/s} = \frac{N}{A \cdot m}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_0 = 4\pi \times 10^{-7} T \cdot m/A$</td>
<td></td>
</tr>
</tbody>
</table>

Equations:

Long straight wire: \(B = \frac{\mu_0 I}{2\pi r} \), where \(\mu_0 \) is a constant, \(I \) is current and \(r \) is the radius.

\(\mu_0 = 4\pi \times 10^{-7} T \cdot m/A \)

For two parallel conductors: \(\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi d} \),

where \(l \) is the length of the conductors and \(d \) is the distance apart.

Solenoid: \(B = \mu_0 nI \), where \(n \) is the number of coils

Sample Problem

One conductor carries a current of 10 Amps. Point \(A \) is the midpoint between the wires, and point \(C \) is 5 cm to the right of the 10 Amp current. \(I \) is adjusted so that the magnetic field at \(C \) is zero. Find the value of the current \(I \) and the value of the magnetic field at \(A \).
Sample Problem

Find the magnetic field at point P.

![Diagram](https://via.placeholder.com/156x601.png)

Physics Hero

Find the magnetic field at point P.

![Diagram](https://via.placeholder.com/156x396.png)

Sample Exam Question

An incredible amount of electrical energy passes down the funnel of a large tornado every second. Measurements taken in Oklahoma at a distance of 9.00 km from a large tornado showed an almost constant magnetic field of \(1.50 \times 10^{-8} \text{T}\) associated with the tornado. What was the average current going down the funnel?

- a. 450 A
- b. 675 A
- c. 950 A
- d. 1 500 A

Sample Conceptual Exam Question

Consider two long, straight parallel wires, each carrying a current \(I\). If the currents are flowing in opposite directions:

- a. the two wires will attract each other.
- b. the two wires will repel each other.
- c. the two wires will exert a torque on each other.
- d. neither wire will exert a force on the other