10x. Light from air enters a uniaxial crystal with the optical axis along the \(z \) axis shown. The \(y \) direction is into the page. The optic axis is 45 degrees to the crystal surface. The incident \(k \)-vector is in red: \(\vec{k}_{inc} = \frac{k}{\sqrt{5}}(2\hat{x} - \hat{z}) \). The \(E \)-field (double arrows) is in the plane of the figure with direction \(\vec{E}_{inc} = \frac{E_n}{\sqrt{5}}(\hat{x} + 2\hat{z}) \). The optical properties of the crystal are given by \(\chi_x = 3, \chi_y = 3, \chi_z = 8 \).

a) Find the numerical values for \(n_o, n_e \), and plot \(n_e(\theta_{k-OA}) \) as a function of the angle between the OA and the unknown \(k \) in the crystal. Also plot \(n_e(\theta) \) where \(\theta \) is measured from the crystal normal.

b) Find \(\theta_i \) in degrees from the crystal normal.

c) Find the angle \(\theta_f \) from Snell’s law (measured from the crystal normal). i.e. find where \(\sin \theta_f \) (a constant) and \(n_e(\theta_f)\sin \theta_f \) are equal. What is \(\theta_f \) from the OA? Check: I got 57deg from OA axis.

d) Knowing \(\theta_i \), write a unit vector for \(\vec{k}_i \) in the crystal’s coordinate system.

e) From \(\vec{k}_i \cdot (\varepsilon_e \vec{E}_i + \vec{P}) = 0 \) find the ratios of the components of \(E \) in the crystal, and hence the direction of \(\vec{E}_i \) in the crystal coordinate system. Find the angle between \(E \) and \(\vec{k}_i \).

f) Knowing that \(S \) and \(E \) are perpendicular, find the angle that \(S \) makes with the optic axis. Make a sketch showing \(E \), \(K \) and \(S \) in the crystal. Check: I got \(S \) is 34 degrees from the OA.