We covered a lot of ground in this class. There is no way that I could cover everything that could be on the exam in two review assignments. So instead of trying to, I’m going to focus on some fundamental things that I have noticed some confusion about. I hope this turns out to be helpful, but remember that this just scratches the surface of what you need to know.

1. (5 points) Consider the complex number \(z = (a + ib)e^{ic} \) where \(a, b, \) and \(c \) are real numbers.

 (a) What is the complex conjugate of \(z \)?

 (b) What are the real and imaginary parts of \(z \)? Be sure to write them with no \(i \) in them so that it is obvious that your answers are real numbers.

 (c) What is the magnitude of \(z \)?

2. (15 points) Solve the following PDE IC/BC problem by the method of separation of variables

 \[
 u_{tt} = c^2 u_{xx}
 \]

 \[
 u(0, t) = 0 \quad u(L, t) = A
 \]

 \[
 u(x, 0) = 0 \quad u_t(x, 0) = B
 \]

 where \(A, B \) and \(c \) are constants. Note that

 \[
 \int_0^b x \sin(ax)dx = \frac{\sin(ab) - ab \cos(ab)}{a^2}
 \]

3. (5 points) Verify that your answer to the last problem satisfies the boundary conditions and solves the PDE, and then plot your solution and the time derivative of your solution at \(t = 0 \) to show that it satisfies your initial conditions.

4. (15 points) Solve the following PDE IC/BC problem by the method of eigenfunction expansion

 \[
 u_{tt} = c^2 u_{xx} + A
 \]

 \[
 u(0, t) = 0 \quad u(L, t) = 0
 \]

 \[
 u(x, 0) = 0 \quad u_t(x, 0) = 0
 \]

 where \(A \) and \(c \) are constants.