1. (15 points) Show that you can separate Laplace’s equation in spherical coordinates into an angular part which is solved by the spherical harmonics, and a radial part which has the form of Euler’s equation. Note that, although Farlow calls the polar angle θ, let’s use the more standard notation where the polar angle is ϕ and the azimuthal angle is θ, so that our equations look like the Wikipedia page on spherical harmonics.

2. (10 points) Now let’s solve a problem where we can assume that our solution to Laplace’s equation has no angular dependence (only dependence on r). Assume that I have a spherical metal shell of radius $r = a$ which is held at a voltage $V = V_0$. Assuming that the potential at $r = \infty$ is zero, what is the potential inside and outside of the sphere?

3. (15 points) Now let’s assume that I have a spherical surface of radius a whose potential depends on the azimuthal angle (what Farlow calls ϕ, but is usually called θ) according to the equation

$$V(a, \phi) = V_0 + V_1 \cos(\theta).$$

Find $V(r, \theta)$ everywhere outside of the sphere. To solve the θ part, let $x = \cos(\theta)$ and turn the ODE into one we’ve seen before. To solve the r part, just accept that the solution to this equation (which is a form of Euler’s differential equation) is Cr^γ where C and γ are constants.