"Acceptor" ~ \[e^- \text{ in \text{\textit{Si}}} \rightarrow \text{1 extraneous hole} \] (and uncharged majority)

+ \[\text{acceptor mass, \text{\textit{Si}}} \]

+ \[\text{donor + acceptor} \]

+ \[\text{electrons drop down to } n \text{ level!} \]

- \[n \text{ if } N_A \gg N_D \rightarrow n \text{-type} \]

- \[P \text{-type if } N_A < N_D \]

"complicated" and roughly equal, or at least, lots of both types

- \[\text{Amphoterism} - \text{as Si in GaAs, could be a mess} \]

- \[\text{Nonhydrogenic} \]

- \[\text{states deep in band} \]

- \[\text{this is hoping when by little distance because accept not very like host} \]

- \[\text{Background: } \text{unintentional } \leq 10^{14} \text{ cm}^{-3} \text{ (as I put in S8)} \]

- \[\text{for best samples} \]

- \[\text{intentional: } \text{often } \approx 10^{17} - 10^{19} \text{ cm}^{-3} \]

- \[\text{my own work: } \approx 3 \times 10^{18} - 3 \times 10^{19} \text{ cm}^{-3} \]
What happens at some temp? \((kT < 25 \text{ meV})\)

\[G \approx 6 \text{ meV (with doping\% \text{ or } \%)} \]

\[E_F = \frac{2m^*}{3}\sqrt{kT} \text{ (meV) (approx)} \]

- For n-type: probably still donor electron \(E_F \rightarrow E_{\text{CB}}\)
- For p-type: some (most) acceptors \(E_F \rightarrow E_{\text{VB}}\)

At \(0K\)

\[E_E = E_{\text{CB}} + \frac{E_{\text{D}}}{n} \]

- Extended population of CB

\[E_F \approx \text{ Fermi energy} \]

\[E_F = \frac{E_{\text{CB}}^0 + E_{\text{D}}}{} \]

\[n = \frac{N_o}{2} \left(\frac{m^*}{2\pi} \right)^{3/2} \exp \left(-\frac{E_F}{kT} \right) \]
\[n = \frac{2}{k_B} \frac{\mu}{E_g} \frac{1}{kT} \]

Derivation:

\[n = \frac{2}{k_B} \frac{\mu}{E_g} \frac{1}{kT} \]

\[n_0 = \frac{E_G}{kT} = n_0 \frac{E_G}{kT} \]

\[p = p_0 \frac{(E_G - \mu)}{kT} = p_0 \frac{E_G}{kT} \]

\[\mu + E_V = 0 \quad \text{then} \quad E_C = E_G \]

Before: \(n = p \)

Now: \(n = p + \text{ionized donors} \)

\[n = p_0 \frac{E_G}{kT} + n_0 \frac{E_G}{kT} \]

\[n^2 = n_0 p_0 \frac{E_G}{kT} + n_0 N_D \frac{E_G}{kT} \]

\[n^2 = n_0 p_0 \frac{E_G}{kT} + n_0 N_D \frac{E_G}{kT} \]

\[\uparrow \quad \text{Doping small} \]

\[n = \sqrt{n_0 N_D} \frac{E_G}{2kT} \]

Handout from 3.2.6
Alloys

certainly 1% + or - not depends on our

"average" alloy

bad gap engineering hard work

→ discussion of quantum wells

Type 1 vs Type 2

End of Ch 3

→ skipping more topics at end

- Thermoelectric
- Superlattices
 - Bloch oscillators
 - Zener tunneling (actually, maybe explain)

\[V = \frac{E}{d} \]

for constant E

\[U \sim V \]

then U \sim existing U