\[-\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + V(x) \psi(x) = E \psi(x) \]

If \(V \) is periodic: \(V(x+na) = V(x) \)

\[\psi_{x+a} = \frac{1}{a} \psi_x \]

Then: (perhaps) \(\psi(x+na) = \psi(x) \) ?

No, so too strong a condition

\[\psi(x+na) = e^{i k(a - x)} \psi_x \]

off by a phase factor

is OK, since \(|\psi|^2 \) is well-defined!

\[\text{Actual Thin: } \quad \psi(x) = e^{ikx} \phi_k(x) \quad \text{with } \phi_k(x) = U_k(x+na) \]

Demonstrate: \(\psi(x+na) = e^{i k (n a)} \phi_k(x) = e^{i k (n a)} \phi_k(x+na) \)

\[= \psi(x) \cdot e^{i k n a} \checkmark \text{ it worked!} \]

(That's half the problem anyway.

Still need to prove other relations; only this formula.)
Given Bloch theorem \(\Phi = \mathbf{u}_k(x) e^{i(k \cdot a)} \)

- Periodic \(\mathbf{u}_k(x) = \mathbf{u}(x + \mathbf{a}) \)
- Different for each wavenumber

Every wavenumber is associated with some free electron wavefunction \(\Psi \)

Can label every wavenumber \(k \) with \(n \) to obtain 1 electron

Consider wavefunction labeled \(n / k' = c \cdot k \)

\(\Psi_0 \) is in \(1 \text{st} BZ \)

\[\Psi_0(x) = e^{i(\frac{2\pi n x}{a})} \]

\(n \) is the label for \(k \)

Block function with \(k' \) inside \(1 \text{st} BZ \)

Different \(n \) function thus label \(n \) to distinguish \(\Psi_0(x) \) from \(\mathbf{u}_k(x) \)

Since all electrons can be labeled with wave vector \(k \) inside \(1 \text{st} BZ \), we can restrict \(x \) to \(1 \text{st} BZ \) in all plots.

(\(n \) becomes index of band)
Also, the phase, \(\phi \), is separated by \(\frac{2\pi}{L} \)

\(\leftarrow \text{length of physical crystal} \)

\[A \sin \left(\frac{2 \pi x}{L} \right) \rightarrow k = \frac{2\pi n}{L} \]

Proof 1:

For \(f = 0 \) in body

Then its "periodic in whole space well"

\(\text{(even number well)} \)

\[y \]

Spacing is \(\frac{2\pi}{L} \)

But this includes possible values of \(k \)

To include maximum \(k \) or \(k + \frac{\pi}{L} N \)

must "switch" not by factor of 2

Proof 2

Force periodic body considering (because surface is unimportant)

\[f(x+L) = f(x) \]

\[y(x) = Ae^{2\pi i L} \rightarrow k = \frac{2\pi n}{L} \]

Spacing is \(\frac{2\pi}{L} \checkmark \)

Includes both + and - values of \(k \)

and direction of \(k \) can be used to indicate electric velocity.