Announcements – Thurs, 23 Oct 2014

1. **Exam 2** starts Oct 30, a week from today.
 a. Late fee on Monday Nov 3, after 2 pm
 b. Closes on Tuesday Nov 4, 2 pm
 c. Jerika exam reviews, both in room C295 ESC:
 i. Wed Oct 29 7 - 8:30 pm
 ii. Thurs Oct 30 5:30 - 7 pm
 d. Exam covers through today's lecture
 i. Ch. 5, 6, 7.1-7.3, 8
 ii. HW 10-17

2. Equations from last time:

 Energy: \[KE_{\text{trans}} = \frac{1}{2} mv^2 \quad KE_{\text{rot}} = \frac{1}{2} I\omega^2 \]

 Force: \[\sum \vec{F} = m\vec{a} \quad \sum \tau = I\alpha \]

3. Equation from today:

 Momentum: \[p = mv \]

 ang. momentum = ??
“Which of the problems from last night's HW assignment would you most like me to discuss in class today?”
Worked problem from last time: A falling mass starts a cylinder rotating (not a “massless pulley”). What is the acceleration of \(m \)?

Draw FBDs

Write equations, plug in \(\alpha = a/r \)…

Cylinder

\[
\Sigma \tau_p = I \alpha
\]

\[
TR = \left(\frac{1}{2} MR^2 \right) \left(\frac{a}{R} \right)
\]

Pail

\[
\Sigma F = ma
\]

\[
mg - T = ma
\]

Solve simultaneous equations for \(a \) (and \(T \), if desired)

Answer: \(a = \frac{m}{m + M/2} g \)
What if you just want to know v_f (given a distance d)?

Answer: $v_f = \sqrt{\frac{mgd}{\frac{1}{2}m + \frac{1}{4}M}}$
Worked Problem
A bicycle tire \((r = 0.4 \text{ m}, I = 0.8 \text{ kg}\cdot\text{m}^2)\) is hanging from a string from the ceiling, not moving. You push tangentially on the edge with a 30 N force for 0.3 seconds. What is \(\omega_f\)? \((\text{Hint}: \text{because time is given, might be simplest to do it with } N^2, \text{ not energy.})\)

Answer: 4.5 rad/s
Clicker quiz

The left disk has a rope wrapped around its edge and the rope passes over a second disk. The two disks are identical and their **mass is significant**. As the system accelerates there is no slipping of the rope on either wheel; both wheels accelerate at the same rate. The tension in the rope is

a. Largest between the disks (**red arrows**)

b. Largest above the mass (**blue arrows**)

c. The same in both places.

(What’s the difference with our old “massless pulleys”?)
Angular momentum
Imagine a mass m on a thin rod moving in a circle, with constant speed v. It has linear momentum $\vec{p} =$________.

Is \vec{p} constant?________

Is magnitude of \vec{p} constant?________

What do we need in order to affect magnitude of \vec{p} ?
Derivation of Angular Momentum

Force-momentum relationship
Start with Newton 2:
\[\sum \vec{F} = m \vec{a} \]

Torque-ang. mom. relationship
\[\sum \tau = I \alpha \]

Define
\[L = I \omega \]
units of \(L \)?

Momentum is conserved if no net external force

Angular momentum is conserved if no net external torque
Conservation of Angular momentum blueprint

\[\sum L_{\text{bef}} = \sum L_{\text{aft}} \rightarrow \text{if and only if } no \ net \ external \ torque \]
Problem

Two space stations are connected by a cable. They are rotating about their center of mass. Someone in the blue station pulls the cable in so they are each closer to the center of rotation. What happens?

Demo: Hoberman sphere
Clicker quiz
Is rotational kinetic energy conserved in the Hoberman sphere? The final KE is _________ as the initial KE:
 a. more
 b. less
 c. the same

Hint: is there any non-conservative work done?
From warmup

Rotating stool, student with weights. What happens to her moment of inertia as she pulls in the weights?
 a. increases
 b. decreases
 c. remains the same

What happens to her rotational speed as she pulls in the weights?
 a. increases
 b. decreases
 c. remains the same

What happens to her rotational kinetic energy as she pulls in the weights?
 a. increases
 b. decreases
 c. remains the same
Demo: Spinning chair
Worked Problem
A skater has an initial ω of 2 rad/s and $I = 30 \text{ kg}\cdot\text{m}^2$. When she brings in her arms, $I = 10 \text{ kg}\cdot\text{m}^2$. What is her final ω?

How much work did it take to do this?

Answers: 6 rad/s, 120 J
Videos

- marbles and funnel
- train on circular track
- pocket watch
Food for thought: two skaters joining hands

Angular momentum conserved \iff No external torque
(system=both skaters)

Clicker quiz: Is there an external torque here? I.e. was angular momentum conserved?
 a. Yes external torque/ang. mom. not conserved
 b. No external torque/ang. mom. is conserved
"Hidden" angular momentum

\[L = r_\perp p \quad (= r p_\perp = r p \sin \theta) \]

Derivation:

\[\tau = r_\perp F \]

\[\tau = r_\perp \left(\frac{\Delta p}{\Delta t} \right) \]

\[\tau = \frac{\Delta (r_\perp p)}{\Delta t} \]

But remember \(\tau \) also \(= \Delta L/\Delta t \)!
Worked Problem

The skaters have 0.7 m arms and are each 62 kg. They come together at 3.5 m/s. How fast (rad/s) are they turning afterwards?

Answer: 5 rad/s
L is a vector

With no external torques...

...both _________ and ___________ of L stay the same

Demo: gyroscope

With external torques?
From warmup: http://science.howstuffworks.com/gyroscope1.htm
Ralph watched the video with the bicycle wheel, but became very confused. He had learned that angular momentum is conserved, but in this case isn’t the angular momentum of the wheel constantly changing in direction as the wheel spins around. What’s up?

“Think-pair-share”
- Think about it for a bit
- Talk to your neighbor, find out if he/she thinks the same as you
- Be prepared to share your answer with the class if called on

Clicker: I am now ready to share my answer if randomly selected.
 a. Yes

Note: you are allowed to "pass" if you would really not answer.
Demo

Bicycle wheel
Demo: Angular momentum with external torque
(wacky briefcase)

Demo: briefcase

To fully describe what happens to angular momentum with external torque takes more math than we have... just understand that strange things can happen. 😊
Clicker quiz
José sits still on frictionless ice, holding a bicycle wheel that’s already spinning. Viewed from above it is going **clockwise** (CW).

If he grabs on to the wheel edge firmly and stops it from spinning he will:

a. Start to turn CW (viewed from the top)

b. Start to turn CCW

c. Remain sitting without turning
Clicker quiz

José still on frictionless ice holding this spinning wheel. Viewed from above it is going clockwise (CW).

If, instead of stopping the wheel, he carefully turns it over so it is going CCW (viewed from the top), he will start to:

 a. Turn CW, but slower than in the previous problem
 b. Turn CCW, but slower than in the previous problem
 c. Turn CW, but faster than in the previous problem
 d. Turn CCW, but faster than in the previous problem
 e. Remain sitting without turning

Demos: rotating platform, bicycle wheel
Demo: double bicycle wheels
Clicker quiz

What will happen to the rotational speed ω of the merry-go-round if the girl…

…walks towards the center?
 a. it slows down
 b. it stays same speed
 c. it speeds up
Clicker quiz

...starts running opposite to the spinning so she is at rest vs the ground?
 a. it slows down
 b. it stays same speed
 c. it speeds up

HINT: Sometimes it’s easier to think of the **forces (torques)** she puts on the merry-go-round to change, rather than conservation of L.
Clicker quiz

…slips off when she steps on a frictionless icy part?
 a. it slows down
 b. it stays same speed
 c. it speeds up
Clicker quiz

...throws her shoe off tangentially in the direction she’s moving?
 a. it slows down
 b. it stays same speed
 c. it speeds up